Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Chem Soc Rev ; 53(5): 2326-2349, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38259195

RESUMEN

As a class of multifunctional reagents, organic peroxides play vital roles in the chemical industry, pharmaceutical synthesis and polymerization reactions. Metal-catalyzed asymmetric catalysis has emerged as one of the most straightforward and efficient strategies to construct enantioenriched molecules, and an increasing number of metal-catalyzed asymmetric reactions enabled by organic peroxides have been disclosed by researchers in recent years. Despite remarkable progress, the types of asymmetric reactions facilitated by organic peroxides remain limited and the catalysis systems need to be further broadened. To the best of our knowledge, there is still no review devoted to summarizing the reactions from this perspective. In this review, we will endeavor to highlight the advances in metal-catalyzed asymmetric reactions enabled by organic peroxides. We hope that this survey will summarize the functions of organic peroxides in catalytic reactions, improve the understanding of these compounds and inspire future developments in this area.

2.
Molecules ; 28(10)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37241989

RESUMEN

The carbon-nitrogen bond is one of the most prevalent chemical bonds in natural and artificial molecules, as many naturally existing organic molecules, pharmaceuticals, agrochemicals, and functional materials contain at least one nitrogen atom. Radical decarboxylative carbon-nitrogen bond formation from readily available carboxylic acids and their derivatives has emerged as an attractive and valuable tool in modern synthetic chemistry. The promising achievements in this research topic have been demonstrated via utilizing this strategy in the synthesis of complex natural products. In this review, we will cover carbon-nitrogen bond formation via radical decarboxylation of carboxylic acids, Barton esters, MPDOC esters, N-hydroxyphthalimide esters (NHP esters), oxime esters, aryliodine(III) dicarboxylates, and others, respectively. This review aims to bring readers a comprehensive survey of the development in this rapidly expanding field. We hope that this review will emphasize the knowledge, highlight the proposed mechanisms, and further disclose the fascinating features in modern synthetic applications.

3.
Angew Chem Int Ed Engl ; 62(28): e202304275, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37170440

RESUMEN

Chiral heterocycles with two or more carbon stereocenters are quite important skeletons in many fields. However, powerful strategies for the construction of such synthetically valuable heterocycles, especially with two or more remote carbon stereocenters, have largely lagged behind. We report here a powerful method for the synthesis of chiral γ-butyrolactones with two non-vicinal carbon stereocenters from readily available chemical feedstocks under mild conditions. Both of the two diastereoisomers can be obtained with good to excellent enantioselectivities. The well-designed copper/PyBox catalytic system overrides the intrinsic stereoinduction of the close chirality center generated by the previous innocent radical addition step. Nevertheless, this work has the power to selectively provide one single diastereoisomer by taking advantage of the epimerization effect but also to synthesize all four diastereoisomers with the pair of chiral ligands L2 and L2' having opposite chirality. The obtained useful chiral γ-butyrolactones can be synthetically transformed into acyclic or cyclic molecules with two non-vicinal carbon stereocenters. Mechanistic studies reveal that this radical reaction follows a linear relationship and can be well performed with a less loading amount of ligand compared to that of the copper catalyst.

4.
Angew Chem Int Ed Engl ; 62(31): e202304033, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37263979

RESUMEN

The development of novel polymerization capable of yielding polymers with low molecular weight distribution (D) is essential and significant in polymer chemistry, where monofunctional initiator contains only one initiation site in these polymerizations generally. Here, ketyl radical anion species is introduced to develop a novel Ketyl Mediated Polymerization (KMP), which enables radical polymerization at carbon radical site and anionic ring-opening polymerization at oxygen anion site, respectively. Meanwhile, polymerization and corresponding organic synthesis generally couldn't be performed simultaneously in one pot. Through KMP, organic synthesis and polymerization are achieved in one pot, where small molecules (cyclopentane derivates) and polymers with low D are successfully prepared under mild condition simultaneously. At the initiation step, both organic synthesis and polymerization are initiated by single electron transfer reaction with ketyl radical anion formation. Cyclopentane derivates are synthesized through 3-3 coupling reaction and cyclization. Polystyrene and polycaprolactone with low D and a full monomer conversion are prepared by KMP via radical polymerization and anionic ring-opening polymerization, respectively. This work therefore enables both organic synthesis and two different polymerizations from same initiation system, which saves time, labour, resource and energy and expands the reaction mode and method libraries of organic chemistry and polymer chemistry.

5.
Chemistry ; 28(48): e202201194, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-35655328

RESUMEN

Luminescent polymer materials have gained considerable research efforts in the past decades and are generally molecular designed by extending the π system of the polymer main chain or by incorporating chromophores into the polymer chain, which suffer from poor solubility, difficult synthesis, or multi-step procedures. Meanwhile, according to the step-growth polymerization theory, synthesis of hyperbranched polymers from an AB-type monomer is still challenging. Herein, we report a one-pot synthesis of nonconjugated luminescent hyperbranched polymer material via Barbier hyperbranching polymerization-induced emission (PIE) from an AB-type monomer. The key step in the realization of the hyperbranched polymer is bi-functionalization of a mono-functional group. Through a Barbier reaction between an organohalide and an ester group in one pot, bi-functionalization of mono-functional ester is realized through two-step nucleophilic additions, resulting in hyperbranched polytriphenylmethanols (HPTPM). Attributed to through-space conjugation and inter- and intramolecular charge-transfer effects induced by polymer chain, nonconjugated HPTPMs are PIEgens, which are tunable by monomer structure and polymerization time. When all phenyl groups are rotatable, HPTPM is aggregation-induced emission type PIEgen. Whereas, it is aggregation-caused quenching type PIEgen if some phenyl groups are rotation forbidden. Further potential applications of PIEgen are in the fields of explosive detection and artificial light harvesting systems. This work, therefore, expands the monomer library and molecular design library of hyperbranched polymers through "bi-functionalization of mono-functional group" strategy, which eventually expands the preparation library of nonconjugated luminescent polymer materials through one-pot PIE from nonemissive monomer.

6.
Molecules ; 27(1)2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35011557

RESUMEN

Pyrene molecules containing NBN-doped polycyclic aromatic hydrocarbons (PAHs) have been synthesized by a simple and efficient intermolecular dehydration reaction between 1-pyrenylboronic acid and aromatic diamine. Pyrene-B (o-phenylenediamine) with a five-membered NBN ring and pyrene-B (1,8-diaminonaphthalene) with a six-membered NBN ring show differing luminescence. Pyrene-B (o-phenylenediamine) shows concentration-dependent luminescence and enhanced emission after grinding at solid state. Pyrene-B (1,8-diaminonaphthalene) exhibits a turn-on type luminescence upon fluoride ion addition at lower concentration, as well as concentration-dependent stability. Further potential applications of Pyrene-B (o-phenylenediamine) on artificial light-harvesting film were demonstrated by using commercial NiR dye as acceptor.

7.
Angew Chem Int Ed Engl ; 61(28): e202202077, 2022 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-35510403

RESUMEN

Chiral lactones are found in many natural products. The reaction of simple alkenes with iodoacetic acid is a powerful method to build lactones, but the enantioselective version of this reaction has not been implemented to date. Herein, we report the efficient catalytic radical enantioselective carbo-esterification of styrenes enabled by a newly developed CuI -perfluoroalkylated PyBox system. Simple styrenes have been converted to useful chiral lactones, whose synthetic applications are showcased. Mechanistic studies reveal that this reaction is a rare example of an efficient ligand-decelerated system, in which the ligand decelerates the reaction, but the reaction is still efficient with reduced amounts of ligand. This uncommon catalytic system may inspire further consideration of the effect of ligands in asymmetric catalysis.


Asunto(s)
Cobre , Estirenos , Catálisis , Carbón Orgánico , Esterificación , Lactonas , Ligandos , Estereoisomerismo
8.
Angew Chem Int Ed Engl ; 60(22): 12455-12460, 2021 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-33749966

RESUMEN

Asymmetric aminoazidation and diazidation of alkenes are straightforward strategies to build value-added chiral nitrogen-containing compounds from feedstock chemicals. They provide direct access to chiral organoazides and complement enantioselective diamination. Despite the advances in non-asymmetric reactions, asymmetric aminoazidation or diazidation based on acyclic systems has not been previously reported. Here we describe the iron-catalyzed intermolecular asymmetric aminoazidation and diazidation of styrenes. The method is practically useful and requires relatively low loading of catalyst and chiral ligand. With mild reaction conditions, the reaction can be completed on a 20 mmol scale. Studies of the mechanism suggest that the reaction proceeds via a radical pathway and involves stereocontrol of an acyclic free radical which probably takes place through a group transfer mechanism.

9.
J Am Chem Soc ; 142(42): 18014-18021, 2020 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-33035049

RESUMEN

Chiral allenes are important structural motifs frequently found in natural products, pharmaceuticals, and other organic compounds. Asymmetric 1,4-difunctionalization of 1,3-enynes is a promising strategy to construct axial chirality and produce substituted chiral allenes from achiral substrates. However, the previous state of the art in 1,4-difunctionalization of 1,3-enynes focused on the allenyl anion pathway. Because of this, only electrophiles can be introduced into the allene backbones in the second functionalization step, consequently limiting the reaction and allene product types. The development of asymmetric 1,4-difunctionalization of 1,3-enynes via a radical pathway would complement previous methods and support expansion of the toolbox for the synthesis of asymmetric allenes. Herein, we report the first radical enantioselective allene formation via a group transfer pathway in the context of copper-catalyzed radical 1,4-difunctionalization of 1,3-enynes. This method addresses a longstanding unsolved problem in asymmetric radical chemistry, provides an important strategy for stereocontrol with free allenyl radicals, and offers a novel approach to the valuable, but previously inaccessible, chiral allenes. This work should shed light on asymmetric radical reactions and may lead to other enantioselective group transfer reactions.

10.
Molecules ; 25(5)2020 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-32182775

RESUMEN

We describe here a mechanistic study of the iron-catalyzed carboazidation of alkenes involving an intriguing metal-assisted ß-methyl scission process. Although t-BuO radical has frequently been observed in experiments, the ß-methyl scission from a t-BuO radical into a methyl radical and acetone is still broadly believed to be thermodynamically spontaneous and difficult to control. An iron-catalyzed ß-methyl scission of t-BuO is investigated in this work. Compared to a free t-BuO radical, the coordination at the iron atom reduces the activation energy for the scission from 9.3 to 3.9 ~ 5.2 kcal/mol. The low activation energy makes the iron-catalyzed ß-methyl scission of t-BuO radicals almost an incomparably facile process and explains the selective formation of methyl radicals at low temperature in the presence of some iron catalysts. In addition, a radical relay process and an outer-sphere radical azidation process in the iron-catalyzed carboazidation of alkenes are suggested by density functional theory (DFT) calculations.


Asunto(s)
Alquenos/química , Catálisis , Radicales Libres/química , Hierro/química , Acetona/química , Cinética , Metales/química , Oxidación-Reducción , Termodinámica
11.
J Am Chem Soc ; 141(42): 16839-16848, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31577139

RESUMEN

Luminescent polymers are generally constructed through polymerization of luminescent moieties. Polymerization itself, however, is mainly used for constructing polymer main chain, and the importance of polymerization on luminescence has yet to be explored. Here, we demonstrate a polymerization-induced emission strategy producing luminescent polymers by introducing Barbier reaction to hyperbranching polymerization, which allows luminescent properties to be easily tuned from the traditional type to an aggregation-induced emission type by simply adjusting the monomer structure and the polymerization time. When rotation about the phenyl groups in hyperbranched polytriphenylmethanols (HPTPMs) is hindered, HPTPMs exhibit traditional emission property. When all phenyl groups of HPTPM are rotatable, i.e., p,p',p″-HPTPM, it exhibits interesting aggregation-induced emission property with tunable emission colors from blue to yellow, by just adjusting polymerization time. Further applications of aggregation-induced emission type luminescent polymers are illustrated by the facile fabrication of white light-emitting diode (LED) and light-harvesting film with an antenna effect >14. This Barbier hyperbranching polymerization-induced emission provides a new strategy for the design of luminescent polymers and expands the methodology and functionality library of both hyperbranching polymerization and luminescent polymers.

12.
J Am Chem Soc ; 141(1): 548-559, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30509065

RESUMEN

Many reactions involving allenyl ion species have been studied, but reactions involving allenyl radicals are less well understood, perhaps because of the inconvenience associated with the generation of short-lived allenyl radicals. We describe here a versatile method for the generation of allenyl radicals and their previously unreported applications in the intermolecular 1,4-carbocyanation and 1,4-sulfimidocyanation of 1,3-enynes. With the assistance of the trifunctional reagents, alkyl diacyl peroxides or N-fluorobenzenesulfonimide, a range of synthetically challenging multisubstituted allenes can be prepared with high regioselectivity. These multisubstituted allenes can be easily transformed into synthetically useful structures such as fluorinated vinyl cyanides, lactones, functionalized allenyl amides, 1-aminonaphthalenes, and pyridin-2(1 H)-ones, and several novel transformations are reported. The results of radical scavenger and radical clock experiments are consistent with the proposed allenyl radical pathway. Density functional theory (DFT) and IR spectroscopy studies suggest the formation of an isocyanocopper(II) species in the ligand exchange step. On the basis of the results of IR, DFT, and diastereoselectivity studies, an isocyanocopper(II)/copper(I) catalytic cycle is proposed, which differs from the previously considered Cu(III) mechanism in cyanation reactions.

13.
Angew Chem Int Ed Engl ; 57(47): 15510-15516, 2018 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-30255542

RESUMEN

A simple and efficient synthesis of NBN-doped conjugated polycyclic aromatic hydrocarbons (such as diazaborinines) has been accomplished by a catalyst-free intermolecular dehydration reaction at room temperature between boronic acid and diamine moieties with yields up to 99 %. Polycyclic aromatic hydrocarbons with a six-membered NBN ring are a new class of aggregation-induced emissive luminogens. Extremely sensitive detection of ppb levels of TNT by phenyl naphthodiazaborinine is straightforward. Visual detection of TNT is illustrated by fabrication of TNT test strips, which can detect as little as 100 ng of TNT powder. This simple and sensitive detection of TNT has potential applications in the area of public safety and security against terrorist activities.

14.
Beilstein J Org Chem ; 14: 2916-2922, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30546475

RESUMEN

A copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction for the synthesis of 1,4-disubstituted 1,2,3-triazoles from alkyl diacyl peroxides, azidotrimethylsilane, and terminal alkynes is reported. The alkyl carboxylic acids is for the first time being used as the alkyl azide precursors in the form of alkyl diacyl peroxides. This method avoids the necessity to handle organic azides, as they are generated in situ, making this protocol operationally simple. The Cu(I) catalyst not only participates in the alkyl diacyl peroxides decomposition to afford alkyl azides but also catalyzes the subsequent CuAAC reaction to produce the 1,2,3-triazoles.

15.
J Am Chem Soc ; 139(37): 13076-13082, 2017 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-28857555

RESUMEN

Intermolecular carboamination of olefins with general alkyl groups is an unsolved problem. Diastereoselective carboamination of acyclic olefins represents an additional challenge in intermolecular carboaminations. We have developed a general alkylamination of vinylarenes and the unprecedented diastereoselective anti-carboamination of unsaturated esters, generating amines and unnatural ß-amino acids. This alkylamination is enabled by difunctional alkylating reagents and the iron catalyst. Alkyl diacyl peroxides, readily synthesized from aliphatic acids, serve as both alkylating reagents and internal oxidizing agents. A computational study suggests that addition of a nitrile to the carbocation is the diastereoselectivity-determining step, and hyperconjugation is proposed to account for the highly diastereoselective anti-carboamination.


Asunto(s)
Alquenos/química , Aminas/síntesis química , Aminoácidos/síntesis química , Hierro/química , Aminación , Aminas/química , Aminoácidos/química , Catálisis , Estructura Molecular , Estereoisomerismo
16.
Chemistry ; 23(49): 11767-11770, 2017 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-28681966

RESUMEN

A decarboxylative alkyl esterification of vinylarenes induced by visible light is described. A variety of alkyl diacyl peroxides synthesized from readily available aliphatic carboxylic acids are used as not only the oxygenation but also alkylation source. This simple and easy to handle reaction has a wide substrate scope, excellent yields, and works under mild reaction conditions. Carbon dioxide is the sole byproduct. An oxidative quenching process is proposed as the mechanism.

17.
Chemistry ; 23(43): 10254-10258, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28627009

RESUMEN

An iron-catalyzed oxyalkylation of alkynes with alkyl peroxides as the alkylating reagents has been investigated. Alkyl peroxides are readily available from aliphatic acids and serve simultaneously as the alkylating reagents and internal oxidants. Primary, secondary, and tertiary alkyl groups of aliphatic acids were readily incorporated into C-C triple bonds and diverse α-alkylated ketones were synthesized. Mechanism studies revealed that this reaction involves highly reactive alkyl free radicals. A unique equilibrium between lauric acid and water catalyzed by the iron(III) catalyst was observed.


Asunto(s)
Alquinos/química , Ácidos Carboxílicos/química , Hierro/química , Peróxidos/química , Alquilación , Catálisis , Descarboxilación , Radicales Libres/química , Cetonas/química , Estructura Molecular , Relación Estructura-Actividad , Agua
18.
Angew Chem Int Ed Engl ; 56(13): 3650-3654, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28230308

RESUMEN

Because of the lack of effective alkylating reagents, alkyl etherification of olefins with general alkyl groups has not been previously reported. In this work, a variety of alkyl diacyl peroxides and peresters generated from aliphatic acids have been found to enable the first iron-catalyzed alkyl etherification of olefins with general alkyl groups. Primary, secondary and tertiary aliphatic acids are suitable for this reaction, delivering products with yields up to 97 %. Primary and secondary alcohols react well, affording products in up to 91 % yield.

19.
Angew Chem Int Ed Engl ; 53(6): 1664-8, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24458538

RESUMEN

New advances in the functionalization of unactivated olefins with carbon nucleophiles have provided more efficient and practical approaches to convert inexpensive starting materials into valuable products. Recent examples have been reported with stabilized carbon nucleophiles, tethered carbon nucleophiles, diazoesters, and trifluoromethane donors. A general method for functionalizing olefins with aromatic, aliphatic, and vinyl Grignard reagents was developed. In a one-pot process, olefins are oxidized by a commercially available reagent to allylic electrophiles, which undergo selective copper-catalyzed allylic alkylation with Grignard reagents. Products are formed in high yield and with high regioselectivity. This was utilized to synthesize a series of skipped dienes, a class of compounds that are prevalent in natural products and are difficult to synthesize by known allylic alkylation methods.


Asunto(s)
Alquenos/química , Compuestos Alílicos/química , Alquilación , Compuestos Azo/química , Catálisis , Cobre/química , Oxidación-Reducción
20.
Org Lett ; 26(13): 2580-2584, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38526484

RESUMEN

This study presents a novel approach for synthesizing benzo[f]isoindole dimers, which involves cascade cyclization and oxidative radical dimerization. Our method allows for the formation of up to five carbon-carbon bonds in a single reaction, exhibiting remarkable diastereoselectivity and regioselectivity. The mechanism and regioselectivity were investigated through a combination of experiments and calculations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA