Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chaos ; 33(4)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37097938

RESUMEN

We study collective failures in biologically realistic networks that consist of coupled excitable units. The networks have broad-scale degree distribution, high modularity, and small-world properties, while the excitable dynamics is determined by the paradigmatic FitzHugh-Nagumo model. We consider different coupling strengths, bifurcation distances, and various aging scenarios as potential culprits of collective failure. We find that for intermediate coupling strengths, the network remains globally active the longest if the high-degree nodes are first targets for inactivation. This agrees well with previously published results, which showed that oscillatory networks can be highly fragile to the targeted inactivation of low-degree nodes, especially under weak coupling. However, we also show that the most efficient strategy to enact collective failure does not only non-monotonically depend on the coupling strength, but it also depends on the distance from the bifurcation point to the oscillatory behavior of individual excitable units. Altogether, we provide a comprehensive account of determinants of collective failure in excitable networks, and we hope this will prove useful for better understanding breakdowns in systems that are subject to such dynamics.

2.
Phys Rev E ; 108(5-1): 054409, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38115462

RESUMEN

Pancreatic beta cells are coupled excitable oscillators that synchronize their activity via different communication pathways. Their oscillatory activity manifests itself on multiple timescales and consists of bursting electrical activity, subsequent oscillations in the intracellular Ca^{2+}, as well as oscillations in metabolism and exocytosis. The coordination of the intricate activity on the multicellular level plays a key role in the regulation of physiological pulsatile insulin secretion and is incompletely understood. In this paper, we investigate theoretically the principles that give rise to the synchronized activity of beta cell populations by building up a phenomenological multicellular model that incorporates the basic features of beta cell dynamics. Specifically, the model is composed of coupled slow and fast oscillatory units that reflect metabolic processes and electrical activity, respectively. Using a realistic description of the intercellular interactions, we study how the combination of electrical and metabolic coupling generates collective rhythmicity and shapes functional beta cell networks. It turns out that while electrical coupling solely can synchronize the responses, the addition of metabolic interactions further enhances coordination, the spatial range of interactions increases the number of connections in the functional beta cell networks, and ensures a better consistency with experimental findings. Moreover, our computational results provide additional insights into the relationship between beta cell heterogeneity, their activity profiles, and functional connectivity, supplementing thereby recent experimental results on endocrine networks.


Asunto(s)
Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Periodicidad , Electricidad , Exocitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA