Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
NMR Biomed ; 37(1): e5045, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37852945

RESUMEN

This study investigated the use of intravoxel incoherent motion imaging (IVIM) to compare skeletal muscle perfusion during and after high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) to determine the impact on fat oxidation outcomes. Twenty overweight volunteers were recruited for the study. Each participant received one HIIT intervention and one MICT intervention using a cycling ergometer. Participants underwent a magnetic resonance imaging scan before, immediately after, and 1 and 2 h after each intervention. The IVIM parameters (D, fD*) of the rectus femoris, vastus lateralis, and biceps femoris long head were obtained. Changes in IVIM parameters of these muscles after both exercise interventions were compared using a two-factor repeated measures analysis of variance. In the rectus femoris, the fD* increased immediately after exercise intervention (d = 0.69 × 10-3  mm2 /s, p < 0.0083) and 2 h after exercise intervention (d = 0.64 × 10-3  mm2 /s, p < 0.0083) compared with before exercise. The increase in the fD* in the HIIT group was greater than that in the MICT group (d = 0.32, p = 0.023). In the vastus lateralis, the fD* increased immediately after the exercise intervention (d = 0.53 × 10-3  mm2 /s, p < 0.001) and returned to the pre-exercise level 1 h after exercising. The increase in the fD* in the HIIT group was lower than that in the MICT group (d = -0.21, p = 0.015). For the biceps femoris long head, the fD* was not significantly different between the two exercise interventions before and after exercise. Furthermore, the fD* 60 min after the HIIT intervention correlated with maximal oxygen consumption (VO2max), whereas fD* immediately after the MICT intervention correlated with VO2max. In summary, IVIM parameters can be used to evaluate differences in muscle perfusion between HIIT and MICT, and show a correlation with VO2max.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Humanos , Entrenamiento de Intervalos de Alta Intensidad/métodos , Muslo/diagnóstico por imagen , Ejercicio Físico/fisiología , Músculo Esquelético/diagnóstico por imagen , Imagen por Resonancia Magnética
2.
J Neuroeng Rehabil ; 21(1): 34, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443983

RESUMEN

BACKGROUND: The regulation of gait is critical to many activities of everyday life. When walking, somatosensory information obtained from mechanoreceptors throughout body is delivered to numerous supraspinal networks and used to execute the appropriate motion to meet ever-changing environmental and task demands. Aging and age-related conditions oftentimes alter the supraspinal sensorimotor control of walking, including the responsiveness of the cortical brain regions to the sensorimotor inputs obtained from the peripheral nervous system, resulting in diminished mobility in the older adult population. It is thus important to explicitly characterize such supraspinal sensorimotor elements of walking, providing knowledge informing novel rehabilitative targets. The past efforts majorly relied upon mental imagery or virtual reality to study the supraspinal control of walking. Recent efforts have been made to develop magnetic resonance imaging (MRI)-compatible devices simulating specific somatosensory and/or motor aspects of walking. However, there exists large variance in the design and functionality of these devices, and as such inconsistent functional MRI (fMRI) observations. METHODS: We have therefore completed a systematic review to summarize current achievements in the development of these MRI-compatible devices and synthesize available imaging results emanating from studies that have utilized these devices. RESULTS: The device design, study protocol and neuroimaging observations of 26 studies using 13 types of devices were extracted. Three of these devices can provide somatosensory stimuli, eight motor stimuli, and two both types of stimuli. Our review demonstrated that using these devices, fMRI data of brain activation can be successfully obtained when participants remain motionless and experience sensorimotor stimulation during fMRI acquisition. The activation in multiple cortical (e.g., primary sensorimotor cortex) and subcortical (e.g., cerebellum) regions has been each linked to these types of walking-related sensorimotor stimuli. CONCLUSION: The observations of these publications suggest the promise of implementing these devices to characterize the supraspinal sensorimotor control of walking. Still, the evidence level of these neuroimaging observations was still low due to small sample size and varied study protocols, which thus needs to be confirmed via studies with more rigorous design.


Asunto(s)
Imagen por Resonancia Magnética , Caminata , Humanos , Anciano , Marcha , Neuroimagen , Envejecimiento
3.
Int J Sports Med ; 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698624

RESUMEN

Hydrogen, as an antioxidant, may have the potential to mitigate fatigue and improve selected oxidative stress markers induced by strenuous exercise. This study focused on previously unexplored approach of pre-exercise inhalation of hydrogen-rich gas (HRG). Twenty-four healthy adult men first completed prelaboratories to determine maximum cycling power (Wmax) and maximum cycling time (Tmax). Then they were subjected to ride Tmax at 80% Wmax on cycle ergometers after inhaled HRG or placebo gas (air) for 60-minute in a double-blind, counterbalanced, randomized, and crossover design. The cycling frequency in the fatigue modelling process and the rating of perceived exertion (RPE) at the beginning and end of the ride were recorded. Before gas inhalation and after fatigue modeling, visual analog scale (VAS) for fatigue and counter-movement jump (CMJ) were tested, and blood samples were obtained. The results showed that compared to placebo, HRG inhalation induced significant improvement in VAS, RPE, the cycling frequency in the last 30 seconds, the ability to inhibit hydroxyl radicals, and serum lactate after exercise (p < 0.028), but not in CMJ height and glutathione peroxidase activit. In conclusions, HRG inhalation prior to acute exercise can alleviate exercise-induced fatigue, maintain functional performance, and improve hydroxyl radical and lactate levels.

4.
Environ Microbiol ; 25(8): 1393-1408, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36959722

RESUMEN

White-rot fungi efficiently degrade wood lignin; however, the mechanisms involved remain largely unknown. Recently, a forward genetics approach to identify several genes in Pleurotus ostreatus (Agaricales) in which mutations cause defects in wood lignin degradation was used. For example, pex1 encodes a peroxisome biogenesis factor and gat1 encodes a putative Agaricomycetes-specific DNA-binding transcription factor. In this study, we examined the effects of single-gene mutations in pex1 or gat1 on wood lignin degradation in another white-rot fungus, Gelatoporia (Ceriporiopsis) subvermispora (Polyporales), to investigate conserved and derived degradation mechanisms in white-rot fungi. G. subvermispora pex1 and gat1 single-gene mutant strains were generated from a monokaryotic wild-type strain, FP-90031-Sp/1, using plasmid-based CRISPR/Cas9. As in P. ostreatus, Gsgat1 mutants were nearly unable to degrade lignin sourced from beech wood sawdust medium (BWS), while Gspex1 mutants exhibited a delay in lignin degradation. We also found that the transcripts of lignin-modifying enzyme-encoding genes, mnp4, mnp5, mnp6, mnp7, and mnp11, which predominantly accumulate in FP-90031-Sp/1 cultured with BWS, were greatly downregulated in Gsgat1 mutants. Taken together, the results suggest that Gat1 may be a conserved regulator of the ligninolytic system of white-rot fungi and that the contribution of peroxisomes to the ligninolytic system may differ among species.


Asunto(s)
Pleurotus , Polyporales , Lignina/metabolismo , Sistemas CRISPR-Cas , Polyporales/metabolismo , Pleurotus/genética , Pleurotus/metabolismo
5.
Molecules ; 28(12)2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37375351

RESUMEN

A novel fungal immunomodulatory protein (FIP), identified as FIP-hma, was discovered in the genome of an edible mushroom Hypsizygus marmoreus. Bioinformatics analysis suggested FIP-hma contained the cerato-platanin (CP) conserved domain and was categorized into Cerato-type FIP. In phylogenetic analysis, FIP-hma was clustered into a new branch of the FIP family, displaying large system divergence from most of the other FIPs. The higher gene expression of FIP-hma was observed during the vegetative growth stages than that during the reproductive growth stages. In addition, the cDNA sequence of FIP-hma was cloned and successfully expressed in Escherichia coli (E. coli) BL21(DE3). The recombinant protein of FIP-hma (rFIP-hma) was neatly purified and isolated by Ni-NTA and SUMO-Protease. The iNOS, IL-6, IL-1ß, and TNF-α levels of RAW 264.7 macrophages were upregulated by rFIP-hma, indicating its activation of an immune response by regulating central cytokines. No cytotoxic effects were observed in an MTT test. The findings of this work discovered a novel immunoregulatory protein from H. marmoreus, provided a systematic bioinformatic profile, suggested an effective approach for its heterologous recombinant production, and reported its potent immunoregulatory activity in macrophages. This study sheds light on the physiological function research of FIPs and their further industrial utilization.


Asunto(s)
Agaricales , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Filogenia , Agaricales/metabolismo , Factores Inmunológicos/genética , Factores Inmunológicos/farmacología , Factores Inmunológicos/metabolismo , Proteínas Fúngicas/metabolismo , Inmunidad
6.
J Sports Sci Med ; 22(4): 806-815, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38045744

RESUMEN

The onset of fatigue disrupts the functioning of the autonomic nervous system (ANS), potentially elevating the risk of life-threatening incidents and impairing daily performance. Previous studies mainly focused on physical fatigue (PF) and mental fatigue (MF) effects on the ANS, with limited knowledge concerning the influence of physical-mental fatigue (PMF) on ANS functionality. This study aimed to assess the immediate impact of PMF on ANS function and to compare its effects with those of PF and MF on ANS function. Thirty-six physically active college students (17 females) without burnout performed 60-min cycling exercises, AX-Continuous Performance Task (AX-CPT), and cycling combined with AX-CPT to induce PF, MF, and PMF respectively. Subjective fatigue levels were measured using the Rating of Perceived Exertion scale and the Visual Analog Scale-Fatigue. Heart rate variability was measured before and after each protocol to assess cardiac autonomic function. The proposed tasks successfully induced PF, MF, and PMF, demonstrated by significant changes in subjective fatigue levels. Compared with baseline, PMF decreased the root mean square of successive differences (RMSSD) between normal heartbeats (P < 0.001, d = 0.50), the standard deviation of normal-to-normal RR intervals (SDNN) (P < 0.01, d = 0.33), and the normalized high-frequency (nHF) power (P < 0.001, d = 0.32) while increased the normalized low-frequency (nLF) power (P < 0.001, d = 0.35) and the nLF/nHF ratio (P < 0.001, d = 0.40). Compared with MF, PMF significantly decreased RMSSD (P < 0.001, η2 = 0.431), SDNN (P < 0.001, η2 = 0.327), nLF (P < 0.01, η2 = 0.201), and nHF (P < 0.001, η2 = 0.377) but not the nLF/nHF ratio. There were no significant differences in ΔHRV (i.e., ΔRMSSD, ΔSDNN, ΔnLF/nHF, ΔnLF, and ΔnHF), heart rate, and training impulse between PF- and PMF-inducing protocols. Cognitive performance (i.e., accuracy) in AX-CPT during the PMF-inducing protocol was significantly lower than that during the MF-inducing protocol (P < 0.001, η2 = 0.101). PF and PMF increased sympathetic activity and decreased parasympathetic activity, while MF enhanced parasympathetic activity.


Asunto(s)
Sistema Nervioso Autónomo , Ejercicio Físico , Femenino , Humanos , Sistema Nervioso Autónomo/fisiología , Terapia por Ejercicio/métodos , Fatiga Mental
7.
BMC Genomics ; 22(1): 160, 2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33676419

RESUMEN

BACKGROUND: Hericium erinaceus, a rare edible and medicine fungus, is widely used in the food and medical field. Polysaccharides from H. erinaceus are the main bioactive compound that exert high bioactive value in the medical and healthcare industries. RESULTS: The genome of H. erinaceus original strain HEA was reported 38.16 Mb, encoding 9780 predicted genes by single-molecule, real-time sequencing technology. The phylogenomic analysis showed that H. erinaceus had the closest evolutionary affinity with Dentipellis sp. The polysaccharide content in the fermented mycelia of mutated strains HEB and HEC, which obtained by ARTP mutagenesis in our previous study, was improved by 23.25 and 47.45%, and a new ß-glucan fraction with molecular weight 1.056 × 106 Da was produced in HEC. Integrative analysis of transcriptome and proteomics showed the upregulation of the carbohydrate metabolism pathway modules in HEB and HEC might lead to the increased production of glucose-6P and promote the repeating units synthesis of polysaccharides. qPCR and PRM analysis confirmed that most of the co-enriched and differentially co-expressed genes involved in carbohydrate metabolism shared a similar expression trend with the transcriptome and proteome data in HEB and HEC. Heatmap analysis showed a noticeably decreased protein expression profile of the RAS-cAMP-PKA pathway in HEC with a highly increased 47.45% of polysaccharide content. The S phase progression blocking experiment further verified that the RAS-cAMP-PKA pathway's dysfunction might promote high polysaccharide and ß-glucan production in the mutant strain HEC. CONCLUSIONS: The study revealed the primary mechanism of the increased polysaccharide synthesis induced by ARTP mutagenesis and explored the essential genes and pathways of polysaccharide synthesis.


Asunto(s)
Basidiomycota , Hericium , Basidiomycota/genética , Peso Molecular , Micelio , Polisacáridos
8.
Appl Microbiol Biotechnol ; 105(3): 1175-1190, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33415371

RESUMEN

Distinct wood degraders occupying their preferred habitats have biased enzyme repertoires that are well fitted to their colonized substrates. Pleurotus ostreatus, commonly found on wood, has evolved its own enzyme-producing traits. In our previous study, transcriptional shifts in several P. ostreatus delignification-defective mutants, including Δhir1 and Δgat1 strains, were analyzed, which revealed the downregulation of ligninolytic genes and the upregulation of cellulolytic and xylanolytic genes when compared to their parental strain 20b on beech wood sawdust medium (BWS). In this study, rice straw (RS) was used as an alternative substrate to examine the transcriptional responses of P. ostreatus to distinct substrates. The vp1 gene and a cupredoxin-encoding gene were significantly upregulated in the 20b strain on RS compared with that on BWS, reflecting their distinct regulation patterns. The overall expression level of genes encoding glucuronidases was also higher on RS than on BWS, showing a good correlation with the substrate composition. Transcriptional alterations in the mutants (Δhir1 or Δgat1 versus 20b strain) on RS were similar to those on BWS, and the extracellular lignocellulose-degrading enzyme activities and lignin-degrading ability of the mutants on RS were consistent with the transcriptional alterations of the corresponding enzyme-encoding genes. However, transcripts of specific genes encoding enzymes belonging to the same CAZyme family exhibited distinct alteration patterns in the mutant strains grown on RS compared to those grown on BWS. These findings provide new insights into the molecular mechanisms underlying the transcriptional regulation of lignocellulolytic genes in P. ostreatus.Key Points• P. ostreatus expressed variable enzymatic repertoire-related genes in response to distinct substrates.• A demand to upregulate the cellulolytic genes seems to be present in ligninolysis-deficient mutants.• The regulation of some specific genes probably driven by the demand is dependent on the substrate.


Asunto(s)
Fagus , Oryza , Pleurotus , Fagus/metabolismo , Regulación de la Expresión Génica , Lignina/metabolismo , Oryza/metabolismo , Pleurotus/genética , Pleurotus/metabolismo , Madera/metabolismo
9.
J Neuroeng Rehabil ; 18(1): 164, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819097

RESUMEN

OBJECTIVE: Physical training (PT, e.g., Tai Chi and strength training) has been demonstrated to improve balance control and prevent falls. Recently, exergame intervention (EI) has emerged to prevent falls by enhancing both physical and cognitive functions in older adults. Therefore, we aim to quantitatively assess and compare the effects of PT and EI on the performance of balance control and fall prevention in healthy older adults via meta-analysis. METHODS: A search strategy based on the PICOS principle was used to find the publication in the databases of PubMed, EMBASE, Web of Science, Cochrane Library, and MEDLINE. The quality and risk of bias in the studies were independently assessed by two researchers. RESULTS: Twenty studies consisting of 845 participants were included. Results suggested that as compared to PT, EI induced greater improvement in postural control (sway path length, SMD = - 0.66, 95% CI - 0.91 to - 0.41, P < 0.001, I2 = 0%; sway speed, SMD = - 0.49, 95% CI - 0.71 to - 0.27, P < 0.001, I2 = 42%) and dynamic balance (SMD = - 0.19, 95% CI - 0.35 to - 0.03, P = 0.02, I2 = 0%) in healthy older adults. The EI with 90-119 min/week for more than 8-week significantly reduced falls. Subgroup analyses revealed that exergames, which were designed by the two principles of repeatedly performing diversified tasks and gradually increase the difficulty of the task, induced significant effects in improving balance control and falls prevention respectively (P = 0.03, P = 0.009). In addition, intervention that combines EI and PT induced significant improvement in postural control (P = 0.003). CONCLUSION: The exergame intervention, especially the combination of EI and PT, is a promising strategy to improve balance control and reduce falls in healthy older adults. Future studies with rigorous design, larger sample size, and follow-up assessments are needed to further assess the effectiveness of diverse exergame interventions in fall prevention and to quantify the "dose-effect" relationship, as well as the carry-over effect of such intervention, which will ultimately help optimize the rehabilitative strategies to improve balance control and prevent falls.


Asunto(s)
Videojuego de Ejercicio , Entrenamiento de Fuerza , Anciano , Ejercicio Físico , Humanos , Equilibrio Postural
10.
Fungal Genet Biol ; 142: 103415, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32497577

RESUMEN

SNF1/AMPK protein kinases play important roles in fungal development and activation of catabolite-repressed genes. In this study, we characterized the role of SNF1 ortholog in Cordyceps militaris (CmSnf1). The vegetative growth of a CmSnf1 deletion mutant was (ΔCmSnf1) reduced by 42.2% with arabinose as a sole carbon source. Most strikingly, the ΔCmSnf1 produced only a few conidia and exhibited delayed conidial germination. We found that CmSnf1 was necessary for mycelium to penetrate the insect cuticle to form the fruiting body on silkworm pupae, consistent with the down-regulation of chitinase- and protease-encoding genes in ΔCmSnf1. However, cordycepin content increased by more than 7 times in culture supernatants. Correspondingly, the relative expression levels of cordycepin gene cluster members were also elevated. In particular, the expression of cns4 associated with cordycepin transfer was up-regulated >10-fold. Furthermore, transcriptional analysis showed that CmSnf1 regulated the expression of genes involved in cell autophagy and oxidative stress tolerance. We speculated that under environmental stress, both the ATG and SNF1 pathways might collaborate to sustain adverse environments. Our study provides an initial framework to probe the diverse function and regulation of CmSnf1 in C. militaris, which will shed more light on the direction of molecular improvement of medicinal fungi.


Asunto(s)
Cordyceps/genética , Micelio/genética , Proteínas Serina-Treonina Quinasas/genética , Estrés Fisiológico/genética , Carbono/metabolismo , Cordyceps/patogenicidad , Cuerpos Fructíferos de los Hongos/genética , Cuerpos Fructíferos de los Hongos/metabolismo , Genoma Fúngico/genética
11.
J Sports Sci ; 37(22): 2625-2630, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31379263

RESUMEN

The dynamics of tremulous motion in the upper limb is complex. We aimed to explore the relationship between the complexity of upper limb tremor when aiming and aiming performance and the influences of physical load on the two outcomes. Fifteen modern pentathlon athletes were recruited and completed two 1000-m treadmill running and three 60-s standard aiming task trials: one at baseline and each of the other two immediately after each running. The time series of light spot trace on the target was measured using a high-speed camera. The complexity of this time series was quantified using multiscale entropy. The effective aiming rate was used to assess the aiming performance. We observed that participants with lower tremor complexity had lower effective aiming rate across three physical load conditions (r2 > 0.38, p < 0.01). Physical load decreased both tremor complexity (F = 4.8, p = 0.01) and effective aiming rate (F = 13.5, p < 0.0001), but no difference was observed after 1000-m running compared to that after 2000-m running. The per cent change of tremor complexity associated with the change of effective aiming rate (r2 = 0.55, p < 0.0001). This pilot study demonstrates that multiscale complexity of tremulous motion in the upper limb when aiming may serve as a novel marker to assess the physiologic system functionality when aiming.


Asunto(s)
Rendimiento Atlético/fisiología , Movimiento/fisiología , Deportes/fisiología , Extremidad Superior/fisiología , Adulto , Femenino , Armas de Fuego , Humanos , Masculino , Proyectos Piloto , Carrera/fisiología , Análisis y Desempeño de Tareas , Temblor/fisiopatología , Soporte de Peso , Adulto Joven
12.
Breed Sci ; 67(2): 135-139, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28588390

RESUMEN

The uracil auxotrophic monokaryotic strain 423-9 of Lentinula edodes was crossed with nine monokaryons (cro2-2-9, W66-1, xd2-3-2, QingKe 20A, 241-1-1, 9015-1, L66-2, 241-1-2, and Qing 23A) derived from wild type strains of L. edodes. Nine dikaryotic hybrids were established from these crosses. These hybrids were fruited and 496 single spore isolates were obtained. Among these single spore isolates, 166 were identified as monokaryons under a microscope. We screened these monokaryons on selective medium and obtained 19 uracil auxotrophic monokaryons. By using the Monkaryon-monkaryon crossing method among the uracil auxotrophic monokaryons, 56 uracil auxotrophic dikaryotic strains were established on selective medium. These dikaryotic strains were unable to grow on minimal medium without uracil and exhibited slow growth rates on PDA plates compared to the wild type strain. The uracil auxotrophic dikaryotic strains also showed more vigorous growth on sawdust cultivation medium containing uracil than that without uracil. The fruiting tests showed that they formed normal fruiting bodies on the sawdust medium containing uracil. The results show that the uracil auxotrophic dikaryotic strain of L. edodes could be produced by mating, and will provide a valuable resource for future genetic studies and for spawn protection and identification.

13.
J Chem Inf Model ; 56(10): 2103-2114, 2016 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-27649295

RESUMEN

Volvaria volvacea (Bull. ex Fr.) Sing, an important edible and medicinal macro-fungus, has been used to remedy various diseases for hundreds of years in East Asia. To identify key proteins with the unique therapeutic activity in V. volvacea, we conducted a genomewide comparison of V. volvacea protein families and those of other edible fungi that lack therapeutic functions and identified seven fungal immunomodulatory proteins (FIPs) in V. volvacea. On the basis of the predicted physiological and biochemical characteristics of the seven FIPs, the novel Fip-vvo82 was inferred to have high immunomodulatory activity; this was confirmed by molecular and immunological experiments and further characterized by modeling the three-dimensional structure and protein-protein docking. This is the first study to show that V. volvacea has more than one FIP.


Asunto(s)
Proteínas Fúngicas/química , Proteínas Fúngicas/farmacología , Hongos/química , Factores Inmunológicos/química , Factores Inmunológicos/farmacología , Descubrimiento de Drogas , Proteínas Fúngicas/genética , Hongos/genética , Genoma Fúngico , Humanos , Factores Inmunológicos/genética , Interleucina-2/inmunología , Células Jurkat , Modelos Moleculares , Filogenia
14.
Biotechnol Appl Biochem ; 63(5): 605-615, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26234394

RESUMEN

Volvariella volvacea is difficult to store fresh because of the lack of low-temperature resistance. Many traditional mutagenic strategies have been applied in order to select out strains resistant to low temperature, but few commercially efficient strains have been produced. In order to break through the bottleneck of traditional breeding and significantly improve low-temperature resistance of the edible fungus V. volvacea, strains resistant to low temperature were constructed by genome shuffling. The optimum conditions of V. volvacea strain mutation, protoplast regeneration, and fusion were determined. After protoplasts were treated with 1% (v/v) ethylmethylsulfonate (EMS), 40 Sec of ultraviolet (UV) irradiation, 600 Gy electron beam implantation, and 750 Gy60 Co-γ irradiation, separately, the lethality was within 70%-80%, which favored generating protoplasts being used in following forward mutation. Under these conditions, 16 strains of V. volvacea mutated by EMS, electron beam, UV irradiation, and 60 Co-γ irradiation were obtained. The 16 mutated protoplasts were selected to serve as the shuffling pool based on their excellent low-temperature resistance. After four rounds of genome shuffling and low-temperature resistance testing, three strains (VF1 , VF2 , and VF3 ) with high genetic stability were screened. VF1 , VF2 , and VF3 significantly enhanced fruit body shelf life to 20, 28, and 28 H at 10 °C, respectively, which exceeded 25%, 75%, and 75%, respectively, compared with the storage time of V23, the most low-temperature-resistant strain. Genome shuffling greatly improved the low-temperature resistance of V. volvacea, and shortened the course of screening required to generate desirable strains. To our knowledge, this is the first paper to apply genome shuffling to breeding new varieties of mushroom, and offers a new approach for breeding edible fungi with optimized phenotype.


Asunto(s)
Barajamiento de ADN/métodos , Genómica , Temperatura , Volvariella/genética , Volvariella/fisiología , Calor/efectos adversos , Mutagénesis , Mutación , Protoplastos/metabolismo , Protoplastos/fisiología , Técnica del ADN Polimorfo Amplificado Aleatorio , Rayos Ultravioleta/efectos adversos , Volvariella/efectos de la radiación
15.
Coll Antropol ; 39(4): 899-905, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26987158

RESUMEN

To investigate anthropometric characteristics of Chinese professional female marathoners and suitable predicted variables correlated with their personal bests (PB), 96 Chinese female long-distance runners were divided into international (< 2 h 34 min), national (2 h 34 min~2 h 45 min) and average (2 h 45 min~3 h 19 min) levels according to their PB in marathon during the process of talent identification for London Olympic Games. Selected anthropometric variables, including height, body mass, percentages of body fat, girths, breadths, lengths and skin-folds were measured. Only iliac crest skin-fold of international athletes was significantly lower than it is in national group. Girth of forearm and lower limbs, length of lower limbs, and all skin-folds of national athletes were significantly lower than those from average level group. Percentages of body fat, girth of forearm and calf, length of lower limbs, and skin-folds at sites of subscapular, abdominal and iliac crest of athletes from average level group were significantly higher than those in international athletes. Positive correlation was found between forearm girth and PB, and between the subscapular, abdominal, iliac crest and triceps surae skin-folds and PB for total athletes. Negative correlation between biiliac breadth and PB in international athletes, and positive correlations between abdominal and triceps surae skin-folds and PB in national athletes were found. For average runners, high positive correlation was found between upper arm girth and PB, and between subscapular, abdominal, iliac crest and triceps surae skin-folds and PB. The findings suggested that compared to stride length, stride frequency and efficiency were more important factors influencing running performance, which were in accordance with running technique in Chinese female marathoners.


Asunto(s)
Antropometría , Atletas , Carrera/fisiología , Tejido Adiposo , Antropometría/métodos , Pueblo Asiatico , Femenino , Humanos
16.
Wei Sheng Wu Xue Bao ; 54(7): 828-35, 2014 Jul 04.
Artículo en Zh | MEDLINE | ID: mdl-25252465

RESUMEN

OBJECTIVE: To clone the full-length cDNAs of two laccase genes, vv-lac1 and vv-1ac6, from Volvaria volvacea, verify their encoded proteins with laccase activity and develop a heterologous expression and protein purification system for V. volvacea laccase genes. METHODS: The full-length cDNAs were cloned with rapid amplification of cDNA ends (RACE) technology and carried out in silico analysis. After modified by removing the sequence encoding signal peptide and adding the sequence encoding His-tag at 3' ends, the cDNAs were cloned into pPIC9K vector. The resulting constructs were transformed into Pichia pastoris GS115 for heterologous expression. The recombinant proteins were purified with Ni columns and the laccase activity were detected with ABTS assay. RESULTS: The full-length cDNAs of vv-lac1 and vv-lac6 are 1,599 bp and 1,554 bp, and contain19 and 15 exons, respectively. The predicted molecular weights of the proteins encoded by vv-lac1 and vv-lac6 are 57.3 kDa and 56.3 kDa, respectively. The predicted isoelectric points are 4.73 and 5.62, respectively. Both proteins are extracellular. The recombinant proteins RBvvlacland RBvvlac6 are 70 kDa, which may be modified by posttranslational modification. The solutions of the two recombinant proteins eluted by 150 mmol/L imidazole eluent have the highest laccase activity levels (333.17 U/L and 227.63 U/L). CONCLUSION: The proteins encoded by the laccase genes vv-lac1 and vv-lac6 from V. volvacea have laccase activity, the heterologous expression and protein purification system developed in this study is suitable for future studies of other laccase genes from V. volvacea or other fungi.


Asunto(s)
Agaricales/enzimología , Clonación Molecular , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Lacasa/química , Lacasa/genética , Agaricales/genética , ADN Complementario/genética , ADN Complementario/metabolismo , Proteínas Fúngicas/metabolismo , Expresión Génica , Punto Isoeléctrico , Lacasa/metabolismo , Peso Molecular , Pichia/genética , Pichia/metabolismo , Señales de Clasificación de Proteína
17.
Wei Sheng Wu Xue Bao ; 54(9): 992-7, 2014 Sep 04.
Artículo en Zh | MEDLINE | ID: mdl-25522588

RESUMEN

[OBJECTIVE] Cryogenic autolysis of Volvariella volvacea is an unusual phenomenon of abnormal metabolism. The aim of this study was to describe this molecular feature of abnormal metabolism at the genome-level. [METHODS] We used 21 fungal species for the phylogenomic analysis and then selected 9 representative species in basidiomycetes for the comparative genomic analysis. [ RESULTS] The phylogenomic analysis shows that V. volvacea was located at the bottom of the cluster consisting of grass-degrading fungi. Phylogenetic tree shows that basidiomycetes and ascomycetes fungi have independent evolutionary trajectories. Therefore, nine representative species in basidiomycetes were chosen for the comparative genomic analysis. The result shows that compared to other grass-degrading fungi, V. volvacea has the tendency of contraction. The comparison of the number of gene families on a different scale shows that there was a significant expansion of 3 large size ( > 200) gene families (faml, fam4 and fam6) in V. volvacea with their total number significantly more than other species, representing that the molecular feature of V. volvacea is correlated with its abnormal metabolism. [ CONCLUSION] The significant expansion of 3 gene families ( > 200) in V. volvacea indicates the enhancement of their function in specific gene families, which is most likely associated with cryogenic autolysis of V. volvacea.


Asunto(s)
Proteínas Fúngicas/genética , Familia de Multigenes , Filogenia , Volvariella/clasificación , Volvariella/genética , Proteínas Fúngicas/metabolismo , Variación Genética
18.
J Fungi (Basel) ; 10(5)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38786666

RESUMEN

Functional genes encode various biological functions required for the life activities of organisms. By analyzing the functional genes of edible and medicinal fungi, varieties of edible and medicinal fungi can be improved to enhance their agronomic traits, growth rates, and ability to withstand adversity, thereby increasing yield and quality and promoting industrial development. With the rapid development of functional gene research technology and the publication of many whole-genome sequences of edible and medicinal fungi, genes related to important biological traits have been mined, located, and functionally analyzed. This paper summarizes the advantages and disadvantages of different functional gene research techniques and application examples for edible and medicinal fungi; systematically reviews the research progress of functional genes of edible and medicinal fungi in biological processes such as mating type, mycelium and fruit growth and development, substrate utilization and nutrient transport, environmental response, and the synthesis and regulation of important active substances; and proposes future research directions for functional gene research for edible and medicinal fungi. The overall aim of this study was to provide a valuable reference for further promoting the molecular breeding of edible and medicinal fungi with high yield and quality and to promote the wide application of edible and medicinal fungi products in food, medicine, and industry.

19.
Neurophotonics ; 11(1): 015009, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38515930

RESUMEN

Significance: Prefrontal cortex (PFC) hemodynamics are regulated by numerous underlying neurophysiological components over multiple temporal scales. The pattern of output signals, such as functional near-infrared spectroscopy fluctuations (i.e., fNIRS), is thus complex. We demonstrate first-of-its-kind evidence that this fNIRS complexity is a marker that captures the influence of endurance capacity and the effects of hydrogen gas (H2) on PFC regulation. Aim: We aim to explore the effects of different physical loads of exercise as well as the intaking of hydrogen gas on the fNIRS complexity of the PFC. Approach: Twenty-four healthy young men completed endurance cycling exercise from 0 (i.e., baseline) to 100% of their physical loads after intaking 20 min of either H2 or placebo gas (i.e., control) on each of two separate visits. The fNIRS measuring the PFC hemodynamics and heart rate (HR) was continuously recorded throughout the exercise. The fNIRS complexity was quantified using multiscale entropy. Results: The fNIRS complexity was significantly greater in the conditions from 25% to 100% of the physical load (p<0.0005) compared with the baseline and after intaking H2 before exercise; this increase of fNIRS complexity was significantly greater compared with the control (p=0.001∼0.01). At the baseline, participants with a greater fNIRS complexity had a lower HR (ß=-0.35∼-0.33, p=0.008∼0.02). Those with a greater increase of complexity had a lower increase of the HR (ß=-0.30∼-0.28, p=0.001∼0.002) during exercise. Conclusions: These observations suggest that fNIRS complexity would be a marker that captures the adaptive capacity of PFC to endurance exercise and to the effects of interventions on PFC hemodynamics.

20.
Front Physiol ; 15: 1368917, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883184

RESUMEN

Purpose: This study examined the effects of 8-week complex training (CT) with blood flow restriction (BFR) on power output and bar velocity. Methods: Twenty-six healthy male university athletes (age: 19.40 ± 0.88 years) completed three sessions of CT with BFR (CT_BFRT, n = 13) or CT-only (i.e., control) (n = 13) per week (i.e., 24 sessions in total). Before and immediately after intervention, participants completed power measurement as assessed by one-repetition maximum (1RM) squat, squat jump (SJ), countermovement jump (CMJ), and mean power (MP), peak power (PP), mean bar velocity (Bar-MV), and peak bar velocity (Bar-PV) during the half-squat jump. Results: Two-way ANOVA models showed significant main effect of time (p < 0.001) but not group (p > 0.89) or interaction (p > 0.37) between group and time on 1RM of the squat, SJ, or CMJ; however, significant interactions were observed in MP (p = 0.03, Cohen's d = 1.39), PP (p = 0.03, Cohen's d = 1.14), Bar-MV (p = 0.049, Cohen's d = 1.26), and Bar-PV (p = 0.01, Cohen's d = 1.56). The post hoc analyses revealed that MP, PP, Bar-MV, and Bar-PV after CT with BFRT were significantly greater compared to all the other three conditions (i.e., pre-CT_BFRT, pre- and post-CT-only). Conclusion: CT with BFR may induce significantly greater improvements in power output and bar velocity during half-squat jump and induce comparable improvements in 1RM of the squat, SJ, and CMJ of males as compared to CT only, suggesting this novel CT with BFR would be a promising strategy to enhance power performance in healthy male university athletes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA