Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33239360

RESUMEN

Malaria is a pervasive disease that affects millions of lives each year in equatorial regions of the world. During the erythrocytic phase of the parasite life cycle, Plasmodium falciparum invades red blood cells, where it catabolizes hemoglobin and sequesters the released toxic heme as innocuous hemozoin crystals. Artemisinin (ART)-class drugs are activated in vivo by newly released heme, which creates a carbon-centered radical that markedly reduces parasite density. Radical damage to parasite lipids and proteins is perceived to be ARTs' dominant mechanism of action. By contrast, quinoline-class antimalarials inhibit the formation of hemozoin and in this way suppress heme detoxification. Here, we combine malaria parasite assays and scanning probe microscopy of growing ß-hematin crystals to elucidate an unexpected mechanism employed by two widely administered antimalarials, ART, and artesunate to subdue the erythrocytic phase of the parasite life cycle. We demonstrate that heme-drug adducts, produced after the radical activation of ARTs and largely believed to be benign bystanders, potently kills P. falciparum at low exogenous concentrations. We show that these adducts inhibit ß-hematin crystallization and heme detoxification, a pathway which complements the deleterious effect of radicals generated via parent drug activation. Our findings reveal an irreversible mechanism of heme-ART adduct inhibition of heme crystallization, unique among antimalarials and common crystal growth inhibitors, that opens new avenues for evaluating drug dosing regimens and understanding growing resistance of P. falciparum to ART.


Asunto(s)
Artemisininas/química , Artemisininas/farmacología , Hemoproteínas/metabolismo , Plasmodium falciparum/patogenicidad , Cristalización , Hemina , Humanos , Malaria/metabolismo , Microscopía de Fuerza Atómica , Plasmodium falciparum/efectos de los fármacos
2.
Commun Biol ; 6(1): 783, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37500754

RESUMEN

Hematin crystallization is an essential element of heme detoxification of malaria parasites and its inhibition by antimalarial drugs is a common treatment avenue. We demonstrate at biomimetic conditions in vitro irreversible inhibition of hematin crystal growth due to distinct cooperative mechanisms that activate at high crystallization driving forces. The evolution of crystal shape after limited-time exposure to both artemisinin metabolites and quinoline-class antimalarials indicates that crystal growth remains suppressed after the artemisinin metabolites and the drugs are purged from the solution. Treating malaria parasites with the same agents reveals that three- and six-hour inhibitor pulses inhibit parasite growth with efficacy comparable to that of inhibitor exposure during the entire parasite lifetime. Time-resolved in situ atomic force microscopy (AFM), complemented by light scattering, reveals two molecular-level mechanisms of inhibitor action that prevent ß-hematin growth recovery. Hematin adducts of artemisinins incite copious nucleation of nonextendable nanocrystals, which incorporate into larger growing crystals, whereas pyronaridine, a quinoline-class drug, promotes step bunches, which evolve to engender abundant dislocations. Both incorporated crystals and dislocations are known to induce lattice strain, which persists and permanently impedes crystal growth. Nucleation, step bunching, and other cooperative behaviors can be amplified or curtailed as means to control crystal sizes, size distributions, aspect ratios, and other properties essential for numerous fields that rely on crystalline materials.


Asunto(s)
Antimaláricos , Malaria , Quinolinas , Humanos , Hemina/metabolismo , Cristalización , Antimaláricos/farmacología , Antimaláricos/química , Quinolinas/farmacología
3.
Nat Commun ; 14(1): 6415, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828012

RESUMEN

Long-acting injectable medications, such as atovaquone, offer the prospect of a "chemical vaccine" for malaria, combining drug efficacy with vaccine durability. However, selection and transmission of drug-resistant parasites is of concern. Laboratory studies have indicated that atovaquone resistance disadvantages parasites in mosquitoes, but lack of data on clinically relevant Plasmodium falciparum has hampered integration of these variable findings into drug development decisions. Here we generate atovaquone-resistant parasites that differ from wild type parent by only a Y268S mutation in cytochrome b, a modification associated with atovaquone treatment failure in humans. Relative to wild type, Y268S parasites evidence multiple defects, most marked in their development in mosquitoes, whether from Southeast Asia (Anopheles stephensi) or Africa (An. gambiae). Growth of asexual Y268S P. falciparum in human red cells is impaired, but parasite loss in the mosquito is progressive, from reduced gametocyte exflagellation, to smaller number and size of oocysts, and finally to absence of sporozoites. The Y268S mutant fails to transmit from mosquitoes to mice engrafted with human liver cells and erythrocytes. The severe-to-lethal fitness cost of clinically relevant atovaquone resistance to P. falciparum in the mosquito substantially lessens the likelihood of its transmission in the field.


Asunto(s)
Anopheles , Antimaláricos , Malaria Falciparum , Malaria , Parásitos , Vacunas , Humanos , Animales , Ratones , Atovacuona/farmacología , Atovacuona/uso terapéutico , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria/parasitología , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/genética , Anopheles/parasitología , Antiparasitarios/uso terapéutico
4.
bioRxiv ; 2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36798298

RESUMEN

Rising numbers of malaria cases and deaths underscore the need for new interventions. Long-acting injectable medications, such as those now in use for HIV prophylaxis, offer the prospect of a malaria "chemical vaccine", combining the efficacy of a drug (like atovaquone) with the durability of a biological vaccine. Of concern, however, is the possible selection and transmission of drug-resistant parasites. We addressed this question by generating clinically relevant, highly atovaquone-resistant, Plasmodium falciparum mutants competent to infect mosquitoes. Isogenic paired strains, that differ only by a single Y268S mutation in cytochrome b, were evaluated in parallel in southeast Asian (Anopheles stephensi) or African (Anopheles gambiae) mosquitoes, and thence in humanized mice. Fitness costs of the mutation were evident along the lifecycle, in asexual parasite growth in vitro and in a progressive loss of parasites in the mosquito. In numerous independent experiments, microscopic exam of salivary glands from hundreds of mosquitoes failed to detect even one Y268S sporozoite, a defect not rescued by coinfection with wild type parasites. Furthermore, despite uniformly successful transmission of wild type parasites from An. stephensi to FRG NOD huHep mice bearing human hepatocytes and erythrocytes, multiple attempts with Y268S-fed mosquitoes failed: there was no evidence of parasites in mouse tissues by microscopy, in vitro culture, or PCR. These studies confirm a severe-to-lethal fitness cost of clinically relevant atovaquone-resistant P. falciparum in the mosquito, and they significantly lessen the likelihood of their transmission in the field.

5.
PLoS One ; 16(11): e0259419, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34807932

RESUMEN

The Greater Everglades Region of South Florida is one of the largest natural wetlands and the only subtropical ecosystem found in the continental United States. Mosquitoes are seasonally abundant in the Everglades where several potentially pathogenic mosquito-borne arboviruses are maintained in natural transmission cycles involving vector-competent mosquitoes and reservoir-competent vertebrate hosts. The fragile nature of this ecosystem is vulnerable to many sources of environmental change, including a wetlands restoration project, climate change, invasive species and residential development. In this study, we obtained baseline data on the distribution and abundance of both mosquitos and arboviruses occurring in the southern Everglades region during the summer months of 2013, when water levels were high, and in 2014, when water levels were low. A total of 367,060 mosquitoes were collected with CO2-baited CDC light traps at 105 collection sites stratified among the major landscape features found in Everglades National Park, Big Cypress National Preserve, Fakahatchee State Park Preserve and Picayune State Forest, an area already undergoing restoration. A total of 2,010 pools of taxonomically identified mosquitoes were cultured for arbovirus isolation and identification. Seven vertebrate arboviruses were isolated: Everglades virus, Tensaw virus, Shark River virus, Gumbo Limbo virus, Mahogany Hammock virus, Keystone virus, and St. Louis encephalitis virus. Except for Tensaw virus, which was absent in 2013, the remaining viruses were found to be most prevalent in hardwood hammocks and in Fakahatchee, less prevalent in mangroves and pinelands, and absent in cypress and sawgrass. In contrast, in the summer of 2014 when water levels were lower, these arboviruses were far less prevalent and only found in hardwood hammocks, but Tensaw virus was present in cypress, sawgrass, pinelands, and a recently burned site. Major environmental changes are anticipated in the Everglades, many of which will result in increased water levels. How these might lead to the emergence of arboviruses potentially pathogenic to both humans and wildlife is discussed.


Asunto(s)
Arbovirus/aislamiento & purificación , Culicidae/virología , Alphavirus/aislamiento & purificación , Animales , Cambio Climático , Ecosistema , Florida , Especies Introducidas , Mosquitos Vectores/virología , Orthobunyavirus/aislamiento & purificación
6.
Virology ; 504: 152-167, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28193550

RESUMEN

The recently described taxon Negevirus is comprised of a diverse group of insect-specific viruses isolated from mosquitoes and phlebotomine sandflies. In this study, a comprehensive genetic characterization, molecular, epidemiological and evolutionary analyses were conducted on nearly full-length sequences of 91 new negevirus isolates obtained in Brazil, Colombia, Peru, Panama, USA and Nepal. We demonstrated that these arthropod restricted viruses are clustered in two major phylogenetic groups with origins related to three plant virus genera (Cilevirus, Higrevirus and Blunevirus). Molecular analyses demonstrated that specific host correlations are not present with most negeviruses; instead, high genetic variability, wide host-range, and cross-species transmission were noted. The data presented here also revealed the existence of five novel insect-specific viruses falling into two arthropod-restrictive virus taxa, previously proposed as distinct genera, designated Nelorpivirus and Sandewavirus. Our results provide a better understanding of the molecular epidemiology, evolution, taxonomy and stability of this group of insect-restricted viruses.


Asunto(s)
Aedes/virología , Genoma Viral/genética , Virus de Insectos/clasificación , Virus de Insectos/genética , Virus ARN/clasificación , Virus ARN/genética , Animales , Línea Celular , Chlorocebus aethiops , Variación Genética/genética , Inestabilidad Genómica/genética , Especificidad del Huésped , Epidemiología Molecular , Filogenia , Virus ARN/aislamiento & purificación , ARN Viral/genética , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA