Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 559
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 21(4): 225-245, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31848472

RESUMEN

Cholesterol homeostasis is vital for proper cellular and systemic functions. Disturbed cholesterol balance underlies not only cardiovascular disease but also an increasing number of other diseases such as neurodegenerative diseases and cancers. The cellular cholesterol level reflects the dynamic balance between biosynthesis, uptake, export and esterification - a process in which cholesterol is converted to neutral cholesteryl esters either for storage in lipid droplets or for secretion as constituents of lipoproteins. In this Review, we discuss the latest advances regarding how each of the four parts of cholesterol metabolism is executed and regulated. The key factors governing these pathways and the major mechanisms by which they respond to varying sterol levels are described. Finally, we discuss how these pathways function in a concerted manner to maintain cholesterol homeostasis.


Asunto(s)
Colesterol/biosíntesis , Colesterol/metabolismo , Colesterol/fisiología , Animales , Ésteres del Colesterol/metabolismo , Homeostasis/fisiología , Humanos , Metabolismo de los Lípidos/fisiología , Lipoproteínas/metabolismo
3.
Cell ; 161(2): 291-306, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25860611

RESUMEN

Cholesterol is dynamically transported among organelles, which is essential for multiple cellular functions. However, the mechanism underlying intracellular cholesterol transport has remained largely unknown. We established an amphotericin B-based assay enabling a genome-wide shRNA screen for delayed LDL-cholesterol transport and identified 341 hits with particular enrichment of peroxisome genes, suggesting a previously unappreciated pathway for cholesterol transport. We show dynamic membrane contacts between peroxisome and lysosome, which are mediated by lysosomal Synaptotagmin VII binding to the lipid PI(4,5)P2 on peroxisomal membrane. LDL-cholesterol enhances such contacts, and cholesterol is transported from lysosome to peroxisome. Disruption of critical peroxisome genes leads to cholesterol accumulation in lysosome. Together, these findings reveal an unexpected role of peroxisome in intracellular cholesterol transport. We further demonstrate massive cholesterol accumulation in human patient cells and mouse model of peroxisomal disorders, suggesting a contribution of abnormal cholesterol accumulation to these diseases.


Asunto(s)
Colesterol/metabolismo , Lisosomas/metabolismo , Peroxisomas/metabolismo , ARN Interferente Pequeño/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Adrenoleucodistrofia/metabolismo , Anfotericina B/farmacología , Animales , Transporte Biológico , Estudio de Asociación del Genoma Completo , Humanos , Ratones , Trastorno Peroxisomal/metabolismo , Trastorno Peroxisomal/patología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Sinaptotagminas/metabolismo , Pez Cebra
4.
Nature ; 608(7922): 413-420, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35922515

RESUMEN

High cholesterol is a major risk factor for cardiovascular disease1. Currently, no drug lowers cholesterol through directly promoting cholesterol excretion. Human genetic studies have identified that the loss-of-function Asialoglycoprotein receptor 1 (ASGR1) variants associate with low cholesterol and a reduced risk of cardiovascular disease2. ASGR1 is exclusively expressed in liver and mediates internalization and lysosomal degradation of blood asialoglycoproteins3. The mechanism by which ASGR1 affects cholesterol metabolism is unknown. Here, we find that Asgr1 deficiency decreases lipid levels in serum and liver by stabilizing LXRα. LXRα upregulates ABCA1 and ABCG5/G8, which promotes cholesterol transport to high-density lipoprotein and excretion to bile and faeces4, respectively. ASGR1 deficiency blocks endocytosis and lysosomal degradation of glycoproteins, reduces amino-acid levels in lysosomes, and thereby inhibits mTORC1 and activates AMPK. On one hand, AMPK increases LXRα by decreasing its ubiquitin ligases BRCA1/BARD1. On the other hand, AMPK suppresses SREBP1 that controls lipogenesis. Anti-ASGR1 neutralizing antibody lowers lipid levels by increasing cholesterol excretion, and shows synergistic beneficial effects with atorvastatin or ezetimibe, two widely used hypocholesterolaemic drugs. In summary, this study demonstrates that targeting ASGR1 upregulates LXRα, ABCA1 and ABCG5/G8, inhibits SREBP1 and lipogenesis, and therefore promotes cholesterol excretion and decreases lipid levels.


Asunto(s)
Receptor de Asialoglicoproteína , Colesterol , Metabolismo de los Lípidos , Proteínas Quinasas Activadas por AMP/metabolismo , Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 5 , Transportador de Casete de Unión a ATP, Subfamilia G, Miembro 8 , Receptor de Asialoglicoproteína/antagonistas & inhibidores , Receptor de Asialoglicoproteína/deficiencia , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Asialoglicoproteínas/metabolismo , Atorvastatina/farmacología , Proteína BRCA1 , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/metabolismo , Colesterol/metabolismo , Sinergismo Farmacológico , Endocitosis , Ezetimiba/farmacología , Humanos , Lípidos/análisis , Lípidos/sangre , Hígado/metabolismo , Receptores X del Hígado/metabolismo , Lisosomas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Ubiquitina-Proteína Ligasas/metabolismo
5.
EMBO J ; 42(3): e111513, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36524353

RESUMEN

Hedgehog (Hh) signaling pathway plays a pivotal role in embryonic development. Hh binding to Patched1 (PTCH1) derepresses Smoothened (SMO), thereby activating the downstream signal transduction. Covalent SMO modification by cholesterol in its cysteine-rich domain (CRD) is essential for SMO function. SMO cholesterylation is a calcium-accelerated autoprocessing reaction, and STIM1-ORAI1-mediated store-operated calcium entry promotes cholesterylation and activation of endosome-localized SMO. However, it is unknown whether the Hh-PTCH1 interplay regulates the activity of the endoplasmic reticulum (ER)-localized SMO. Here, we found that PTCH1 inhibited the COPII-dependent export of SMO from the ER, whereas Hh promoted this process. The RRxWxR amino acid motif in the cytosolic tail of SMO was essential for COPII recognition, ciliary localization, and signal transduction activity. Hh and PTCH1 regulated cholesterol modification of the ER-localized SMO, and SMO cholesterylation accelerated its exit from ER. The GRAMD1/ASTER sterol transport proteins facilitated cholesterol transfer to ER from PM, resulting in increased SMO cholesterylation and enhanced Hh signaling. Collectively, we reveal a regulatory role of GRAMD-mediated cholesterol transport in ER-resident SMO maturation and Hh signaling.


Asunto(s)
Calcio , Proteínas Hedgehog , Transporte Biológico , Calcio/metabolismo , Colesterol/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteínas de la Membrana/metabolismo
6.
Immunity ; 49(5): 842-856.e7, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30366764

RESUMEN

Cholesterol metabolism has been linked to immune functions, but the mechanisms by which cholesterol biosynthetic signaling orchestrates inflammasome activation remain unclear. Here, we have shown that NLRP3 inflammasome activation is integrated with the maturation of cholesterol master transcription factor SREBP2. Importantly, SCAP-SREBP2 complex endoplasmic reticulum-to-Golgi translocation was required for optimal activation of the NLRP3 inflammasome both in vitro and in vivo. Enforced cholesterol biosynthetic signaling by sterol depletion or statins promoted NLPR3 inflammasome activation. However, this regulation did not predominantly depend on changes in cholesterol homeostasis controlled by the transcriptional activity of SREBP2, but relied on the escort activity of SCAP. Mechanistically, NLRP3 associated with SCAP-SREBP2 to form a ternary complex which translocated to the Golgi apparatus adjacent to a mitochondrial cluster for optimal inflammasome assembly. Our study reveals that, in addition to controlling cholesterol biosynthesis, SCAP-SREBP2 also serves as a signaling hub integrating cholesterol metabolism with inflammation in macrophages.


Asunto(s)
Colesterol/metabolismo , Inflamasomas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos/metabolismo , Proteínas de la Membrana/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Animales , Línea Celular , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Humanos , Macrófagos/inmunología , Ratones , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteolisis
7.
Nature ; 588(7838): 479-484, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33177714

RESUMEN

Cholesterol is an essential lipid and its synthesis is nutritionally and energetically costly1,2. In mammals, cholesterol biosynthesis increases after feeding and is inhibited under fasting conditions3. However, the regulatory mechanisms of cholesterol biosynthesis at the fasting-feeding transition remain poorly understood. Here we show that the deubiquitylase ubiquitin-specific peptidase 20 (USP20) stabilizes HMG-CoA reductase (HMGCR), the rate-limiting enzyme in the cholesterol biosynthetic pathway, in the feeding state. The post-prandial increase in insulin and glucose concentration stimulates mTORC1 to phosphorylate USP20 at S132 and S134; USP20 is recruited to the HMGCR complex and antagonizes its degradation. The feeding-induced stabilization of HMGCR is abolished in mice with liver-specific Usp20 deletion and in USP20(S132A/S134A) knock-in mice. Genetic deletion or pharmacological inhibition of USP20 markedly decreases diet-induced body weight gain, reduces lipid levels in the serum and liver, improves insulin sensitivity and increases energy expenditure. These metabolic changes are reversed by expression of the constitutively stable HMGCR(K248R). This study reveals an unexpected regulatory axis from mTORC1 to HMGCR via USP20 phosphorylation and suggests that inhibitors of USP20 could be used to lower cholesterol levels to treat metabolic diseases including hyperlipidaemia, liver steatosis, obesity and diabetes.


Asunto(s)
Colesterol/biosíntesis , Ingestión de Alimentos/fisiología , Hidroximetilglutaril-CoA Reductasas/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Línea Celular , Glucosa/metabolismo , Humanos , Insulina/metabolismo , Hígado/metabolismo , Masculino , Enfermedades Metabólicas/genética , Enfermedades Metabólicas/metabolismo , Metabolismo/genética , Ratones , Ratones Endogámicos C57BL , Fosforilación , Fosfoserina/metabolismo , Ubiquitina Tiolesterasa/antagonistas & inhibidores , Ubiquitina Tiolesterasa/química , Ubiquitina Tiolesterasa/deficiencia , Ubiquitinación , Aumento de Peso
8.
Development ; 149(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35660859

RESUMEN

A complete picture of how signaling pathways lead to multicellularity is largely unknown. Previously, we generated mutations in a protein prenylation enzyme, GGB, and showed that it is essential for maintaining multicellularity in the moss Physcomitrium patens. Here, we show that ROP GTPases act as downstream factors that are prenylated by GGB and themselves play an important role in the multicellularity of P. patens. We also show that the loss of multicellularity caused by the suppression of GGB or ROP GTPases is due to uncoordinated cell expansion, defects in cell wall integrity and the disturbance of the directional control of cell plate orientation. Expressing prenylatable ROP in the ggb mutant not only rescues multicellularity in protonemata but also results in development of gametophores. Although the prenylation of ROP is important for multicellularity, a higher threshold of active ROP is required for gametophore development. Thus, our results suggest that ROP activation via prenylation by GGB is a key process at both cell and tissue levels, facilitating the developmental transition from one dimension to two dimensions and to three dimensions in P. patens.


Asunto(s)
Bryopsida , GTP Fosfohidrolasas , Bryopsida/metabolismo , Pared Celular/metabolismo , GTP Fosfohidrolasas/metabolismo , Prenilación , Transducción de Señal
9.
Mol Cell ; 66(1): 154-162.e10, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28344083

RESUMEN

Hedgehog (Hh) has been known as the only cholesterol-modified morphogen playing pivotal roles in development and tumorigenesis. A major unsolved question is how Hh signaling regulates the activity of Smoothened (SMO). Here, we performed an unbiased biochemical screen and identified that SMO was covalently modified by cholesterol on the Asp95 (D95) residue through an ester bond. This modification was inhibited by Patched-1 (Ptch1) but enhanced by Hh. The SMO(D95N) mutation, which could not be cholesterol modified, was refractory to Hh-stimulated ciliary localization and failed to activate downstream signaling. Furthermore, homozygous SmoD99N/D99N (the equivalent residue in mouse) knockin mice were embryonic lethal with severe cardiac defects, phenocopying the Smo-/- mice. Together, the results of our study suggest that Hh signaling transduces to SMO through modulating its cholesterylation and provides a therapeutic opportunity to treat Hh-pathway-related cancers by targeting SMO cholesterylation.


Asunto(s)
Colesterol/metabolismo , Proteínas Hedgehog/metabolismo , Transducción de Señal , Receptor Smoothened/metabolismo , Animales , Células CHO , Cilios/metabolismo , Cricetulus , Regulación del Desarrollo de la Expresión Génica , Predisposición Genética a la Enfermedad , Células HEK293 , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Proteínas Hedgehog/genética , Humanos , Ratones , Ratones Transgénicos , Mutación , Células 3T3 NIH , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Fenotipo , Procesamiento Proteico-Postraduccional , Interferencia de ARN , Receptor Smoothened/genética , Transfección
10.
Proc Natl Acad Sci U S A ; 119(44): e2209743119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279429

RESUMEN

Allopolyploidization, resulting in divergent genomes in the same cell, is believed to trigger a "genome shock", leading to broad genetic and epigenetic changes. However, little is understood about chromatin and gene-expression dynamics as underlying driving forces during allopolyploidization. Here, we examined the genome-wide DNase I-hypersensitive site (DHS) and its variations in domesticated allotetraploid cotton (Gossypium hirsutum and Gossypium barbadense, AADD) and its extant AA (Gossypium arboreum) and DD (Gossypium raimondii) progenitors. We observed distinct DHS distributions between G. arboreum and G. raimondii. In contrast, the DHSs of the two subgenomes of G. hirsutum and G. barbadense showed a convergent distribution. This convergent distribution of DHS was also present in the wild allotetraploids Gossypium darwinii and G. hirsutum var. yucatanense, but absent from a resynthesized hybrid of G. arboreum and G. raimondii, suggesting that it may be a common feature in polyploids, and not a consequence of domestication after polyploidization. We revealed that putative cis-regulatory elements (CREs) derived from polyploidization-related DHSs were dominated by several families, including Dof, ERF48, and BPC1. Strikingly, 56.6% of polyploidization-related DHSs were derived from transposable elements (TEs). Moreover, we observed positive correlations between DHS accessibility and the histone marks H3K4me3, H3K27me3, H3K36me3, H3K27ac, and H3K9ac, indicating that coordinated interplay among histone modifications, TEs, and CREs drives the DHS landscape dynamics under polyploidization. Collectively, these findings advance our understanding of the regulatory architecture in plants and underscore the complexity of regulome evolution during polyploidization.


Asunto(s)
Gossypium , Histonas , Cromatina/genética , Desoxirribonucleasa I , Elementos Transponibles de ADN , Gossypium/genética , Histonas/genética
11.
J Lipid Res ; : 100579, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38880128

RESUMEN

Sterol-regulatory element binding proteins (SREBPs) are a conserved transcription factor family governing lipid metabolism. When cellular cholesterol level is low, SREBP2 is transported from the endoplasmic reticulum to the Golgi apparatus where it undergoes proteolytic activation to generate a soluble N-terminal fragment, which drives the expression of lipid biosynthetic genes. Malfunctional SREBP activation is associated with various metabolic abnormalities. In this study, we find that overexpression of the active nuclear form SREBP2 (nSREBP2) causes caspase-dependent lytic cell death in various types of cells. These cells display typical pyroptotic and necrotic signatures, including plasma membrane ballooning and release of cellular contents. However, this phenotype is independent of the gasdermin family proteins or mixed lineage kinase domain-like (MLKL). Transcriptomic analysis identifies that nSREBP2 induces expression of p73, which further activates caspases. Through whole-genome CRISPR-Cas9 screening, we find that Pannexin-1 (PANX1) acts downstream of caspases to promote membrane rupture. Caspase-3 or 7 cleaves PANX1 at the C-terminal tail and increases permeability. Inhibition of pore-forming activity of PANX1 alleviates lytic cell death. PANX1 can mediate gasdermins and MLKL-independent cell lysis during TNF-induced or chemotherapeutic reagents (doxorubicin or cisplatin)-induced cell death. Together, this study uncovers a noncanonical function of SREBPs as a potentiator of programmed cell death and suggests that PANX1 can directly promote lytic cell death independent of gasdermins and MLKL.

12.
J Biol Chem ; 299(4): 103073, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36858198

RESUMEN

Polycomb repressive complex 2 (PRC2) suppresses gene transcription by methylating lysine 27 of histone H3 (H3K27) and plays critical roles in embryonic development. Among the core PRC2 subunits, EZH2 is the catalytic subunit and EED allosterically activates EZH2 upon binding trimethylated H3K27 (H3K27me3). Activating mutations on Y641, A677, and A687 within the enzymatic SET (Su(Var)3 to 9, Enhancer-of-zeste, and Trithorax) domain of EZH2 have been associated with enhanced H3K27me3 and tumorigenicity of many cancers including B-cell lymphoma and melanoma. To tackle the critical residues outside the EZH2 SET domain, we examined EZH2 mutations in lymphoma from cancer genome databases and identified a novel gain-of-function mutation W113C, which increases H3K27me3 in vitro and in vivo and promotes CDKN2A silencing to a similar level as EZH2 Y641F. Different from other gain-of-function mutations, this mutation is located in the SET-activation loop at the EZH2 N terminus, which stabilizes the SET domain and facilitates substrate binding. This may explain how the W113C mutation increases PRC2 activity. Tazemetostat is a Food and Drug Administration-approved EZH2-binding inhibitor for follicular lymphoma treatment. Intriguingly, the W113C mutation leads to tazemetostat resistance in both H3K27 methylation and tumor proliferation. Another class of allosteric PRC2 inhibitor binding EED overcomes the resistance, effectively decreases H3K27me3, and blocks tumor proliferation in cells expressing EZH2 W113C. As this mutation is originally identified from lymphoma samples, our results demonstrated its activating characteristic and the deleterious consequence, provide insights on PRC2 regulation, and support the continued exploration of treatment optimization for lymphoma patients.


Asunto(s)
Resistencia a Antineoplásicos , Mutación con Ganancia de Función , Linfoma de Células B , Humanos , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/metabolismo , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/genética , Mutación , Complejo Represivo Polycomb 2/genética
13.
Arterioscler Thromb Vasc Biol ; 43(7): 1219-1233, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37165876

RESUMEN

BACKGROUND: Lower plasma levels of LDL (low-density lipoprotein) cholesterol (LDL-C) can reduce the risk of atherosclerotic cardiovascular disease. The loss-of-function mutations in PCSK9 (proprotein convertase subtilisin/kexin type 9) have been known to associate with low LDL-C in many human populations. PCSK9 genetic variants in Chinese Uyghurs who are at high risk of atherosclerotic cardiovascular disease due to their dietary habits have not been reported. METHODS: The study involved the whole-exome and target sequencing of college students from Uyghur and other ethnic groups in Xinjiang, China, for the association of PCSK9 loss-of-function mutations with low plasma levels of LDL-C. The mechanisms by which the identified mutations affect the function of PCSK9 were investigated in cultured cells using biochemical and cell assays. The causal effects of the identified PCSK9 mutations on LDL-C levels were verified in mice injected with adeno-associated virus expressing different forms of PCSK9 and fed a high-cholesterol diet. RESULTS: We identified 2 PCSK9 mutations-E144K and C378W-in Chinese Uyghurs with low plasma levels of LDL-C. The E144K and C378W mutations impaired the maturation and secretion of the PCSK9 protein, respectively. Adeno-associated virus-mediated expression of E144K and C378W mutants in Pcsk9 KO (knockout) mice fed a high-cholesterol diet also hampered PCSK9 secretion into the serum, resulting in elevated levels of LDL receptor in the liver and reduced levels of LDL-C in the serum. CONCLUSIONS: Our study shows that E144K and C378W are PCSK9 loss-of-function mutations causing low LDL-C levels in mice and probably in humans as well.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Hipercolesterolemia , Humanos , Ratones , Animales , Proproteína Convertasa 9/genética , LDL-Colesterol , Serina Endopeptidasas/genética , Proproteína Convertasas/genética , Proproteína Convertasas/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo , Ratones Noqueados , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Mutación
14.
Inorg Chem ; 63(21): 9715-9719, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38748179

RESUMEN

Photocatalytic nitrogen fixation from N2 provides an alternative strategy for ammonia (NH3) production, but it was limited by the consumption of a sacrificial electron donor for the currently reported half-reaction system. Here, we use naturally abundant and renewable cellulose as the sacrificial reagent for photocatalytic nitrogen fixation over oxygen-vacancy-modified MoO3 nanosheets as the photocatalyst. In this smartly designed photocatalytic system, the photooxidation of cellulose not only generates value-added chemicals but also provides electrons for the N2 reduction reaction and results in the production of NH3 with a maximum rate of 68 µmol·h-1·g-1. Also, the oxygen vacancies provide efficient active sites for both cellulose oxygenolysis and nitrogen fixation reactions. This work represents useful inspiration for realizing nitrogen fixation coupled with the generation of value-added chemicals from N2 and cellulose through a photocatalysis strategy.

15.
Inorg Chem ; 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38965989

RESUMEN

Solar photocatalytic H2 production from lignocellulosic biomass has attracted great interest, but it suffers from low photocatalytic efficiency owing to the absence of highly efficient photocatalysts. Herein, we designed and constructed ultrathin MoS2-modified porous TiO2 microspheres (MT) with abundant interface Ti-S bonds as photocatalysts for photocatalytic H2 generation from lignocellulosic biomass. Owing to the accelerated charge transfer related to Ti-S bonds, as well as the abundant active sites for both H2 and ●OH generation, respectively, related to the high exposed edge of MoS2 and the large specific surface area of TiO2, MT photocatalysts demonstrate good performance in the photocatalytic conversion of α-cellulose and lignocellulosic biomass to H2. The highest H2 generation rate of 849 µmol·g-1·h-1 and apparent quantum yield of 4.45% at 380 nm was achieved in α-cellulose aqueous solution for the optimized MT photocatalyst. More importantly, lignocellulosic biomass of corncob, rice hull, bamboo, polar wood chip, and wheat straw were successfully converted to H2 over MT photocatalysts with H2 generation rate of 10, 19, 36, 29, and 8 µmol·g-1·h-1, respectively. This work provides a guiding design approach to develop highly active photocatalysts via interface engineering for solar H2 production from lignocellulosic biomass.

16.
Trends Biochem Sci ; 44(3): 273-292, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30415968

RESUMEN

Cholesterol is dynamically transported among membrane-bound organelles primarily by nonvesicular mechanisms. Sterol transfer proteins (STPs) bind cholesterol in their hydrophobic pockets and facilitate its transfer across the aqueous cytosol. However, STPs alone may not account for the specific and efficient movement of cholesterol between intracellular membranes. Accumulating evidence has shown that membrane contact sites (MCSs), regions where two distinct organelles are in close apposition to one another, can facilitate STP-mediated cholesterol trafficking in a cell. At some MCSs, cholesterol can move against its concentration by using phosphatidylinositol 4-phosphate (PI4P) metabolism as the driving force. Finally, the emergence of more MCSs and the discovery of a new STP family further highlight the crucial roles of MCSs and STPs in intracellular cholesterol transport.


Asunto(s)
Membrana Celular/metabolismo , Colesterol/metabolismo , Animales , Transporte Biológico/fisiología , Humanos , Fosfatos de Fosfatidilinositol/metabolismo
17.
J Lipid Res ; 64(12): 100465, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37890669

RESUMEN

Accurate intracellular cholesterol traffic plays crucial roles. Niemann Pick type C (NPC) proteins NPC1 and NPC2, are two lysosomal cholesterol transporters that mediate the cholesterol exit from lysosomes. However, other proteins involved in this process remain poorly defined. Here, we find that the previously unannotated protein TMEM241 is required for cholesterol egressing from lysosomes through amphotericin B-based genome-wide CRISPR-Cas9 KO screening. Ablation of TMEM241 caused impaired sorting of NPC2, a protein utilizes the mannose-6-phosphate (M6P) modification for lysosomal targeting, resulting in cholesterol accumulation in the lysosomes. TMEM241 is a member of solute transporters 35 nucleotide sugar transporters family and localizes on the cis-Golgi network. Our data indicate that TMEM241 transports UDP-N-acetylglucosamine (UDP-GlcNAc) into Golgi lumen and UDP-GlcNAc is used for the M6P modification of proteins including NPC2. Furthermore, Tmem241-deficient mice display cholesterol accumulation in pulmonary cells and behave pulmonary injury and hypokinesia. Taken together, we demonstrate that TMEM241 is a Golgi-localized UDP-GlcNAc transporter and loss of TMEM241 causes cholesterol accumulation in lysosomes because of the impaired M6P-dependent lysosomal targeting of NPC2.


Asunto(s)
Colesterol , Proteínas de Transporte Vesicular , Animales , Ratones , Proteínas de Transporte Vesicular/metabolismo , Colesterol/metabolismo , Uridina Difosfato/metabolismo , Lisosomas/metabolismo
18.
Circulation ; 145(9): 675-687, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35189703

RESUMEN

BACKGROUND: High blood cholesterol accelerates the progression of atherosclerosis, which is an asymptomatic process lasting for decades. Rupture of atherosclerotic plaques induces thrombosis, which results in myocardial infarction or stroke. Lowering cholesterol levels is beneficial for preventing atherosclerotic cardiovascular disease. METHODS: Low-density lipoprotein (LDL) receptor (LDLR) was used as bait to identify its binding proteins in the plasma, and the coagulation factor prekallikrein (PK; encoded by the KLKB1 gene) was revealed. The correlation between serum PK protein content and lipid levels in young Chinese Han people was then analyzed. To investigate the effects of PK ablation on LDLR and lipid levels in vivo, we genetically deleted Klkb1 in hamsters and heterozygous Ldlr knockout mice and knocked down Klkb1 using adeno-associated virus-mediated shRNA in rats. The additive effect of PK and proprotein convertase subtilisin/kexin 9 inhibition also was evaluated. In addition, we applied the anti-PK neutralizing antibody that blocked the PK and LDLR interaction in mice. Mice lacking both PK and apolipoprotein e (Klkb1-/-Apoe-/-) were generated to assess the role of PK in atherosclerosis. RESULTS: PK directly bound LDLR and induced its lysosomal degradation. The serum PK concentrations positively correlated with LDL cholesterol levels in 198 young Chinese Han adults. Genetic depletion of Klkb1 increased hepatic LDLR and decreased circulating cholesterol in multiple rodent models. Inhibition of proprotein convertase subtilisin/kexin 9 with evolocumab further decreased plasma LDL cholesterol levels in Klkb1-deficient hamsters. The anti-PK neutralizing antibody could similarly lower plasma lipids through upregulating hepatic LDLR. Ablation of Klkb1 slowed the progression of atherosclerosis in mice on Apoe-deficient background. CONCLUSIONS: PK regulates circulating cholesterol levels through binding to LDLR and inducing its lysosomal degradation. Ablation of PK stabilizes LDLR, decreases LDL cholesterol, and prevents atherosclerotic plaque development. This study suggests that PK is a promising therapeutic target to treat atherosclerotic cardiovascular disease.


Asunto(s)
Aterosclerosis/metabolismo , Aterosclerosis/prevención & control , LDL-Colesterol/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/prevención & control , Precalicreína/deficiencia , Receptores de LDL/metabolismo , Animales , Aterosclerosis/genética , LDL-Colesterol/genética , Lisosomas/genética , Lisosomas/metabolismo , Ratones , Ratones Noqueados , Placa Aterosclerótica/genética , Precalicreína/metabolismo , Proteolisis , Receptores de LDL/genética
19.
J Am Chem Soc ; 145(36): 19523-19532, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37646485

RESUMEN

Structural transformation of metal nanoclusters (NCs) is of great ongoing interest regarding their synthesis, stability, and reactivity. Although sporadic examples of cluster transformations have been reported, neither the underlying transformation mechanism nor the intermediates are unambiguous. Herein, we have synthesized a flexible 54-nuclei silver cluster (Ag54) by combining soft (tBuC≡C-) and hard (nPrCOO-) ligands. The existence of weakly coordinated nPrCOO- enhances the reactivity of Ag54, thus facilitating the dicarboxylic acid to induce structural transformation. X-ray structural analyses reveal that Ag54 transforms to Ag28 cluster-based 2D networks (Ag28a and Ag28b) induced by H2suc (succinic acid) and H2glu (glutaric acid), whereas with H2pda (2,2'-(1,2-phenylene)diacetic acid), a discrete Ag28 cluster (Ag28c) is isolated. The key intermediate Ag17 that emerges during the self-dissociation of Ag54 was isolated by using cryogenic recrystallization and characterized by X-ray crystallography. The "tandem transformation" mechanism for the structure evolution from Ag54 to Ag28a is established by time-dependent electrospray ionization mass spectrometry (ESI-MS) and UV-vis spectroscopy. In addition, the catalytic activity in the 4-nitrophenol reduction follows the sequence Ag28c > Ag28b > Ag28a > Ag54 due to more bare silver sites on the surface of the Ag28 cluster unit. Our findings not only open new avenues to the synthesis of silver NCs but also shed light on a better understanding of the structural transformation mechanism from one cluster to another or cluster-based metal-organic networks induced by dicarboxylates.

20.
Hepatology ; 76(5): 1466-1481, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35102596

RESUMEN

BACKGROUND AND AIMS: NASH is associated with high levels of cholesterol and triglyceride (TG) in the liver; however, there is still no approved pharmacological therapy. Synthesis of cholesterol and TG is controlled by sterol regulatory element-binding protein (SREBP), which is found to be abnormally activated in NASH patients. We aim to discover small molecules for treating NASH by inhibiting the SREBP pathway. APPROACH AND RESULTS: Here, we identify a potent SREBP inhibitor, 25-hydroxylanosterol (25-HL). 25-HL binds to insulin-induced gene (INSIG) proteins, stimulates the interaction between INSIG and SCAP, and retains them in the endoplasmic reticulum, thereby suppressing SREBP activation and inhibiting lipogenesis. In NASH mouse models, 25-HL lowers levels of cholesterol and TG in serum and the liver, enhances energy expenditure to prevent obesity, and improves insulin sensitivity. 25-HL dramatically ameliorates hepatic steatosis, inflammation, ballooning, and fibrosis through down-regulating the expression of lipogenic genes. Furthermore, 25-HL exhibits both prophylactic and therapeutic efficacies of alleviating NASH and atherosclerosis in amylin liver NASH model diet-treated Ldlr-/- mice, and reduces the formation of cholesterol crystals and associated crown-like structures of Kupffer cells. Notably, 25-HL lowers lipid contents in serum and the liver to a greater extent than lovastatin or obeticholic acid. 25-HL shows a good safety and pharmacokinetics profile. CONCLUSIONS: This study provides the proof of concept that inhibiting SREBP activation by targeting INSIG to lower lipids could be a promising strategy for treating NASH. It suggests the translational potential of 25-HL in human NASH and demonstrates the critical role of SREBP-controlled lipogenesis in the progression of NASH by pharmacological inhibition.


Asunto(s)
Insulinas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Lipogénesis/fisiología , Proteínas de Unión a los Elementos Reguladores de Esteroles , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Polipéptido Amiloide de los Islotes Pancreáticos/metabolismo , Hígado/metabolismo , Triglicéridos/metabolismo , Colesterol/metabolismo , Lovastatina/metabolismo , Insulinas/metabolismo , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA