Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Mol Cell ; 83(16): 2856-2871.e8, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37536339

RESUMEN

Cohesin and CCCTC-binding factor (CTCF) are key regulatory proteins of three-dimensional (3D) genome organization. Cohesin extrudes DNA loops that are anchored by CTCF in a polar orientation. Here, we present direct evidence that CTCF binding polarity controls cohesin-mediated DNA looping. Using single-molecule imaging, we demonstrate that a critical N-terminal motif of CTCF blocks cohesin translocation and DNA looping. The cryo-EM structure of the cohesin-CTCF complex reveals that this CTCF motif ahead of zinc fingers can only reach its binding site on the STAG1 cohesin subunit when the N terminus of CTCF faces cohesin. Remarkably, a C-terminally oriented CTCF accelerates DNA compaction by cohesin. DNA-bound Cas9 and Cas12a ribonucleoproteins are also polar cohesin barriers, indicating that stalling may be intrinsic to cohesin itself. Finally, we show that RNA-DNA hybrids (R-loops) block cohesin-mediated DNA compaction in vitro and are enriched with cohesin subunits in vivo, likely forming TAD boundaries.


Asunto(s)
Cromatina , Estructuras R-Loop , Factor de Unión a CCCTC/genética , Factor de Unión a CCCTC/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/genética , ADN/metabolismo , Cohesinas
2.
Proc Natl Acad Sci U S A ; 120(11): e2210480120, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897969

RESUMEN

Cohesin folds mammalian interphase chromosomes by extruding the chromatin fiber into numerous loops. "Loop extrusion" can be impeded by chromatin-bound factors, such as CTCF, which generates characteristic and functional chromatin organization patterns. It has been proposed that transcription relocalizes or interferes with cohesin and that active promoters are cohesin loading sites. However, the effects of transcription on cohesin have not been reconciled with observations of active extrusion by cohesin. To determine how transcription modulates extrusion, we studied mouse cells in which we could alter cohesin abundance, dynamics, and localization by genetic "knockouts" of the cohesin regulators CTCF and Wapl. Through Hi-C experiments, we discovered intricate, cohesin-dependent contact patterns near active genes. Chromatin organization around active genes exhibited hallmarks of interactions between transcribing RNA polymerases (RNAPs) and extruding cohesins. These observations could be reproduced by polymer simulations in which RNAPs were moving barriers to extrusion that obstructed, slowed, and pushed cohesins. The simulations predicted that preferential loading of cohesin at promoters is inconsistent with our experimental data. Additional ChIP-seq experiments showed that the putative cohesin loader Nipbl is not predominantly enriched at promoters. Therefore, we propose that cohesin is not preferentially loaded at promoters and that the barrier function of RNAP accounts for cohesin accumulation at active promoters. Altogether, we find that RNAP is an extrusion barrier that is not stationary, but rather, translocates and relocalizes cohesin. Loop extrusion and transcription might interact to dynamically generate and maintain gene interactions with regulatory elements and shape functional genomic organization.


Asunto(s)
Proteínas de Ciclo Celular , Cromatina , Animales , Ratones , Factor de Unión a CCCTC/genética , Proteínas de Ciclo Celular/metabolismo , Cromosomas de los Mamíferos/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Mamíferos/genética
3.
J Cell Sci ; 136(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-37756607

RESUMEN

Chromatin plays an essential role in the nuclear mechanical response and determining nuclear shape, which maintain nuclear compartmentalization and function. However, major genomic functions, such as transcription activity, might also impact cell nuclear shape via blebbing and rupture through their effects on chromatin structure and dynamics. To test this idea, we inhibited transcription with several RNA polymerase II inhibitors in wild-type cells and perturbed cells that presented increased nuclear blebbing. Transcription inhibition suppressed nuclear blebbing for several cell types, nuclear perturbations and transcription inhibitors. Furthermore, transcription inhibition suppressed nuclear bleb formation, bleb stabilization and bleb-based nuclear ruptures. Interestingly, transcription inhibition did not alter the histone H3 lysine 9 (H3K9) modification state, nuclear rigidity, and actin compression and contraction, which typically control nuclear blebbing. Polymer simulations suggested that RNA polymerase II motor activity within chromatin could drive chromatin motions that deform the nuclear periphery. Our data provide evidence that transcription inhibition suppresses nuclear blebbing and rupture, in a manner separate and distinct from chromatin rigidity.


Asunto(s)
Cromatina , ARN Polimerasa II , ARN Polimerasa II/metabolismo , Cromatina/metabolismo , Núcleo Celular/metabolismo , Transcripción Genética , Actinas/metabolismo
4.
Phys Rev Lett ; 126(15): 158101, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33929233

RESUMEN

The cell nucleus houses the chromosomes, which are linked to a soft shell of lamin protein filaments. Experiments indicate that correlated chromosome dynamics and nuclear shape fluctuations arise from motor activity. To identify the physical mechanisms, we develop a model of an active, cross-linked Rouse chain bound to a polymeric shell. System-sized correlated motions occur but require both motor activity and cross-links. Contractile motors, in particular, enhance chromosome dynamics by driving anomalous density fluctuations. Nuclear shape fluctuations depend on motor strength, cross-linking, and chromosome-lamina binding. Therefore, complex chromosome dynamics and nuclear shape emerge from a minimal, active chromosome-lamina system.


Asunto(s)
Cromatina/química , Modelos Químicos , Proteínas Motoras Moleculares/química , Núcleo Celular/química , Núcleo Celular/genética , Cromatina/genética , Cromosomas , Humanos , Proteínas Motoras Moleculares/genética
5.
Proc Natl Acad Sci U S A ; 114(16): E3251-E3257, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-28364020

RESUMEN

The binding of transcription factors (TFs) to DNA controls most aspects of cellular function, making the understanding of their binding kinetics imperative. The standard description of bimolecular interactions posits that TF off rates are independent of TF concentration in solution. However, recent observations have revealed that proteins in solution can accelerate the dissociation of DNA-bound proteins. To study the molecular basis of facilitated dissociation (FD), we have used single-molecule imaging to measure dissociation kinetics of Fis, a key Escherichia coli TF and major bacterial nucleoid protein, from single dsDNA binding sites. We observe a strong FD effect characterized by an exchange rate [Formula: see text], establishing that FD of Fis occurs at the single-binding site level, and we find that the off rate saturates at large Fis concentrations in solution. Although spontaneous (i.e., competitor-free) dissociation shows a strong salt dependence, we find that FD depends only weakly on salt. These results are quantitatively explained by a model in which partially dissociated bound proteins are susceptible to invasion by competitor proteins in solution. We also report FD of NHP6A, a yeast TF with structure that differs significantly from Fis. We further perform molecular dynamics simulations, which indicate that FD can occur for molecules that interact far more weakly than those that we have studied. Taken together, our results indicate that FD is a general mechanism assisting in the local removal of TFs from their binding sites and does not necessarily require cooperativity, clustering, or binding site overlap.


Asunto(s)
ADN de Hongos/metabolismo , Proteínas HMGN/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , ADN de Hongos/química , Proteínas HMGN/química , Cinética , Proteínas Mitocondriales/química , Unión Proteica , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química
6.
Biophys J ; 117(6): 1085-1100, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31427067

RESUMEN

Cellular structures are continually subjected to forces, which may serve as mechanical signals for cells through their effects on biomolecule interaction kinetics. Typically, molecular complexes interact via "slip bonds," so applied forces accelerate off rates by reducing transition energy barriers. However, biomolecules with multiple dissociation pathways may have considerably more complicated force dependencies. This is the case for DNA-binding proteins that undergo "facilitated dissociation," in which competitor biomolecules from solution enhance molecular dissociation in a concentration-dependent manner. Using simulations and theory, we develop a generic model that shows that proteins undergoing facilitated dissociation can form an alternative type of molecular bond, known as a "catch bond," for which applied forces suppress protein dissociation. This occurs because the binding by protein competitors responsible for the facilitated dissociation pathway can be inhibited by applied forces. Within the model, we explore how the force dependence of dissociation is regulated by intrinsic factors, including molecular sensitivity to force and binding geometry and the extrinsic factor of competitor protein concentration. We find that catch bonds generically emerge when the force dependence of the facilitated unbinding pathway is stronger than that of the spontaneous unbinding pathway. The sharpness of the transition between slip- and catch-bond kinetics depends on the degree to which the protein bends its DNA substrate. This force-dependent kinetics is broadly regulated by the concentration of competitor biomolecules in solution. Thus, the observed catch bond is mechanistically distinct from other known physiological catch bonds because it requires an extrinsic factor-competitor proteins-rather than a specific intrinsic molecular structure. We hypothesize that this mechanism for regulating force-dependent protein dissociation may be used by cells to modulate protein exchange, regulate transcription, and facilitate diffusive search processes.


Asunto(s)
ADN/metabolismo , Proteínas/metabolismo , Fenómenos Biomecánicos , Simulación por Computador , Cinética , Modelos Biológicos , Unión Proteica
7.
Nature ; 486(7404): 545-8, 2012 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-22722867

RESUMEN

Chemokines have a central role in regulating processes essential to the immune function of T cells, such as their migration within lymphoid tissues and targeting of pathogens in sites of inflammation. Here we track T cells using multi-photon microscopy to demonstrate that the chemokine CXCL10 enhances the ability of CD8+ T cells to control the pathogen Toxoplasma gondii in the brains of chronically infected mice. This chemokine boosts T-cell function in two different ways: it maintains the effector T-cell population in the brain and speeds up the average migration speed without changing the nature of the walk statistics. Notably, these statistics are not Brownian; rather, CD8+ T-cell motility in the brain is well described by a generalized Lévy walk. According to our model, this unexpected feature enables T cells to find rare targets with more than an order of magnitude more efficiency than Brownian random walkers. Thus, CD8+ T-cell behaviour is similar to Lévy strategies reported in organisms ranging from mussels to marine predators and monkeys, and CXCL10 aids T cells in shortening the average time taken to find rare targets.


Asunto(s)
Linfocitos T CD8-positivos/citología , Linfocitos T CD8-positivos/inmunología , Movimiento Celular , Quimiocina CXCL10/inmunología , Animales , Encéfalo/inmunología , Encéfalo/microbiología , Quimiocina CXCL10/antagonistas & inhibidores , Quimiocina CXCL10/genética , Femenino , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Inmunológicos , Receptores CXCR3/genética , Receptores CXCR3/metabolismo , Factores de Tiempo , Toxoplasma/crecimiento & desarrollo , Toxoplasma/inmunología
8.
Proc Natl Acad Sci U S A ; 112(41): 12699-704, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26417109

RESUMEN

Chromosome segregation during cell division depends on interactions of kinetochores with dynamic microtubules (MTs). In many eukaryotes, each kinetochore binds multiple MTs, but the collective behavior of these coupled MTs is not well understood. We present a minimal model for collective kinetochore-MT dynamics, based on in vitro measurements of individual MTs and their dependence on force and kinetochore phosphorylation by Aurora B kinase. For a system of multiple MTs connected to the same kinetochore, the force-velocity relation has a bistable regime with two possible steady-state velocities: rapid shortening or slow growth. Bistability, combined with the difference between the growing and shrinking speeds, leads to center-of-mass and breathing oscillations in bioriented sister kinetochore pairs. Kinetochore phosphorylation shifts the bistable region to higher tensions, so that only the rapidly shortening state is stable at low tension. Thus, phosphorylation leads to error correction for kinetochores that are not under tension. We challenged the model with new experiments, using chemically induced dimerization to enhance Aurora B activity at metaphase kinetochores. The model suggests that the experimentally observed disordering of the metaphase plate occurs because phosphorylation increases kinetochore speeds by biasing MTs to shrink. Our minimal model qualitatively captures certain characteristic features of kinetochore dynamics, illustrates how biochemical signals such as phosphorylation may regulate the dynamics, and provides a theoretical framework for understanding other factors that control the dynamics in vivo.


Asunto(s)
Cinetocoros/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Animales , Línea Celular , Humanos
9.
Biophys J ; 113(8): 1654-1663, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-29045860

RESUMEN

We study a Brownian dynamics simulation model of a biopolymeric shell deformed by axial forces exerted at opposing poles. The model exhibits two distinct, linear force-extension regimes, with the response to small tensions governed by linear elasticity and the response to large tensions governed by an effective spring constant that scales with radius as R-0.25. When extended beyond the initial linear elastic regime, the shell undergoes a hysteretic, temperature-dependent buckling transition. We experimentally observe this buckling transition by stretching and imaging the lamina of isolated cell nuclei. Furthermore, the interior contents of the shell can alter mechanical response and buckling, which we show by simulating a model for the nucleus that quantitatively agrees with our micromanipulation experiments stretching individual nuclei.


Asunto(s)
Núcleo Celular/fisiología , Simulación de Dinámica Molecular , Animales , Fenómenos Biomecánicos , Cromatina/metabolismo , Elasticidad , Fibroblastos/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Modelos Lineales , Ratones Noqueados , Pirina/deficiencia , Pirina/genética , Temperatura
10.
PLoS Comput Biol ; 11(2): e1004058, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25692801

RESUMEN

The three-dimensional positions of immune cells can be tracked in live tissues precisely as a function of time using two-photon microscopy. However, standard methods of analysis used in the field and experimental artifacts can bias interpretations and obscure important aspects of cell migration such as directional migration and non-Brownian walk statistics. Therefore, methods were developed for minimizing drift artifacts, identifying directional and anisotropic (asymmetric) migration, and classifying cell migration statistics. These methods were applied to describe the migration statistics of CD8+ T cells in uninflamed lymph nodes. Contrary to current models, CD8+ T cell statistics are not well described by a straightforward persistent random walk model. Instead, a model in which one population of cells moves via Brownian-like motion and another population follows variable persistent random walks with noise reproduces multiple statistical measures of CD8+ T cell migration in the lymph node in the absence of inflammation.


Asunto(s)
Linfocitos T CD8-positivos/citología , Movimiento Celular/fisiología , Ganglios Linfáticos/citología , Modelos Inmunológicos , Animales , Células Cultivadas , Biología Computacional , Simulación por Computador , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Bazo/citología
11.
Nucleus ; 15(1): 2351957, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38753956

RESUMEN

Abnormal cell nuclear shapes are hallmarks of diseases, including progeria, muscular dystrophy, and many cancers. Experiments have shown that disruption of heterochromatin and increases in euchromatin lead to nuclear deformations, such as blebs and ruptures. However, the physical mechanisms through which chromatin governs nuclear shape are poorly understood. To investigate how heterochromatin and euchromatin might govern nuclear morphology, we studied chromatin microphase separation in a composite coarse-grained polymer and elastic shell simulation model. By varying chromatin density, heterochromatin composition, and heterochromatin-lamina interactions, we show how the chromatin phase organization may perturb nuclear shape. Increasing chromatin density stabilizes the lamina against large fluctuations. However, increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations by a "wetting"-like interaction. In contrast, fluctuations are insensitive to heterochromatin's internal structure. Our simulations suggest that peripheral heterochromatin accumulation could perturb nuclear morphology, while nuclear shape stabilization likely occurs through mechanisms other than chromatin microphase organization.


Asunto(s)
Núcleo Celular , Cromatina , Heterocromatina , Núcleo Celular/metabolismo , Heterocromatina/metabolismo , Heterocromatina/química , Cromatina/metabolismo , Cromatina/química , Polímeros/química , Polímeros/metabolismo , Eucromatina/metabolismo , Eucromatina/química , Humanos , Separación de Fases
12.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38168411

RESUMEN

Abnormalities in the shapes of mammalian cell nuclei are hallmarks of a variety of diseases, including progeria, muscular dystrophy, and various cancers. Experiments have shown that there is a causal relationship between chromatin organization and nuclear morphology. Decreases in heterochromatin levels, perturbations to heterochromatin organization, and increases in euchromatin levels all lead to misshapen nuclei, which exhibit deformations, such as nuclear blebs and nuclear ruptures. However, the polymer physical mechanisms of how chromatin governs nuclear shape and integrity are poorly understood. To investigate how heterochromatin and euchromatin, which are thought to microphase separate in vivo , govern nuclear morphology, we implemented a composite coarse-grained polymer and elastic shell model. By varying chromatin volume fraction (density), heterochromatin levels and structure, and heterochromatin-lamina interactions, we show how the spatial organization of chromatin polymer phases within the nucleus could perturb nuclear shape in some scenarios. Increasing the volume fraction of chromatin in the cell nucleus stabilizes the nuclear lamina against large fluctuations. However, surprisingly, we find that increasing heterochromatin levels or heterochromatin-lamina interactions enhances nuclear shape fluctuations in our simulations by a "wetting"-like interaction. In contrast, shape fluctuations are largely insensitive to the internal structure of the heterochromatin, such as the presence or absence of chromatin-chromatin crosslinks. Therefore, our simulations suggest that heterochromatin accumulation at the nuclear periphery could perturb nuclear morphology in a nucleus or nuclear region that is sufficiently soft, while stabilization of the nucleus via heterochromatin likely occurs through mechanisms other than chromatin microphase organization.

13.
Phys Biol ; 10(6): 066004, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24225232

RESUMEN

A wide variety of cell biological and biomimetic systems use actin polymerization to drive motility. It has been suggested that an object such as a bacterium can propel itself by self-assembling a high concentration of actin behind it, if it is repelled by actin. However, it is also known that it is essential for the moving object to bind actin. Therefore, a key question is how the actin tail can propel an object when it both binds and repels the object. We present a physically consistent Brownian dynamics model for actin-based motility that includes the minimal components of the dendritic nucleation model and allows for both attractive and repulsive interactions between actin and a moveable disc. We find that the concentration gradient of filamentous actin generated by polymerization is sufficient to propel the object, even with moderately strong binding interactions. Additionally, actin binding can act as a biophysical cap, and may directly control motility through modulation of network growth. Overall, this mechanism is robust in that it can drive motility against a load up to a stall pressure that depends on the Young's modulus of the actin network and can explain several aspects of actin-based motility.


Asunto(s)
Actinas/metabolismo , Proteínas Bacterianas/metabolismo , Listeria monocytogenes/citología , Movimiento (Física) , Actinas/química , Proteínas Bacterianas/química , Simulación por Computador , Módulo de Elasticidad , Listeria monocytogenes/química , Listeria monocytogenes/metabolismo , Modelos Biológicos , Modelos Moleculares , Polimerizacion , Unión Proteica
14.
PLoS Comput Biol ; 7(9): e1002145, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21966261

RESUMEN

Chromosome segregation is fundamental to all cells, but the force-generating mechanisms underlying chromosome translocation in bacteria remain mysterious. Caulobacter crescentus utilizes a depolymerization-driven process in which a ParA protein structure elongates from the new cell pole, binds to a ParB-decorated chromosome, and then retracts via disassembly, pulling the chromosome across the cell. This poses the question of how a depolymerizing structure can robustly pull the chromosome that disassembles it. We perform Brownian dynamics simulations with a simple, physically consistent model of the ParABS system. The simulations suggest that the mechanism of translocation is "self-diffusiophoretic": by disassembling ParA, ParB generates a ParA concentration gradient so that the ParA concentration is higher in front of the chromosome than behind it. Since the chromosome is attracted to ParA via ParB, it moves up the ParA gradient and across the cell. We find that translocation is most robust when ParB binds side-on to ParA filaments. In this case, robust translocation occurs over a wide parameter range and is controlled by a single dimensionless quantity: the product of the rate of ParA disassembly and a characteristic relaxation time of the chromosome. This time scale measures the time it takes for the chromosome to recover its average shape after it is has been pulled. Our results suggest explanations for observed phenomena such as segregation failure, filament-length-dependent translocation velocity, and chromosomal compaction.


Asunto(s)
Proteínas Bacterianas/química , Segregación Cromosómica/fisiología , Cromosomas Bacterianos/fisiología , Mitosis/fisiología , Modelos Genéticos , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/fisiología , Cromosomas Bacterianos/química , Simulación por Computador , Simulación de Dinámica Molecular , Polimerizacion , Unión Proteica
15.
Phys Med Biol ; 68(1)2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36533598

RESUMEN

Objective. To develop a metaphase chromosome model representing the complete genome of a human lymphocyte cell to support microscopic Monte Carlo (MMC) simulation-based radiation-induced DNA damage studies.Approach. We first employed coarse-grained polymer physics simulation to obtain a rod-shaped chromatid segment of 730 nm in diameter and 460 nm in height to match Hi-C data. We then voxelized the segment with a voxel size of 11 nm per side and connected the chromatid with 30 types of pre-constructed nucleosomes and 6 types of linker DNAs in base pair (bp) resolutions. Afterward, we piled different numbers of voxelized chromatid segments to create 23 pairs of chromosomes of 1-5µm long. Finally, we arranged the chromosomes at the cell metaphase plate of 5.5µm in radius to create the complete set of metaphase chromosomes. We implemented the model in gMicroMC simulation by denoting the DNA structure in a four-level hierarchical tree: nucleotide pairs, nucleosomes and linker DNAs, chromatid segments, and chromosomes. We applied the model to compute DNA damage under different radiation conditions and compared the results to those obtained with G0/G1 model and experimental measurements. We also performed uncertainty analysis for relevant simulation parameters.Main results. The chromatid segment was successfully voxelized and connected in bps resolution, containing 26.8 mega bps (Mbps) of DNA. With 466 segments, we obtained the metaphase chromosome containing 12.5 Gbps of DNA. Applying it to compute the radiation-induced DNA damage, the obtained results were self-consistent and agreed with experimental measurements. Through the parameter uncertainty study, we found that the DNA damage ratio between metaphase and G0/G1 phase models was not sensitive to the chemical simulation time. The damage was also not sensitive to the specific parameter settings in the polymer physics simulation, as long as the produced metaphase model followed a similar contact map distribution.Significance. Experimental data reveal that ionizing radiation induced DNA damage is cell cycle dependent. Yet, DNA chromosome models, except for the G0/G1 phase, are not available in the state-of-the-art MMC simulation. For the first time, we successfully built a metaphase chromosome model and implemented it into MMC simulation for radiation-induced DNA damage computation.


Asunto(s)
Daño del ADN , Nucleosomas , Humanos , Metafase , Radiación Ionizante , ADN , Polímeros
16.
Science ; 377(6605): 489-495, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35901134

RESUMEN

Our understanding of the physical principles organizing the genome in the nucleus is limited by the lack of tools to directly exert and measure forces on interphase chromosomes in vivo and probe their material nature. Here, we introduce an approach to actively manipulate a genomic locus using controlled magnetic forces inside the nucleus of a living human cell. We observed viscoelastic displacements over micrometers within minutes in response to near-piconewton forces, which are consistent with a Rouse polymer model. Our results highlight the fluidity of chromatin, with a moderate contribution of the surrounding material, revealing minor roles for cross-links and topological effects and challenging the view that interphase chromatin is a gel-like material. Our technology opens avenues for future research in areas from chromosome mechanics to genome functions.


Asunto(s)
Núcleo Celular , Cromatina , Cromosomas Humanos , Interfase , Núcleo Celular/genética , Cromatina/química , Cromosomas Humanos/química , Genómica , Humanos , Micromanipulación
17.
Elife ; 102021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34106828

RESUMEN

Chromatin, which consists of DNA and associated proteins, contains genetic information and is a mechanical component of the nucleus. Heterochromatic histone methylation controls nucleus and chromosome stiffness, but the contribution of heterochromatin protein HP1α (CBX5) is unknown. We used a novel HP1α auxin-inducible degron human cell line to rapidly degrade HP1α. Degradation did not alter transcription, local chromatin compaction, or histone methylation, but did decrease chromatin stiffness. Single-nucleus micromanipulation reveals that HP1α is essential to chromatin-based mechanics and maintains nuclear morphology, separate from histone methylation. Further experiments with dimerization-deficient HP1αI165E indicate that chromatin crosslinking via HP1α dimerization is critical, while polymer simulations demonstrate the importance of chromatin-chromatin crosslinkers in mechanics. In mitotic chromosomes, HP1α similarly bolsters stiffness while aiding in mitotic alignment and faithful segregation. HP1α is therefore a critical chromatin-crosslinking protein that provides mechanical strength to chromosomes and the nucleus throughout the cell cycle and supports cellular functions.


Asunto(s)
Núcleo Celular/metabolismo , Cromatina , Proteínas Cromosómicas no Histona , Cromosomas , Mitosis/fisiología , Línea Celular , Núcleo Celular/química , Cromatina/química , Cromatina/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/química , Cromosomas/metabolismo , Humanos , Metilación
18.
Elife ; 92020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33295869

RESUMEN

Chromosome compaction is essential for reliable transmission of genetic information. Experiments suggest that ∼1000-fold compaction is driven by condensin complexes that extrude chromatin loops, by progressively collecting chromatin fiber from one or both sides of the complex to form a growing loop. Theory indicates that symmetric two-sided loop extrusion can achieve such compaction, but recent single-molecule studies (Golfier et al., 2020) observed diverse dynamics of condensins that perform one-sided, symmetric two-sided, and asymmetric two-sided extrusion. We use simulations and theory to determine how these molecular properties lead to chromosome compaction. High compaction can be achieved if even a small fraction of condensins have two essential properties: a long residence time and the ability to perform two-sided (not necessarily symmetric) extrusion. In mixtures of condensins I and II, coupling two-sided extrusion and stable chromatin binding by condensin II promotes compaction. These results provide missing connections between single-molecule observations and chromosome-scale organization.


Asunto(s)
Adenosina Trifosfatasas , Cromatina , Proteínas de Unión al ADN , Modelos Moleculares , Complejos Multiproteicos , Conformación de Ácido Nucleico , Animales , Humanos
19.
Curr Opin Cell Biol ; 64: 124-138, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32534241

RESUMEN

Chromosomes are organized as chromatin loops that promote segregation, enhancer-promoter interactions, and other genomic functions. Loops were hypothesized to form by 'loop extrusion,' by which structural maintenance of chromosomes (SMC) complexes, such as condensin and cohesin, bind to chromatin, reel it in, and extrude it as a loop. However, such exotic motor activity had never been observed. Following an explosion of indirect evidence, recent single-molecule experiments directly imaged DNA loop extrusion by condensin and cohesin in vitro. These experiments observe rapid (kb/s) extrusion that requires ATP hydrolysis and stalls under pN forces. Surprisingly, condensin extrudes loops asymmetrically, challenging previous models. Extrusion by cohesin is symmetric but requires the protein Nipbl. We discuss how SMC complexes may perform their functions on chromatin in vivo.


Asunto(s)
Modelos Biológicos , Conformación de Ácido Nucleico , Imagen Individual de Molécula/métodos , Animales , Cromatina/metabolismo , ADN/química , ADN/metabolismo , Humanos
20.
Elife ; 92020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32250245

RESUMEN

SMC complexes, such as condensin or cohesin, organize chromatin throughout the cell cycle by a process known as loop extrusion. SMC complexes reel in DNA, extruding and progressively growing DNA loops. Modeling assuming two-sided loop extrusion reproduces key features of chromatin organization across different organisms. In vitro single-molecule experiments confirmed that yeast condensins extrude loops, however, they remain anchored to their loading sites and extrude loops in a 'one-sided' manner. We therefore simulate one-sided loop extrusion to investigate whether 'one-sided' complexes can compact mitotic chromosomes, organize interphase domains, and juxtapose bacterial chromosomal arms, as can be done by 'two-sided' loop extruders. While one-sided loop extrusion cannot reproduce these phenomena, variants can recapitulate in vivo observations. We predict that SMC complexes in vivo constitute effectively two-sided motors or exhibit biased loading and propose relevant experiments. Our work suggests that loop extrusion is a viable general mechanism of chromatin organization.


The different molecules of DNA in a cell are called chromosomes, and they change shape dramatically when cells divide. Ordinarily, chromosomes are packaged by proteins called histones to make thick fibres called chromatin. Chromatin fibres are further folded into a sparse collection of loops. These loops are important not only to make genetic material fit inside a cell, but also to make distant regions of the chromosomes interact with each other, which is important to regulate gene activities. The fibres compact to prepare for cell division: they fold into a much denser series of loops. This is a remarkable physical feat in which tiny protein machines wrangle lengthy strands of DNA. A process called loop extrusion could explain how chromatin folding works. In this process, ring-like protein complexes known as SMC complexes would act as motors that can form loops. SMC complexes could bind a chromatin fibre and reel it in to form the loops, with the density of loops increasing before cell division to further compact the chromosomes. Looping by SMC complexes has been observed in a variety of cell types, including mammalian and bacterial cells. From these studies, loop extrusion is generally assumed to be 'two-sided'. This means that each SMC complex reels in the chromatin on both sides of it, thus growing the chromatin loop. However, imaging individual SMC complexes bound to single molecules of DNA showed that extrusion can be asymmetric, or 'one-sided'. These observations show the SMC complex remains anchored in place and the chromatin is reeled in and extruded by only one side of the complex. So Banigan, van den Berg, Brandão et al. created a computer model to test whether the mechanism of one-sided extrusion could produce chromosomes that are organised, compact, and ready for cell division, like two-sided extrusion can. To answer this question, Banigan, van den Berg, Brandão et al. analysed imaging experiments and data that had been collected using a technique that captures how chromatin fibres are arranged inside cells. This was paired with computer simulations of chromosomes bound by SMC protein complexes. The simulations and analysis found that the simplest one-sided loop extrusion complexes generally cannot reproduce the same patterns of chromatin loops as two-sided complexes. However, a few specific variations of one-sided extrusion can actually recapitulate correct chromatin folding and organisation. These results show that some aspects of chromosome organization can be attained by one-sided extrusion, but many require two-sided extrusion. Banigan, van den Berg, Brandão et al. explain how the simulated mechanisms of loop extrusion could be consistent with seemingly contradictory observations from different sets of experiments. Altogether, they demonstrate that loop extrusion is a viable general mechanism to explain chromatin organisation, and that it likely possesses physical capabilities that have yet to be observed experimentally.


Asunto(s)
Cromosomas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/fisiología , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/fisiología , Cromatina/química , Cromosomas Bacterianos/química , Interfase , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA