Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 140(25): 7810-7819, 2018 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-29886728

RESUMEN

Pathway complexity in supramolecular polymerization has recently sparked interest as a method to generate complex material behavior. The response of these systems relies on the existence of a metastable, kinetically trapped state. In this work, we show that strong switch-like behavior in supramolecular polymers can also be achieved through the introduction of competing aggregation pathways. This behavior is illustrated with the supramolecular polymerization of a porphyrin-based monomer at various concentrations, solvent compositions, and temperatures. It is found that the monomers aggregate via an isodesmic mechanism in weakly coupled J-type aggregates at intermediate solvent quality and temperature, followed by nucleated H-aggregates at lower solvent qualities and temperatures. At further increased thermodynamic driving forces, such as high concentration and low temperature, the H-aggregates can form hierarchical superhelices. Our mathematical models show that, contrary to a single-pathway polymerization, the existence of the isodesmic aggregation pathway buffers the free monomer pool and renders the nucleation of the H-aggregates insensitive to concentration changes in the limit of high concentrations. We also show that, at a given temperature or solvent quality, the thermodynamically stable aggregate morphology can be selected by controlling the remaining free external parameter. As a result, the judicious application of pathway complexity allows us to synthesize a diverse set of materials from only a single monomer. We envision that the engineering of competing pathways can increase the robustness in a wide variety of supramolecular polymer materials and lead to increasingly versatile applications.

2.
J Am Chem Soc ; 134(20): 8718-28, 2012 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-22540863

RESUMEN

Optically active, amphiphilic poly(meta-phenylene ethynylene)s (PPEa) bearing L- or D-alanine-derived oligo(ethylene glycol) side chains connected to the backbone via amide linkages were prepared by microwave-assisted polycondensation. PPEa's exhibited an intense Cotton effect in the π-conjugated main-chain chromophore regions in various polar and nonpolar organic solvents due to a predominantly one-handed helical conformation stabilized by an intramolecular hydrogen-bonding network between the amide groups of the pendants. The stable helical structure was retained in the bulk and led to supramolecular column formation from stacked helices in oriented polymer films as evidenced by X-ray diffraction. Atomic force microscopy was used to directly visualize the helical structures of the polymers in two-dimensional crystalline layers with molecular resolution, and, for the first time, their absolute helical senses could unambiguously be determined.

3.
J Am Chem Soc ; 133(1): 108-14, 2011 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-21141965

RESUMEN

Optically active poly(phenylacetylene) copolymers consisting of optically active and achiral phenylacetylenes bearing L-alanine decyl esters (1L) and 2-aminoisobutylic acid decyl esters (Aib) as the pendant groups (poly(1L(m)-co-Aib(n))) with various compositions were synthesized by the copolymerization of the optically active 1L with achiral Aib using a rhodium catalyst, and their chiral amplification of the macromolecular helicity in a dilute solution, a lyotropic liquid crystalline (LC) state, and a two-dimensional (2D) crystal on the substrate was investigated by measuring the circular dichroism of the copolymers, mesoscopic cholesteric twist in the LC state (cholesteric helical pitch), and high-resolution atomic force microscopy (AFM) images of the self-assembled 2D helix-bundles of the copolymer chains. We found that the macromolecular helicity of poly(1L(m)-co-Aib(n))s could be hierarchically amplified in the order of the dilute solution, LC state, and 2D crystal. In sharp contrast, almost no chiral amplification of the macromolecular helicity was observed for the homopolymer mixtures of 1L and Aib in the LC state and 2D crystal on graphite.


Asunto(s)
Acetileno/análogos & derivados , Cristales Líquidos/química , Acetileno/química , Dicroismo Circular , Microscopía de Fuerza Atómica , Modelos Moleculares , Conformación Molecular , Fenómenos Ópticos , Soluciones , Estereoisomerismo
4.
J Am Chem Soc ; 131(19): 6708-18, 2009 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-19388694

RESUMEN

Rigid-rodlike right (P)- and left (M)-handed helical polyisocyanides (P-poly-L-1 and M-poly-L-1) prepared by the living polymerization of an enantiomerically pure phenyl isocyanide bearing an L-alanine pendant with a long n-decyl chain (L-1) with the mu-ethynediyl Pt-Pd catalyst were found to block copolymerize L-1 and D-1 in a highly enantiomer-selective manner while maintaining narrow molecular weight distributions. The M-poly-L-1 preferentially copolymerized L-1 over the antipode D-1 by a factor of 6.4-7.7, whereas the D-1 was preferentially copolymerized with P-poly-L-1 composed of the same L-1 units, but possessing the opposite helicity by a factor of 4.0. Circular dichroism and high-resolution atomic force microscopy revealed that the enantiomer-selective block copolymerizations proceed in an extremely high helix-sense-selective fashion, and the preformed helical handedness determines the overall helical sense of the polyisocyanides irrespective of the configuration of the monomer units of the initiators during the block copolymerizations. The block copolymers are rigid-rod helical polymers with a narrow molecular weight distribution and exhibit a lyotropic smectic liquid crystalline phase.


Asunto(s)
Cianuros/síntesis química , Polímeros/síntesis química , Estructura Molecular , Estereoisomerismo
5.
Chempluschem ; 79(1): 35-44, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31986756

RESUMEN

Optically active amidine ((R)-1) and achiral carboxylic acid (2) dimers with a m-terphenyl backbone linked by a 1,4-phenylene diacetylene unit form a double helix, (R)-1⋅2, through complementary amidinium-carboxylate salt bridges in THF. Upon the addition of poor solvents, such as n-hexane, the duplex forms an organogel as a result of supramolecular polymerization of the duplex by intermolecular rearrangement of the salt bridges. In sharp contrast, an analogous racemic duplex composed of achiral amidine residues and an optically active duplex linked by a shorter diacetylene unit with a higher binding affinity than that of (R)-1⋅2 does not show any gelation. The supramolecular fluorescent gels exhibit reversible thermo- and chemoresponsive behavior. The chiroptical properties of the gels, the mechanism of gelation, and the amplification of helical chirality during the gelation of (R)-1⋅2 in the absence and presence of its enantiomeric counterpart, (S)-1⋅2, and a racemic duplex, consisting of achiral amidine and carboxylic acid dimers, were investigated by following changes in the absorption and circular dichroism spectra.

6.
Science ; 337(6101): 1521-6, 2012 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-22997334

RESUMEN

Despite recent advances in synthetic nanometer-scale tubular assembly, conferral of dynamic response characteristics to the tubules remains a challenge. Here, we report on supramolecular nanotubules that undergo a reversible contraction-expansion motion accompanied by an inversion of helical chirality. Bent-shaped aromatic amphiphiles self-assemble into hexameric macrocycles in aqueous solution, forming chiral tubules by spontaneous one-dimensional stacking with a mutual rotation in the same direction. The adjacent aromatic segments within the hexameric macrocycles reversibly slide along one another in response to external triggers, resulting in pulsating motions of the tubules accompanied by a chiral inversion. The aromatic interior of the self-assembled tubules encapsulates hydrophobic guests such as carbon-60 (C(60)). Using a thermal trigger, we could regulate the C(60)-C(60) interactions through the pulsating motion of the tubules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA