Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Environ Microbiol ; 26(7): e16673, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39001572

RESUMEN

Protists, a crucial part of the soil food web, are increasingly acknowledged as significant influencers of nutrient cycling and plant performance in farmlands. While topographical and climatic factors are often considered to drive microbial communities on a continental scale, higher trophic levels like heterotrophic protists also rely on their food sources. In this context, bacterivores have received more attention than fungivores. Our study explored the connection between the community composition of protists (specifically Rhizaria and Cercozoa) and fungi across 156 cereal fields in Europe, spanning a latitudinal gradient of 3000 km. We employed a machine-learning approach to measure the significance of fungal communities in comparison to bacterial communities, soil abiotic factors, and climate as determinants of the Cercozoa community composition. Our findings indicate that climatic variables and fungal communities are the primary drivers of cercozoan communities, accounting for 70% of their community composition. Structural equation modelling (SEM) unveiled indirect climatic effects on the cercozoan communities through a change in the composition of the fungal communities. Our data also imply that fungivory might be more prevalent among protists than generally believed. This study uncovers a hidden facet of the soil food web, suggesting that the benefits of microbial diversity could be more effectively integrated into sustainable agriculture practices.


Asunto(s)
Grano Comestible , Hongos , Microbiología del Suelo , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Europa (Continente) , Grano Comestible/microbiología , Suelo/química , Cercozoos , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Cadena Alimentaria , Microbiota , Biodiversidad , Micobioma , Agricultura
2.
Appl Environ Microbiol ; : e0042524, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39235241

RESUMEN

Grasslands are recognized as important reservoirs of soil biodiversity. Livestock grazing is implemented as a grassland management strategy to improve soil quality and enhance plant diversity. Soil microbial communities play a pivotal role in grassland ecosystems, so it is important to examine whether grazing practices affect the soil microbiome. Previous studies on grazing have primarily focused on bacteria and fungi, overlooking an important group-protists. Protists are vital in soil microbiomes as they drive nutrient availability and trophic interactions. Determining the impact of grazing on protists and their relationships with bacterial and fungal communities is important for understanding soil microbiome dynamics in grazed ecosystems. In this study, we investigated soil bacterial, fungal, and protist communities under four grazing levels: no grazing, moderate-use grazing, full-use grazing, and heavy-use grazing. Our results showed that heavy grazing led to a greater diversity of protists with specific groups, such as Discoba and Conosa, increasing in abundance. We also found strong associations between protist and bacterial/fungal members, indicating their intricate relationships within the soil microbiome. For example, the abundance of predatory protists increased under grazing while arbuscular mycorrhizal fungi decreased. Notably, arbuscular mycorrhizae were negatively associated with predatory groups. Furthermore, we observed that microbial network complexity increased with grazing intensity, with fungal members playing an important role in the network. Overall, our study reports the impact of temporal grazing intensity on soil microbial dynamics and highlights the importance of considering protist ecology when evaluating the effects of grazing on belowground communities in grassland ecosystems. IMPORTANCE: The significance of this study lies in its exploration of the effects of temporal grazing intensity on the dynamics of the soil microbiome, specifically focusing on the often-neglected role of protists. Our findings provide insights into the complex relationships between protists, bacteria, and fungi, emphasizing their impact on trophic interactions in the soil. Gaining a better understanding of these dynamics is essential for developing effective strategies for grassland management and conservation, underscoring the importance of incorporating protist ecology into microbiome studies in grasslands.

3.
Appl Environ Microbiol ; 90(4): e0235523, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38535171

RESUMEN

Halophyte-based remediation emerges as a novel strategy for ameliorating saline soils, offering a sustainable alternative to conventional leaching methods. While bioremediation is recognized for its ability to energize soil fertility and structure, the complex interplays among plant traits, soil functions, and soil microbial diversity remain greatly unknown. Here, we conducted a 5-year field experiment involving the continuous cultivation of the annual halophyte Suaeda salsa in saline soils to explore soil microbial diversity and their relationships with plant traits and soil functions. Our findings demonstrate that a decline in soil salinity corresponded with increases in the biomass and seed yield of S. salsa, which sustained a consistent seed oil content of approximately 22% across various salinity levels. Significantly, prolonged cultivation of halophytes substantially augmented soil microbial diversity, particularly from the third year of cultivation. Moreover, we identified positive associations between soil multifunctionality, seed yield, and taxonomic richness within a pivotal microbial network module. Soils enriched with taxa from this module showed enhanced multifunctionality and greater seed yields, correlating with the presence of functional genes implicated in nitrogen fixation and nitrification. Genomic analysis suggests that these taxa have elevated gene copy numbers of crucial functional genes related to nutrient cycling. Overall, our study emphasizes that the continuous cultivation of S. salsa enhances soil microbial diversity and recovers soil multifunctionality, expanding the understanding of plant-soil-microbe feedback in bioremediation.IMPORTANCEThe restoration of saline soils utilizing euhalophytes offers a viable alternative to conventional irrigation techniques for salt abatement and soil quality enhancement. The ongoing cultivation of the annual Suaeda salsa and its associated plant traits, soil microbial diversity, and functionalities are, however, largely underexplored. Our investigation sheds light on these dynamics, revealing that cultivation of S. salsa sustains robust plant productivity while fostering soil microbial diversity and multifunctionality. Notably, the links between enhanced soil multifunctionality, increased seed yield, and network-dependent taxa were found, emphasizing the importance of key microbial taxa linked with functional genes vital to nitrogen fixation and nitrification. These findings introduce a novel understanding of the role of soil microbes in bioremediation and advance our knowledge of the ecological processes that are vital for the rehabilitation of saline environments.


Asunto(s)
Chenopodiaceae , Suelo , Suelo/química , Solución Salina , Cloruro de Sodio , Nitrificación , Plantas Tolerantes a la Sal
4.
Glob Chang Biol ; 29(11): 3177-3192, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36897740

RESUMEN

Organic carbon and aggregate stability are key features of soil quality and are important to consider when evaluating the potential of agricultural soils as carbon sinks. However, we lack a comprehensive understanding of how soil organic carbon (SOC) and aggregate stability respond to agricultural management across wide environmental gradients. Here, we assessed the impact of climatic factors, soil properties and agricultural management (including land use, crop cover, crop diversity, organic fertilization, and management intensity) on SOC and the mean weight diameter of soil aggregates, commonly used as an indicator for soil aggregate stability, across a 3000 km European gradient. Soil aggregate stability (-56%) and SOC stocks (-35%) in the topsoil (20 cm) were lower in croplands compared with neighboring grassland sites (uncropped sites with perennial vegetation and little or no external inputs). Land use and aridity were strong drivers of soil aggregation explaining 33% and 20% of the variation, respectively. SOC stocks were best explained by calcium content (20% of explained variation) followed by aridity (15%) and mean annual temperature (10%). We also found a threshold-like pattern for SOC stocks and aggregate stability in response to aridity, with lower values at sites with higher aridity. The impact of crop management on aggregate stability and SOC stocks appeared to be regulated by these thresholds, with more pronounced positive effects of crop diversity and more severe negative effects of crop management intensity in nondryland compared with dryland regions. We link the higher sensitivity of SOC stocks and aggregate stability in nondryland regions to a higher climatic potential for aggregate-mediated SOC stabilization. The presented findings are relevant for improving predictions of management effects on soil structure and C storage and highlight the need for site-specific agri-environmental policies to improve soil quality and C sequestration.


Asunto(s)
Carbono , Suelo , Suelo/química , Agricultura , Secuestro de Carbono
5.
Environ Sci Technol ; 56(19): 13686-13695, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36099238

RESUMEN

The intensive use of pesticides and their subsequent distribution to the environment and non-target organisms is of increasing concern. So far, little is known about the occurrence of pesticides in soils of untreated areas─such as ecological refuges─as well as the processes contributing to this unwanted pesticide contamination. In this study, we analyzed the presence and abundance of 46 different pesticides in soils from extensively managed grassland sites, as well as organically and conventionally managed vegetable fields (60 fields in total). Pesticides were found in all soils, including the extensive grassland sites, demonstrating a widespread background contamination of soils with pesticides. The results suggest that after conversion from conventional to organic farming, the organic fields reach pesticide levels as low as those of grassland sites not until 20 years later. Furthermore, the different pesticide composition patterns in grassland sites and organically managed fields facilitated differentiation between long-term persistence of residues and diffuse contamination processes, that is, short-scale redistribution (spray drift) and long-scale dispersion (atmospheric deposition), to offsite contamination.


Asunto(s)
Plaguicidas , Suelo , Agricultura , Pradera , Plaguicidas/análisis , Suelo/química , Verduras
6.
Environ Sci Technol ; 56(18): 12975-12987, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36067360

RESUMEN

Persistent microbial symbioses can confer greater fitness to their host under unfavorable conditions, but manipulating such beneficial interactions necessitates a mechanistic understanding of the consistently important microbiomes for the plant. Here, we examined the phylogenetic profiles and plant-beneficial traits of the core microbiota that consistently inhabits the rhizosphere of four divergent Cd hyperaccumulators and an accumulator. We evidenced the existence of a conserved core rhizosphere microbiota in each plant distinct from that in the non-hyperaccumulating plant. Members of Burkholderiaceae and Sphingomonas were the shared cores across hyperaccumulators and accumulators. Several keystone taxa in the rhizosphere networks were part of the core microbiota, the abundance of which was an important predictor of plant Cd accumulation. Furthermore, an inoculation experiment with synthetic communities comprising isolates belonging to the shared cores indicated that core microorganisms could facilitate plant growth and metal tolerance. Using RNA-based stable isotope probing, we discovered that abundant core taxa overlapped with active rhizobacteria utilizing root exudates, implying that the core rhizosphere microbiota assimilating plant-derived carbon may provide benefits to plant growth and host phenotype such as Cd accumulation. Our study suggests common principles underpinning hyperaccumulator-microbiome interactions, where plants consistently interact with a core set of microbes contributing to host fitness and plant performance. These findings lay the foundation for harnessing the persistent root microbiomes to accelerate the restoration of metal-disturbed soils.


Asunto(s)
Metales Pesados , Microbiota , Bacterias/genética , Cadmio , Carbono , Filogenia , Raíces de Plantas/microbiología , Plantas/genética , ARN , Rizosfera , Suelo , Microbiología del Suelo
7.
Environ Microbiol ; 23(12): 7483-7496, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34259375

RESUMEN

Composting is widely used to reduce the abundance of antibiotic resistance genes (ARGs) in solid waste. While ARG dynamics have been extensively investigated during composting, the fate and abundance of residual ARGs during the storage remain unexplored. Here, we tested experimentally how ARG and mobile genetic element (MGE) abundances change during compost storage using metagenomics, quantitative PCR and direct culturing. We found that 43.8% of ARGs and 39.9% of MGEs quickly recovered already during the first week of storage. This rebound effect was mainly driven by the regrowth of indigenous, antibiotic-resistant bacteria that survived the composting. Bacterial transmission from the surrounding air had a much smaller effect, being most evident as MGE rebound during the later stages of storage. While hyperthermophilic composting was more efficient at reducing the relative abundance of ARGs and MGEs, relatively greater ARG rebound was observed during the storage of hyperthermophilic compost, exceeding the initial levels of untreated sewage sludge. Our study reveals that residual ARGs and MGEs left in the treated compost can quickly rebound during the storage via airborne introduction and regrowth of surviving bacteria, highlighting the need to develop better storage strategies to prevent the rebound of ARGs and MGEs after composting.


Asunto(s)
Compostaje , Microbiota , Antibacterianos/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Estiércol , Microbiota/genética
8.
Environ Sci Technol ; 55(5): 2919-2928, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33534554

RESUMEN

Pesticides are applied in large quantities to agroecosystems worldwide. To date, few studies assessed the occurrence of pesticides in organically managed agricultural soils, and it is unresolved whether these pesticide residues affect soil life. We screened 100 fields under organic and conventional management with an analytical method containing 46 pesticides (16 herbicides, 8 herbicide transformation products, 17 fungicides, seven insecticides). Pesticides were found in all sites, including 40 organic fields. The number of pesticide residues was two times and the concentration nine times higher in conventional compared to organic fields. Pesticide number and concentrations significantly decreased with the duration of organic management. Even after 20 years of organic agriculture, up to 16 different pesticide residues were present. Microbial biomass and specifically the abundance of arbuscular mycorrhizal fungi, a widespread group of beneficial plant symbionts, were significantly negatively linked to the amount of pesticide residues in soil. This indicates that pesticide residues, in addition to abiotic factors such as pH, are a key factor determining microbial soil life in agroecosystems. This comprehensive study demonstrates that pesticides are a hidden reality in agricultural soils, and our results suggest that they have harmful effects on beneficial soil life.


Asunto(s)
Residuos de Plaguicidas , Plaguicidas , Contaminantes del Suelo , Agricultura , Residuos de Plaguicidas/análisis , Plaguicidas/análisis , Suelo , Contaminantes del Suelo/análisis
9.
Environ Microbiol ; 18(6): 1805-16, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26184386

RESUMEN

Land-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems. Plots with trees in agroforestry systems promoted greater bacterial abundance and to some extent species richness, which was associated with more nutrient-rich soil resources. While Acidobacteria, Actinobacteria and Alphaproteobacteria were the dominant bacterial phyla and subphyla across land uses, Arthrobacter, Acidobacteria_Gp16, Burkholderia, Rhodanobacter and Rhizobium were the keystone taxa in these agroforestry systems. Soil pH and carbon contents emerged as the major determinants of bacterial community characteristics. We found non-random co-occurrence and modular patterns of soil bacterial communities, and these patterns were controlled by edaphic factors and not their taxonomy. Overall, this study highlights the drivers and co-occurrence patterns of soil microbial communities in agroforestry systems.


Asunto(s)
Bacterias/aislamiento & purificación , Microbiología del Suelo , Árboles/microbiología , Bacterias/clasificación , Bacterias/genética , Canadá , Carbono/análisis , Clima , Bosques , Suelo/química
10.
Can J Microbiol ; 62(6): 485-91, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27045904

RESUMEN

Archaea are ubiquitous and highly abundant in Arctic soils. Because of their oligotrophic nature, archaea play an important role in biogeochemical processes in nutrient-limited Arctic soils. With the existing knowledge of high archaeal abundance and functional potential in Arctic soils, this study employed terminal restriction fragment length polymorphism (t-RFLP) profiling and geostatistical analysis to explore spatial dependency and edaphic determinants of the overall archaeal (ARC) and ammonia-oxidizing archaeal (AOA) communities in a high Arctic polar oasis soil. ARC communities were spatially dependent at the 2-5 m scale (P < 0.05), whereas AOA communities were dependent at the ∼1 m scale (P < 0.0001). Soil moisture, pH, and total carbon content were key edaphic factors driving both the ARC and AOA community structure. However, AOA evenness had simultaneous correlations with dissolved organic nitrogen and mineral nitrogen, indicating a possible niche differentiation for AOA in which dry mineral and wet organic soil microsites support different AOA genotypes. Richness, evenness, and diversity indices of both ARC and AOA communities showed high spatial dependency along the landscape and resembled scaling of edaphic factors. The spatial link between archaeal community structure and soil resources found in this study has implications for predictive understanding of archaea-driven processes in polar oases.


Asunto(s)
Amoníaco/metabolismo , Archaea/metabolismo , Nitrógeno/metabolismo , Suelo/química , Archaea/genética , Regiones Árticas , Oxidación-Reducción , Polimorfismo de Longitud del Fragmento de Restricción
11.
Sci Total Environ ; 949: 174953, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39069174

RESUMEN

Intercropping can increase soil nutrient availability and provide greater crop yields for intensive agroecosystems. Despite its multiple benefits, how intercropping influences rhizosphere microbiome assemblages, functionality, and complex soil nitrogen cycling is not fully understood. Here, a three-year field experiment was carried out on different cropping system with five fertilization treatments at the main soybean production regions. We found that soybean yields in intercropped systems were on average 17 % greater than in monocropping system, regardless of fertilization treatments. We also found that intercropping systems significant increased network modularity (by 46 %) and functional diversity (by 11 %) than monocropping systems. Metagenomics analyses further indicated intercropping promotes microbiome functional adaptation, particularly enriching core functions related to nitrogen metabolism. Cropping patterns had a stronger influence on the functional genes associated with soil nitrogen cycling (R2 = 0.499). Monocropping systems increased the abundance of functional genes related to organic nitrogen ammonification, nitrogen fixation, and denitrification, while functional guilds of nitrate assimilation (by 28 %), nitrification (by 31 %), and dissimilatory nitrate reduction (by 10.1 %) genes were enriched in intercropping systems. Furthermore, we found that abiotic factors (i.e. AP, pH, and Moisture) are important drivers in shaping soil microbial community assemblage and nitrogen cycling. The functional genes include hzsB, and nrfA, and nxrA that affected by these biotic and abiotic variables were strongly related to crop yield (R2 = 0.076 ~ R2 = 0.249), suggesting a key role for maintaining crop production. We demonstrated that land use conversion from maize monocropping to maize-soybean intercropping diversify rhizosphere microbiome and functionality signatures, and intercropping increased key gene abundance related to soil nitrogen cycling to maintain the advantage of crop yield. The results of this study significantly facilitate our understanding of the complex soil nitrogen cycling processes and lay the foundation for manipulating desired specific functional taxa for improved crop productivity under sustainable intensification.


Asunto(s)
Agricultura , Microbiota , Ciclo del Nitrógeno , Nitrógeno , Rizosfera , Microbiología del Suelo , Suelo , Suelo/química , Nitrógeno/metabolismo , Agricultura/métodos , Glycine max/crecimiento & desarrollo , Producción de Cultivos/métodos
12.
Sci Total Environ ; 912: 169353, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38104847

RESUMEN

Soil microbial communities play a vital role in the biogeochemical cycling and ecological functioning of grassland, but may be affected by common land uses such as cattle grazing. Changes in microbial diversity and network complexity can affect key ecosystem functions such as nutrient cycling. However, it is not well known how microbial diversity and network complexity respond to grazing in the Northern Great Plains. Consequently, it is important to understand whether variation in grazing management alters the diversity and complexity of grassland microbial communities. We compared the effect of intensive adaptive multi-paddock (AMP) grazing and conventional grazing practices on soil microbial communities using 16S/ITS amplicon sequencing. Samples were collected from grasslands in 13 AMP ranches and 13 neighboring, conventional ranches located across the Canadian prairies. We found that AMP grazing increased fungal diversity and evenness, and led to more complex microbial associations. Acidobacteria, Actinobacteria, Gemmatimonadetes, and Bacteroidetes were keystone taxa associated with AMP grazing, while Actinobacteria, Acidobacteria, Proteobacteria, and Armatimonadetes were keystone taxa under conventional grazing. Besides overall grazing treatment effects, specific grazing metrics like cattle stocking rate and rest-to-grazing ratio affected microbial richness and diversity. Bacterial and fungal richness increased with elevated stocking rate, and fungal richness and diversity increased directly with the rest-to-grazing ratio. These results suggest that AMP grazing may improve ecosystem by enhancing fungal diversity and increasing microbial network complexity and connectivity.


Asunto(s)
Ecosistema , Microbiota , Animales , Bovinos , Humanos , Suelo , Pradera , Microbiología del Suelo , Redes Comunitarias , Canadá , Bacterias
13.
Commun Biol ; 7(1): 1061, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39209991

RESUMEN

Halophyte shrubs, prevalent in arid regions globally, create saline fertile islands under their canopy. This study investigates the soil microbial communities and their energy utilization strategies associated with tamarisk shrubs in arid ecosystems. Shotgun sequencing revealed that high salinity in tamarisk islands reduces functional gene alpha-diversity and relative abundance compared to bare soils. However, organic matter accumulation within islands fosters key halophilic archaea taxa such as Halalkalicoccus, Halogeometricum, and Natronorubrum, linked to processes like organic carbon oxidation, nitrous oxide reduction, and sulfur oxidation, potentially strengthening the coupling of nutrient cycles. In contrast, bare soils harbor salt-tolerant microbes with genes for autotrophic energy acquisition, including carbon fixation, H2 or CH4 consumption, and anammox. Additionally, isotope analysis shows higher microbial carbon use efficiency, N mineralization, and denitrification activity in tamarisk islands. Our findings demonstrate that halophyte shrubs serve as hotspots for halophilic microbes, enhancing microbial nutrient transformation in saline soils.


Asunto(s)
Salinidad , Plantas Tolerantes a la Sal , Microbiología del Suelo , Plantas Tolerantes a la Sal/metabolismo , Plantas Tolerantes a la Sal/genética , Ecosistema , Archaea/metabolismo , Archaea/genética , Archaea/clasificación , Suelo/química , Microbiota , Clima Desértico , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación
14.
Nat Commun ; 15(1): 327, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184663

RESUMEN

Soil fungi are a key constituent of global biodiversity and play a pivotal role in agroecosystems. How arable farming affects soil fungal biogeography and whether it has a disproportional impact on rare taxa is poorly understood. Here, we used the high-resolution PacBio Sequel targeting the entire ITS region to investigate the distribution of soil fungi in 217 sites across a 3000 km gradient in Europe. We found a consistently lower diversity of fungi in arable lands than grasslands, with geographic locations significantly impacting fungal community structures. Prevalent fungal groups became even more abundant, whereas rare groups became fewer or absent in arable lands, suggesting a biotic homogenization due to arable farming. The rare fungal groups were narrowly distributed and more common in grasslands. Our findings suggest that rare soil fungi are disproportionally affected by arable farming, and sustainable farming practices should protect rare taxa and the ecosystem services they support.


Asunto(s)
Ecosistema , Suelo , Agricultura , Europa (Continente) , Granjas
15.
Nat Rev Microbiol ; 21(1): 6-20, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35999468

RESUMEN

The concept of one health highlights that human health is not isolated but connected to the health of animals, plants and environments. In this Review, we demonstrate that soils are a cornerstone of one health and serve as a source and reservoir of pathogens, beneficial microorganisms and the overall microbial diversity in a wide range of organisms and ecosystems. We list more than 40 soil microbiome functions that either directly or indirectly contribute to soil, plant, animal and human health. We identify microorganisms that are shared between different one health compartments and show that soil, plant and human microbiomes are perhaps more interconnected than previously thought. Our Review further evaluates soil microbial contributions to one health in the light of dysbiosis and global change and demonstrates that microbial diversity is generally positively associated with one health. Finally, we present future challenges in one health research and formulate recommendations for practice and evaluation.


Asunto(s)
Microbiota , Salud Única , Animales , Humanos , Suelo , Microbiología del Suelo , Plantas
16.
Environ Microbiol ; 14(9): 2601-13, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22759091

RESUMEN

Soil denitrification is one of the most significant contributors to global nitrous oxide (N(2) O) emissions, and spatial patterns of denitrifying communities and their functions may reveal the factors that drive denitrification potential and functional consortia. Although denitrifier spatial patterns have been studied extensively in most soil ecosystems, little is known about these processes in arctic soils. This study aimed to unravel the spatial relationships among denitrifier abundance, denitrification potential and soil resources in 279 soil samples collected from three Canadian arctic ecosystems encompassing 7° in latitude and 27° in longitude. The abundance of nirS (10(6) -10(8) copies g(-1) dry soil), nirK (10(3) -10(7) copies g(-1) dry soil) and nosZ (10(6) -10(7) copies g(-1) dry soil) genes in these soils is in the similar range as non-arctic soil ecosystems. Potential denitrification in Organic Cryosols (1034 ng N(2) O-N g(-1) soil) was 5-11 times higher than Static/Turbic Cryosols and the overall denitrification potential in Cryosols was also comparable to other ecosystems. We found denitrifier functional groups and potential denitrification were highly spatially dependent within a scale of 5 m. Functional groups and soil resources were significantly (P < 0.01) correlated to potential denitrifier activities and the correlations were stronger in Organic Cryosols. Soil moisture, organic carbon and nitrogen content were the predominant controls with nirK abundance also linked to potential denitrification. This study suggests that the dominant control on arctic ecosystem-level denitrification potential is moisture and organic carbon. Further, microbial abundance controls on ecosystem level activity while undoubtedly present, are masked in the nutrient-poor arctic environment by soil resource control on denitrifier ecosystem level activity.


Asunto(s)
Desnitrificación , Ecosistema , Microbiología del Suelo , Suelo/química , Regiones Árticas , Bacterias/genética , Bacterias/metabolismo , Canadá , Nitrógeno/metabolismo , Óxido Nitroso/análisis
17.
Appl Environ Microbiol ; 78(2): 346-53, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22081570

RESUMEN

Ammonia oxidation is a major process in nitrogen cycling, and it plays a key role in nitrogen limited soil ecosystems such as those in the arctic. Although mm-scale spatial dependency of ammonia oxidizers has been investigated, little is known about the field-scale spatial dependency of aerobic ammonia oxidation processes and ammonia-oxidizing archaeal and bacterial communities, particularly in arctic soils. The purpose of this study was to explore the drivers of ammonia oxidation at the field scale in cryosols (soils with permafrost within 1 m of the surface). We measured aerobic ammonia oxidation potential (both autotrophic and heterotrophic) and functional gene abundance (bacterial amoA and archaeal amoA) in 279 soil samples collected from three arctic ecosystems. The variability associated with quantifying genes was substantially less than the spatial variability observed in these soils, suggesting that molecular methods can be used reliably evaluate spatial dependency in arctic ecosystems. Ammonia-oxidizing archaeal and bacterial communities and aerobic ammonia oxidation were spatially autocorrelated. Gene abundances were spatially structured within 4 m, whereas biochemical processes were structured within 40 m. Ammonia oxidation was driven at small scales (<1m) by moisture and total organic carbon, whereas gene abundance and other edaphic factors drove ammonia oxidation at medium (1 to 10 m) and large (10 to 100 m) scales. In these arctic soils heterotrophs contributed between 29 and 47% of total ammonia oxidation potential. The spatial scale for aerobic ammonia oxidation genes differed from potential ammonia oxidation, suggesting that in arctic ecosystems edaphic, rather than genetic, factors are an important control on ammonia oxidation.


Asunto(s)
Amoníaco/metabolismo , Archaea/metabolismo , Bacterias/metabolismo , Ecosistema , Microbiología del Suelo , Proteínas Arqueales/genética , Regiones Árticas , Proteínas Bacterianas/genética , Biota , Canadá , Variación Genética , Oxidación-Reducción , Oxidorreductasas/genética
18.
Front Plant Sci ; 13: 973919, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36330236

RESUMEN

Drip irrigation under plastic film mulch is a common agricultural practice used to conserve water. However, compared to traditional flood irrigation with film mulch, this practice limit cotton root development from early flowering stage and may cause premature senescence in cotton. Changes of root will consequently shape the composition and activity of rhizosphere microbial communities, however, the effect of this farming practice on cotton rhizosphere microbiota remains poorly understood. This study investigated rhizosphere bacteria and soil functionality in response to different irrigation practices -including how changes in rhizosphere bacterial diversity alter soil nutrient cycling. Drip irrigation under plastic film mulch was shown to enhance bacterial diversity by lowering the salinity and increasing the soil moisture. However, the reduced root biomass and soluble sugar content of roots decreased potential copiotrophic taxa, such as Bacteroidetes, Firmicutes, and Gamma-proteobacteria, and increased potential oligotrophic taxa, such as Actinobacteria, Acidobacteria, and Armatimonadetes. A core network module was strongly correlated with the functional potential of soil. This module not only contained most of the keystone taxa but also comprised taxa belonging to Planctomycetaceae, Gemmatimonadaceae, Nitrosomonadaceae, and Rhodospirillaceae that were positively associated with functional genes involved in nutrient cycling. Drip irrigation significantly decreased the richness of the core module and reduced the functional potential of soil in the rhizosphere. Overall, this study provides evidence that drip irrigation under plastic film mulch alters the core bacterial network module and suppresses soil nutrient cycling.

19.
ISME J ; 16(10): 2448-2456, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35869387

RESUMEN

Even in homogeneous conditions, plants facing a soilborne pathogen tend to show a binary outcome with individuals either remaining fully healthy or developing severe to lethal disease symptoms. As the rhizosphere microbiome is a major determinant of plant health, we postulated that such a binary outcome may result from an early divergence in the rhizosphere microbiome assembly that may further cascade into varying disease suppression abilities. We tested this hypothesis by setting up a longitudinal study of tomato plants growing in a natural but homogenized soil infested with the soilborne bacterial pathogen Ralstonia solanacearum. Starting from an originally identical species pool, individual rhizosphere microbiome compositions rapidly diverged into multiple configurations during the plant vegetative growth. This variation in community composition was strongly associated with later disease development during the later fruiting state. Most interestingly, these patterns also significantly predicted disease outcomes 2 weeks before any difference in pathogen density became apparent between the healthy and diseased groups. In this system, a total of 135 bacterial OTUs were associated with persistent healthy plants. Five of these enriched OTUs (Lysinibacillus, Pseudarthrobacter, Bordetella, Bacillus, and Chryseobacterium) were isolated and shown to reduce disease severity by 30.4-100% when co-introduced with the pathogen. Overall, our results demonstrated that an initially homogenized soil can rapidly diverge into rhizosphere microbiomes varying in their ability to promote plant protection. This suggests that early life interventions may have significant effects on later microbiome states, and highlights an exciting opportunity for microbiome diagnostics and plant disease prevention.


Asunto(s)
Microbiota , Rizosfera , Bacterias/genética , Humanos , Estudios Longitudinales , Raíces de Plantas/microbiología , Plantas/microbiología , Suelo , Microbiología del Suelo
20.
Sci Total Environ ; 841: 156752, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35718181

RESUMEN

Ammonia oxidizing archaea (AOA) and bacteria (AOB), nitrite-oxidizing bacteria (NOB), and comammox Nitrospira (CMX) play pivotal roles in global nitrogen-cycling network. Despite its importance, the driving forces for niche specialization of these nitrifiers, as well as their relative contributions to nitrification and crop yield have not been fully understood. Here, we investigated the niche specialization and environmental prevalence of nitrifying communities, and their importance for the nitrification rate and crop yield across a gradient of nitrogen inputs in a two-decade old field experiment. The results of 15N-tracer and quantitative PCR revealed that AOB and NOB jointly determined the gross nitrification rates across mineral fertilizer treatments, whereas AOA and AOB contributed more than other nitrifiers to nitrification under with organic fertilizer amendments. Linear regression model revealed that crop yield could be linked with AOB and NOB under inorganic farming but closely associated with CMX under organic management. Amplicon sequencing of these functional genes further demonstrated that mineral and organic fertilizers have distinct influences on the ß-diversity and niche breadth of these nitrifying communities, indicating that fertilization triggered niche specialization of nitrifying guilds in agricultural soils. Notably, organic fertilization enhanced the network complexity of these nitrifiers by harboring keystone taxa. Random forest analysis provide robustly evidence for the hypothesis that abundance of functional genes contributed more than a- and ß-diversity of these nitrifiers for driving nitrification rates and crop yields. Collectively, these findings provide the empirical evidence for the environmental adaptation and niche specialization of nitrifying communities, and their contributions in nitrification and crop yield when confronted with long-term nitrogen inputs.


Asunto(s)
Microbiota , Nitrificación , Amoníaco/análisis , Archaea , Bacterias , Fertilización , Fertilizantes/análisis , Nitritos/análisis , Nitrógeno/análisis , Oxidación-Reducción , Filogenia , Suelo , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA