RESUMEN
Dendritic cells (DCs) have a role in the development and activation of self-reactive pathogenic T cells1,2. Genetic variants that are associated with the function of DCs have been linked to autoimmune disorders3,4, and DCs are therefore attractive therapeutic targets for such diseases. However, developing DC-targeted therapies for autoimmunity requires identification of the mechanisms that regulate DC function. Here, using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies, we identify a regulatory loop of negative feedback that operates in DCs to limit immunopathology. Specifically, we find that lactate, produced by activated DCs and other immune cells, boosts the expression of NDUFA4L2 through a mechanism mediated by hypoxia-inducible factor 1α (HIF-1α). NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs that are involved in the control of pathogenic autoimmune T cells. We also engineer a probiotic that produces lactate and suppresses T cell autoimmunity through the activation of HIF-1α-NDUFA4L2 signalling in DCs. In summary, we identify an immunometabolic pathway that regulates DC function, and develop a synthetic probiotic for its therapeutic activation.
Asunto(s)
Enfermedades Autoinmunes , Sistema Nervioso Central , Células Dendríticas , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ácido Láctico , Humanos , Enfermedades Autoinmunes/inmunología , Enfermedades Autoinmunes/metabolismo , Enfermedades Autoinmunes/prevención & control , Autoinmunidad , Sistema Nervioso Central/citología , Sistema Nervioso Central/inmunología , Sistema Nervioso Central/patología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/química , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ácido Láctico/metabolismo , Probióticos/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/inmunología , Retroalimentación Fisiológica , Lactasa/genética , Lactasa/metabolismo , Análisis de la Célula IndividualRESUMEN
Endoplasmic reticulum (ER) stress and unfolded protein response are energetically challenging under nutrient stress conditions. However, the regulatory mechanisms that control the energetic demand under nutrient and ER stress are largely unknown. Here we show that ER stress and glucose deprivation stimulate mitochondrial bioenergetics and formation of respiratory supercomplexes (SCs) through protein kinase R-like ER kinase (PERK). Genetic ablation or pharmacological inhibition of PERK suppresses nutrient and ER stress-mediated increases in SC levels and reduces oxidative phosphorylation-dependent ATP production. Conversely, PERK activation augments respiratory SCs. The PERK-eIF2α-ATF4 axis increases supercomplex assembly factor 1 (SCAF1 or COX7A2L), promoting SCs and enhanced mitochondrial respiration. PERK activation is sufficient to rescue bioenergetic defects caused by complex I missense mutations derived from mitochondrial disease patients. These studies have identified an energetic communication between ER and mitochondria, with implications in cell survival and diseases associated with mitochondrial failures.
Asunto(s)
Factor de Transcripción Activador 4/genética , Metabolismo Energético/genética , Factor 2 Eucariótico de Iniciación/genética , Mitocondrias/genética , eIF-2 Quinasa/genética , Adenosina Trifosfato/metabolismo , Animales , Apoptosis , Línea Celular , Supervivencia Celular/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/genética , Glucosa/metabolismo , Humanos , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Mutación Missense/genética , Nutrientes/metabolismo , Fosforilación , Factores de Empalme Serina-Arginina/genética , Transducción de SeñalRESUMEN
Mitochondrial diseases comprise a heterogeneous group of genetically inherited disorders that cause failures in energetic and metabolic function. Boosting residual oxidative phosphorylation (OXPHOS) activity can partially correct these failures. Herein, using a high-throughput chemical screen, we identified the bromodomain inhibitor I-BET 525762A as one of the top hits that increases COX5a protein levels in complex I (CI) mutant cybrid cells. In parallel, bromodomain-containing protein 4 (BRD4), a target of I-BET 525762A, was identified using a genome-wide CRISPR screen to search for genes whose loss of function rescues death of CI-impaired cybrids grown under conditions requiring OXPHOS activity for survival. We show that I-BET525762A or loss of BRD4 remodeled the mitochondrial proteome to increase the levels and activity of OXPHOS protein complexes, leading to rescue of the bioenergetic defects and cell death caused by mutations or chemical inhibition of CI. These studies show that BRD4 inhibition may have therapeutic implications for the treatment of mitochondrial diseases.
Asunto(s)
Benzodiazepinas/farmacología , Grupo Citocromo c/genética , Complejo I de Transporte de Electrón/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Proteínas de Ciclo Celular , Fusión Celular , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Grupo Citocromo c/metabolismo , Complejo I de Transporte de Electrón/deficiencia , Complejo IV de Transporte de Electrones , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Humanos , Metaboloma , Metabolómica , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Transducción de Señal , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismoRESUMEN
The brain is a highly metabolic organ, composed of multiple cell classes, that controls crucial functions of the body. Although neurons have traditionally been the main protagonist, astrocytes have gained significant attention over the last decade. In this regard, astrocytes are a type of glial cells that have recently emerged as critical regulators of central nervous system (CNS) function and play a significant role in maintaining brain energy metabolism. However, in certain scenarios, astrocyte behavior can go awry, which poses a significant threat to brain integrity and function. This is definitively the case for mutations that turn normal astrocytes and astrocytic precursors into gliomas, an aggressive type of brain tumor. In addition, healthy astrocytes can interact with tumor cells, becoming part of the tumor microenvironment and influencing disease progression. In this review, we discuss the recent evidence suggesting that disturbed metabolism in astrocytes can contribute to the development and progression of fatal human diseases such as cancer. Emphasis is placed on detailing the molecular bases and metabolic pathways of this disease and highlighting unique metabolic vulnerabilities that can potentially be exploited to develop successful therapeutic opportunities.
Asunto(s)
Astrocitos , Neoplasias Encefálicas , Humanos , Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Microambiente TumoralRESUMEN
The protein complexes of the mitochondrial electron transport chain exist in isolation and in higher order assemblies termed supercomplexes (SCs) or respirasomes (SC I+III2+IV). The association of complexes I, III and IV into the respirasome is regulated by unknown mechanisms. Here, we designed a nanoluciferase complementation reporter for complex III and IV proximity to determine in vivo respirasome levels. In a chemical screen, we found that inhibitors of the de novo pyrimidine synthesis enzyme dihydroorotate dehydrogenase (DHODH) potently increased respirasome assembly and activity. By-passing DHODH inhibition via uridine supplementation decreases SC assembly by altering mitochondrial phospholipid composition, specifically elevated peroxisomal-derived ether phospholipids. Cell growth rates upon DHODH inhibition depend on ether lipid synthesis and SC assembly. These data reveal that nucleotide pools signal to peroxisomes to modulate synthesis and transport of ether phospholipids to mitochondria for SC assembly, which are necessary for optimal cell growth in conditions of nucleotide limitation.
Asunto(s)
Transporte de Electrón , Nucleótidos/química , Peroxisomas/química , Fosfolípidos/química , Dihidroorotato Deshidrogenasa , Transporte de Electrón/genética , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lípidos/biosíntesis , Metabolómica , Mitocondrias/metabolismo , Estructura Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Consumo de Oxígeno , Éteres Fosfolípidos , Uridina/metabolismoRESUMEN
Deficiencies in the electron transport chain (ETC) lead to mitochondrial diseases. While mutations are distributed across the organism, cell and tissue sensitivity to ETC disruption varies, and the molecular mechanisms underlying this variability remain poorly understood. Here we show that, upon ETC inhibition, a non-canonical tricarboxylic acid (TCA) cycle upregulates to maintain malate levels and concomitant production of NADPH. Our findings indicate that the adverse effects observed upon CI inhibition primarily stem from reduced NADPH levels, rather than ATP depletion. Furthermore, we find that Pyruvate carboxylase (PC) and ME1, the key mediators orchestrating this metabolic reprogramming, are selectively expressed in astrocytes compared to neurons and underlie their differential sensitivity to ETC inhibition. Augmenting ME1 levels in the brain alleviates neuroinflammation and corrects motor function and coordination in a preclinical mouse model of CI deficiency. These studies may explain why different brain cells vary in their sensitivity to ETC inhibition, which could impact mitochondrial disease management.
Asunto(s)
Astrocitos , Ciclo del Ácido Cítrico , Complejo I de Transporte de Electrón , Malatos , Mitocondrias , Neuronas , Animales , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/deficiencia , Ratones , Astrocitos/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Malatos/metabolismo , Piruvato Carboxilasa/metabolismo , Piruvato Carboxilasa/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/genética , NADP/metabolismo , Encéfalo/metabolismo , Ratones Endogámicos C57BL , Masculino , Humanos , Modelos Animales de Enfermedad , Adenosina Trifosfato/metabolismoRESUMEN
Dendritic cells (DCs) control the generation of self-reactive pathogenic T cells. Thus, DCs are considered attractive therapeutic targets for autoimmune diseases. Using single-cell and bulk transcriptional and metabolic analyses in combination with cell-specific gene perturbation studies we identified a negative feedback regulatory pathway that operates in DCs to limit immunopathology. Specifically, we found that lactate, produced by activated DCs and other immune cells, boosts NDUFA4L2 expression through a mechanism mediated by HIF-1α. NDUFA4L2 limits the production of mitochondrial reactive oxygen species that activate XBP1-driven transcriptional modules in DCs involved in the control of pathogenic autoimmune T cells. Moreover, we engineered a probiotic that produces lactate and suppresses T-cell autoimmunity in the central nervous system via the activation of HIF-1α/NDUFA4L2 signaling in DCs. In summary, we identified an immunometabolic pathway that regulates DC function, and developed a synthetic probiotic for its therapeutic activation.
RESUMEN
The architecture of cristae provides a spatial mitochondrial organization that contains functional respiratory complexes. Several protein components including OPA1 and MICOS complex subunits organize cristae structure, but upstream regulatory mechanisms are largely unknown. Here, in vivo and in vitro reconstitution experiments show that the endoplasmic reticulum (ER) kinase PERK promotes cristae formation by increasing TOM70-assisted mitochondrial import of MIC19, a critical subunit of the MICOS complex. Cold stress or ß-adrenergic stimulation activates PERK that phosphorylates O-linked N-acetylglucosamine transferase (OGT). Phosphorylated OGT glycosylates TOM70 on Ser94, enhancing MIC19 protein import into mitochondria and promoting cristae formation and respiration. In addition, PERK-activated OGT O-GlcNAcylates and attenuates CK2α activity, which mediates TOM70 Ser94 phosphorylation and decreases MIC19 mitochondrial protein import. We have identified a cold-stress inter-organelle PERK-OGT-TOM70 axis that increases cell respiration through mitochondrial protein import and subsequent cristae formation. These studies have significant implications in cellular bioenergetics and adaptations to stress conditions.
Asunto(s)
Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , eIF-2 Quinasa/metabolismo , Adipocitos Marrones/citología , Adipocitos Marrones/efectos de los fármacos , Adipocitos Marrones/metabolismo , Animales , Quinasa de la Caseína II/metabolismo , Frío , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Glicosilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/genética , Proteínas Mitocondriales/genética , N-Acetilglucosaminiltransferasas/genética , Fosforilación , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , ARN Guía de Kinetoplastida/metabolismo , eIF-2 Quinasa/antagonistas & inhibidores , eIF-2 Quinasa/deficiencia , eIF-2 Quinasa/genéticaRESUMEN
Mitochondrial diseases (MDs) are a heterogeneous group of disorders resulting from mutations in nuclear or mitochondrial DNA genes encoding mitochondrial proteins1,2. MDs cause pathologies with severe tissue damage and ultimately death3,4. There are no cures for MDs and current treatments are only palliative5-7. Here we show that tetracyclines improve fitness of cultured MD cells and ameliorate disease in a mouse model of Leigh syndrome. To identify small molecules that prevent cellular damage and death under nutrient stress conditions, we conduct a chemical high-throughput screen with cells carrying human MD mutations and discover a series of antibiotics that maintain survival of various MD cells. We subsequently show that a sub-library of tetracycline analogues, including doxycycline, rescues cell death and inflammatory signatures in mutant cells through partial and selective inhibition of mitochondrial translation, resulting in an ATF4-independent mitohormetic response. Doxycycline treatment strongly promotes fitness and survival of Ndufs4-/- mice, a preclinical Leigh syndrome mouse model8. A proteomic analysis of brain tissue reveals that doxycycline treatment largely prevents neuronal death and the accumulation of neuroimmune and inflammatory proteins in Ndufs4-/- mice, indicating a potential causal role for these proteins in the brain pathology. Our findings suggest that tetracyclines deserve further evaluation as potential drugs for the treatment of MDs.
Asunto(s)
Antibacterianos/uso terapéutico , Enfermedades Mitocondriales/tratamiento farmacológico , Tetraciclinas/uso terapéutico , Factor de Transcripción Activador 4/metabolismo , Animales , Encéfalo/patología , Células Cultivadas , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Enfermedad de Leigh/tratamiento farmacológico , Enfermedad de Leigh/patología , Esperanza de Vida , Metabolómica , Ratones , Ratones Noqueados , Enfermedades Mitocondriales/mortalidad , Enfermedades Mitocondriales/patología , Aptitud Física , Análisis de SupervivenciaRESUMEN
Electron transport chain (ETC) defects occurring from mitochondrial disease mutations compromise ATP synthesis and render cells vulnerable to nutrient and oxidative stress conditions. This bioenergetic failure is thought to underlie pathologies associated with mitochondrial diseases. However, the precise metabolic processes resulting from a defective mitochondrial ETC that compromise cell viability under stress conditions are not entirely understood. We design a whole genome gain-of-function CRISPR activation screen using human mitochondrial disease complex I (CI) mutant cells to identify genes whose increased function rescue glucose restriction-induced cell death. The top hit of the screen is the cytosolic Malic Enzyme (ME1), that is sufficient to enable survival and proliferation of CI mutant cells under nutrient stress conditions. Unexpectedly, this metabolic rescue is independent of increased ATP synthesis through glycolysis or oxidative phosphorylation, but dependent on ME1-produced NADPH and glutathione (GSH). Survival upon nutrient stress or pentose phosphate pathway (PPP) inhibition depends on compensatory NADPH production through the mitochondrial one-carbon metabolism that is severely compromised in CI mutant cells. Importantly, this defective CI-dependent decrease in mitochondrial NADPH production pathway or genetic ablation of SHMT2 causes strong increases in inflammatory cytokine signatures associated with redox dependent induction of ASK1 and activation of stress kinases p38 and JNK. These studies find that a major defect of CI deficiencies is decreased mitochondrial one-carbon NADPH production that is associated with increased inflammation and cell death.
Asunto(s)
Complejo I de Transporte de Electrón/metabolismo , Inflamación/metabolismo , Enfermedades Mitocondriales/metabolismo , Mutación , NADP/metabolismo , Animales , Muerte Celular/genética , Línea Celular , Supervivencia Celular/genética , Complejo I de Transporte de Electrón/genética , Metabolismo Energético/genética , Glucólisis/genética , Humanos , Inflamación/genética , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Fosforilación Oxidativa , Vía de Pentosa Fosfato/genéticaRESUMEN
Oncogene-targeted and immune checkpoint therapies have revolutionized the clinical management of malignant melanoma and now offer hope to patients with advanced disease. Intimately connected to patients' overall clinical risk is whether the initial primary melanoma lesion will metastasize and cause advanced disease, but underlying mechanisms are not entirely understood. A subset of melanomas display heightened peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α) expression that maintains cell survival cues by promoting mitochondrial function, but also suppresses metastatic spread. Here, we show that PGC1α expression in melanoma cells was silenced by chromatin modifications that involve promoter H3K27 trimethylation. Pharmacological EZH2 inhibition diminished H3K27me3 histone markers, increased PGC1α expression, and functionally suppressed invasion within PGC1α-silenced melanoma cells. Mechanistically, PGC1α silencing activated transcription factor 12 (TCF12), to increase expression of WNT5A, which in turn stabilized YAP protein levels to promote melanoma migration and metastasis. Accordingly, inhibition of components of this transcription-signaling axis, including TCF12, WNT5A, or YAP, blocked melanoma migration in vitro and metastasis in vivo. These results indicate that epigenetic control of melanoma metastasis involved altered expression of PGC1α and an association with the inherent metabolic state of the tumor.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Histonas/metabolismo , Melanoma Experimental/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/biosíntesis , Factores de Transcripción/metabolismo , Proteína Wnt-5a/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Línea Celular Tumoral , Células HEK293 , Histonas/genética , Humanos , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Desnudos , Invasividad Neoplásica , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Factores de Transcripción/genética , Proteína Wnt-5a/genética , Proteínas Señalizadoras YAPRESUMEN
Mitochondrial mutations cause bioenergetic defects associated with failures to use the electron transfer chain and oxidize substrates. These defects are exacerbated under energetic stress conditions and ultimately cause cell deterioration and death. However, little is known about cellular strategies that rescue mitochondrial stress failures and maintain cell survival under these conditions. Here, we have designed and performed a high-throughput chemical screen to identify small molecules that rescue human mitochondrial complex I mutations from energetic stress-induced cell death. The top positive hits were a series of sulfonylureas that efficiently maintain prolonged cell survival and growth under energetic stress conditions. The addition of galactose instead of glucose, to experimentally force mitochondrial respiration, triggered an initial ER stress response that was associated with IRE1α-dependent inflammatory signals including JNK and p38 MAP kinases in mutant cells. Sulfonylureas, similar to inhibition of IRE1α and p38 MAP kinase, potently blocked this ER stress inflammatory and cell death pathway and maintained viability and cell growth under severe energetic stress conditions. These studies reveal that sulfonylureas and specific inhibition of the IRE1α inflammatory pathway protect against cell death and can be used to rescue bioenergetic failures in mitochondrial complex I-mutated cells under stress conditions.
Asunto(s)
Apoptosis , Citoprotección , Complejo I de Transporte de Electrón/genética , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Inflamación/patología , Mitocondrias/metabolismo , Mutación/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Apoptosis/efectos de los fármacos , Citoprotección/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Galactosa , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Mitocondrias/efectos de los fármacos , Compuestos de Sulfonilurea/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismoRESUMEN
The uncontrolled growth of tumors provides metabolic dependencies that can be harnessed for therapeutic benefit. Although tumor cells exhibit these increased metabolic demands due to their rapid proliferation, these metabolic processes are general to all cells, and furthermore, targeted therapeutic intervention can provoke compensatory adaptation that alters tumors' characteristics. As an example, a subset of melanomas depends on the transcriptional coactivator PGC1α function to sustain their mitochondrial energy-dependent survival. However, selective outgrowth of resistant PGC1α-independent tumor cells becomes endowed with an augmented metastatic phenotype. To find PGC1α-dependent components that would not affect metastasis in melanomas, an unbiased proteomic analyses was performed and uncovered the orphan nuclear receptor ERRα, which supports PGC1α's control of mitochondrial energetic metabolism, but does not affect the antioxidant nor antimetastatic regulatory roles. Specifically, genetic or pharmacologic inhibition of ERRα reduces the inherent bioenergetic capacity and decreases melanoma cell growth, but without altering the invasive characteristics. Thus, within this particularly aggressive subset of melanomas, which is characterized by heighted expression of PGC1α, ERRα specifically mediates prosurvival functions and represents a tangible therapeutic target.Implications: ERRα, a druggable protein, mediates the bioenergetic effects in melanomas defined by high PGC1α expression, suggesting a rational means for therapeutic targeting of this particularly aggressive melanoma subtype. Mol Cancer Res; 15(10); 1366-75. ©2017 AACR.
Asunto(s)
Melanoma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteómica/métodos , Receptores de Estrógenos/metabolismo , Animales , Línea Celular Tumoral , Humanos , Ratones , Mitocondrias/metabolismo , Trasplante de Neoplasias , Fosforilación Oxidativa , Estrés Oxidativo , Receptor Relacionado con Estrógeno ERRalfaRESUMEN
Aging is associated with progressive white adipose tissue (WAT) enlargement initiated early in life, but the molecular mechanisms involved remain unknown. Here we show that mitochondrial complex IV (CIV) activity and assembly are already repressed in white adipocytes of middle-aged mice and involve a HIF1A-dependent decline of essential CIV components such as COX5B. At the molecular level, HIF1A binds to the Cox5b proximal promoter and represses its expression. Silencing of Cox5b decreased fatty acid oxidation and promoted intracellular lipid accumulation. Moreover, local in vivo Cox5b silencing in WAT of young mice increased the size of adipocytes, whereas restoration of COX5B expression in aging mice counteracted adipocyte enlargement. An age-dependent reduction in COX5B gene expression was also found in human visceral adipose tissue. Collectively, our findings establish a pivotal role for CIV dysfunction in progressive white adipocyte enlargement during aging, which can be restored to alleviate age-dependent WAT expansion.
Asunto(s)
Envejecimiento/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Mitocondrias/metabolismo , Obesidad/metabolismo , Adipocitos Blancos/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Tamaño de la Célula , Epidídimo/metabolismo , Regulación de la Expresión Génica , Silenciador del Gen , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Obesidad/genética , Obesidad/patología , Regiones Promotoras Genéticas/genética , Unión Proteica/genéticaRESUMEN
The textbook description of mitochondrial respiratory complexes (RCs) views them as free-moving entities linked by the mobile carriers coenzyme Q (CoQ) and cytochrome c (cyt c). This model (known as the fluid model) is challenged by the proposal that all RCs except complex II can associate in supercomplexes (SCs). The proposed SCs are the respirasome (complexes I, III, and IV), complexes I and III, and complexes III and IV. The role of SCs is unclear, and their existence is debated. By genetic modulation of interactions between complexes I and III and III and IV, we show that these associations define dedicated CoQ and cyt c pools and that SC assembly is dynamic and organizes electron flux to optimize the use of available substrates.
Asunto(s)
Citocromos c/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Mitocondrias/enzimología , Ubiquinona/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Transporte de Electrón , Complejo I de Transporte de Electrón/genética , Complejo III de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia MolecularRESUMEN
The oxidative phosphorylation system is one of the best-characterized metabolic pathways. In mammals, the protein components and X-ray structures are defined for all complexes except complex I. Here, we show that NDUFA4, formerly considered a constituent of NADH Dehydrogenase (CI), is instead a component of the cytochrome c oxidase (CIV). Deletion of NDUFA4 does not perturb CI. Rather, proteomic, genetic, evolutionary, and biochemical analyses reveal that NDUFA4 plays a role in CIV function and biogenesis. The change in the attribution of the NDUFA4 protein requires renaming of the gene and reconsideration of the structure of CIV. Furthermore, NDUFA4 should be considered a candidate gene for CIV rather than CI deficiencies in humans.
Asunto(s)
Complejo IV de Transporte de Electrones/genética , Evolución Molecular , Fosforilación Oxidativa , Subunidades de Proteína/genética , Animales , Western Blotting , Cromatografía Liquida , Complejo IV de Transporte de Electrones/metabolismo , Electroforesis , Fibroblastos/metabolismo , Células HeLa , Humanos , Ratones , Espectrometría de Masas en TándemRESUMEN
The fine regulation of mitochondrial function has proved to be an essential metabolic adaptation to fluctuations in oxygen availability. During hypoxia, cells activate an anaerobic switch that favors glycolysis and attenuates the mitochondrial activity. This switch involves the hypoxia-inducible transcription factor-1 (HIF-1). We have identified a HIF-1 target gene, the mitochondrial NDUFA4L2 (NADH dehydrogenase [ubiquinone] 1 alpha subcomplex, 4-like 2). Our results, obtained employing NDUFA4L2-silenced cells and NDUFA4L2 knockout murine embryonic fibroblasts, indicate that hypoxia-induced NDUFA4L2 attenuates mitochondrial oxygen consumption involving inhibition of Complex I activity, which limits the intracellular ROS production under low-oxygen conditions. Thus, reducing mitochondrial Complex I activity via NDUFA4L2 appears to be an essential element in the mitochondrial reprogramming induced by HIF-1.
Asunto(s)
Complejo I de Transporte de Electrón/antagonistas & inhibidores , Inducción Enzimática/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Hipoxia/fisiopatología , Mitocondrias/fisiología , Consumo de Oxígeno/fisiología , Animales , Apoptosis/fisiología , Línea Celular , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Fibroblastos , Células HeLa , Humanos , Hipoxia/enzimología , Potencial de la Membrana Mitocondrial , Ratones , Ratones Noqueados , Análisis por Micromatrices , Ratas , Especies Reactivas de Oxígeno/metabolismo , Estadísticas no ParamétricasRESUMEN
Von Hippel Lindau (Vhl) gene inactivation results in embryonic lethality. The consequences of its inactivation in adult mice, and of the ensuing activation of the hypoxia-inducible factors (HIFs), have been explored mainly in a tissue-specific manner. This mid-gestation lethality can be also circumvented by using a floxed Vhl allele in combination with an ubiquitous tamoxifen-inducible recombinase Cre-ER(T2). Here, we characterize a widespread reduction in Vhl gene expression in Vhl(floxed)-UBC-Cre-ER(T2) adult mice after dietary tamoxifen administration, a convenient route of administration that has yet to be fully characterized for global gene inactivation. Vhl gene inactivation rapidly resulted in a marked splenomegaly and skin erythema, accompanied by renal and hepatic induction of the erythropoietin (Epo) gene, indicative of the in vivo activation of the oxygen sensing HIF pathway. We show that acute Vhl gene inactivation also induced Epo gene expression in the heart, revealing cardiac tissue to be an extra-renal source of EPO. Indeed, primary cardiomyocytes and HL-1 cardiac cells both induce Epo gene expression when exposed to low O(2) tension in a HIF-dependent manner. Thus, as well as demonstrating the potential of dietary tamoxifen administration for gene inactivation studies in UBC-Cre-ER(T2) mouse lines, this data provides evidence of a cardiac oxygen-sensing VHL/HIF/EPO pathway in adult mice.