RESUMEN
Hsp90 plays a central role in cell homeostasis by assisting folding and maturation of a large variety of clients. It is a homo-dimer, which functions via hydrolysis of ATP-coupled to conformational changes. Hsp90's conformational cycle in the absence of cochaperones is currently postulated as apo-Hsp90 being an ensemble of "open"/"closed" conformations. Upon ATP binding, Hsp90 adopts an active ATP-bound closed conformation where the N-terminal domains, which comprise the ATP binding site, are in close contact. However, there is no consensus regarding the conformation of the ADP-bound Hsp90, which is considered important for client release. In this work, we tracked the conformational states of yeast Hsp90 at various stages of ATP hydrolysis in frozen solutions employing electron paramagnetic resonance (EPR) techniques, particularly double electron-electron resonance (DEER) distance measurements. Using rigid Gd(III) spin labels, we found the C domains to be dimerized with same distance distribution at all hydrolysis states. Then, we substituted the ATPase Mg(II) cofactor with paramagnetic Mn(II) and followed the hydrolysis state using hyperfine spectroscopy and measured the inter-N-domain distance distributions via Mn(II)-Mn(II) DEER. The point character of the Mn(II) spin label allowed us resolve 2 different closed states: The ATP-bound (prehydrolysis) characterized by a distance distribution having a maximum of 4.3 nm, which broadened and shortened, shifting the mean to 3.8 nm at the ADP-bound state (posthydrolysis). This provides experimental evidence to a second closed conformational state of Hsp90 in solution, referred to as "compact." Finally, the so-called high-energy state, trapped by addition of vanadate, was found structurally similar to the posthydrolysis state.
Asunto(s)
Proteínas Fúngicas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Dominios Proteicos/genética , Levaduras/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas HSP90 de Choque Térmico/química , Proteínas HSP90 de Choque Térmico/genética , Manganeso/química , Modelos Moleculares , Mutación , Marcadores de Spin , Levaduras/genéticaRESUMEN
The functional cycle of many proteins involves large-scale motions of domains and subunits. The relation between conformational dynamics and the chemical steps of enzymes remains under debate. Here we show that in the presence of substrates, domain motions of an enzyme can take place on the microsecond time scale, yet exert influence on the much-slower chemical step. We study the domain closure reaction of the enzyme adenylate kinase from Escherichia coli while in action (i.e., under turnover conditions), using single-molecule FRET spectroscopy. We find that substrate binding increases dramatically domain closing and opening times, making them as short as â¼15 and â¼45 µs, respectively. These large-scale conformational dynamics are likely the fastest measured to date, and are â¼100-200 times faster than the enzymatic turnover rate. Some active-site mutants are shown to fully or partially prevent the substrate-induced increase in domain closure times, while at the same time they also reduce enzymatic activity, establishing a clear connection between the two phenomena, despite their disparate time scales. Based on these surprising observations, we propose a paradigm for the mode of action of enzymes, in which numerous cycles of conformational rearrangement are required to find a mutual orientation of substrates that is optimal for the chemical reaction.
Asunto(s)
Adenilato Quinasa/química , Adenilato Quinasa/metabolismo , Transferencia Resonante de Energía de Fluorescencia/métodos , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/genética , Sitios de Unión , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutación Puntual , Conformación Proteica , Dominios ProteicosRESUMEN
Efficient degradation of plant cell walls by selected anaerobic bacteria is performed by large extracellular multienzyme complexes termed cellulosomes. The spatial arrangement within the cellulosome is organized by a protein called scaffoldin, which recruits the cellulolytic subunits through interactions between cohesin modules on the scaffoldin and dockerin modules on the enzymes. Although many structural studies of the individual components of cellulosomal scaffoldins have been performed, the role of interactions between individual cohesin modules and the flexible linker regions between them are still not entirely understood. Here, we report single-molecule measurements using FRET to study the conformational dynamics of a bimodular cohesin segment of the scaffoldin protein CipA of Clostridium thermocellum We observe compacted structures in solution that persist on the timescale of milliseconds. The compacted conformation is found to be in dynamic equilibrium with an extended state that shows distance fluctuations on the microsecond timescale. Shortening of the intercohesin linker does not destabilize the interactions but reduces the rate of contact formation. Upon addition of dockerin-containing enzymes, an extension of the flexible state is observed, but the cohesin-cohesin interactions persist. Using all-atom molecular-dynamics simulations of the system, we further identify possible intercohesin binding modes. Beyond the view of scaffoldin as "beads on a string," we propose that cohesin-cohesin interactions are an important factor for the precise spatial arrangement of the enzymatic subunits in the cellulosome that leads to the high catalytic synergy in these assemblies and should be considered when designing cellulosomes for industrial applications.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Celulosomas/química , Celulosomas/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Clostridium thermocellum/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Celulosomas/genética , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Clostridium thermocellum/química , Clostridium thermocellum/genética , Transferencia Resonante de Energía de Fluorescencia , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Unión Proteica , CohesinasRESUMEN
It is an open question whether the conformations of proteins sampled in dilute solutions are the same as in the cellular environment. Here we address this question by double electron-electron resonance (DEER) distance measurements with Gd(III) spin labels to probe the conformations of calmodulin (CaM) inâ vitro, in cell extract, and in human HeLa cells. Using the CaM mutants N53C/T110C and T34C/T117C labeled with maleimide-DOTA-Gd(III) in the N- and C-terminal domains, we observed broad and varied interdomain distance distributions. The inâ vitro distance distributions of apo-CaM and holo-CaM in the presence and absence of the IQ target peptide can be described by combinations of closed, open, and collapsed conformations. In cell extract, apo- and holo-CaM bind to target proteins in a similar way as apo- and holo-CaM bind to IQ peptide inâ vitro. In HeLa cells, however, in the presence or absence of elevated in-cell Ca2+ levels CaM unexpectedly produced more open conformations and very broad distance distributions indicative of many different interactions with in-cell components. These results show-case the importance of in-cell analyses of protein structures.
Asunto(s)
Calmodulina/química , Calmodulina/metabolismo , Calmodulina/genética , Extractos Celulares/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Gadolinio/química , Células HeLa , Humanos , Mutación , Conformación Proteica , Marcadores de SpinRESUMEN
Experimental tools of increasing sophistication have been employed in recent years to study protein folding and misfolding. Folding is considered a complex process, and one way to address it is by studying small proteins, which seemingly possess a simple energy landscape with essentially only two stable states, either folded or unfolded. The B1-IgG binding domain of protein L (PL) is considered a model two-state folder, based on measurements using a wide range of experimental techniques. We applied single-molecule fluorescence resonance energy transfer (FRET) spectroscopy in conjunction with a hidden Markov model analysis to fully characterize the energy landscape of PL and to extract the kinetic properties of individual molecules of the protein. Surprisingly, our studies revealed the existence of a third state, hidden under the two-state behavior of PL due to its small population, â¼7%. We propose that this minority intermediate involves partial unfolding of the two C-terminal ß strands of PL. Our work demonstrates that single-molecule FRET spectroscopy can be a powerful tool for a comprehensive description of the folding dynamics of proteins, capable of detecting and characterizing relatively rare metastable states that are difficult to observe in ensemble studies.
Asunto(s)
Modelos Biológicos , Proteínas/química , Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular , Pliegue de ProteínaRESUMEN
Interactions between cohesin and dockerin modules play a crucial role in the assembly of multienzyme cellulosome complexes. Although intraspecies cohesin and dockerin modules bind in general with high affinity but indiscriminately, cross-species binding is rare. Here, we combined ELISA-based experiments with Rosetta-based computational design to evaluate the contribution of distinct residues at the Clostridium thermocellum cohesin-dockerin interface to binding affinity, specificity, and promiscuity. We found that single mutations can show distinct and significant effects on binding affinity and specificity. In particular, mutations at cohesin position Asn(37) show dramatic variability in their effect on dockerin binding affinity and specificity: the N37A mutant binds promiscuously both to cognate (C. thermocellum) as well as to non-cognate Clostridium cellulolyticum dockerin. N37L in turn switches binding specificity: compared with the wild-type C. thermocellum cohesin, this mutant shows significantly increased preference for C. cellulolyticum dockerin combined with strongly reduced binding to its cognate C. thermocellum dockerin. The observation that a single mutation can overcome the naturally observed specificity barrier provides insights into the evolutionary dynamics of this system that allows rapid modulation of binding specificity within a high affinity background.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Carbohidratos/química , Celulosa/metabolismo , Clostridium cellulolyticum/metabolismo , Clostridium thermocellum/metabolismo , Biología Computacional , Ensayo de Inmunoadsorción Enzimática , Concentración 50 Inhibidora , Mutación , Análisis por Matrices de Proteínas , Unión Proteica , Estructura Terciaria de Proteína , Programas Informáticos , Especificidad de la Especie , Especificidad por Sustrato , Termodinámica , CohesinasRESUMEN
Cellulosomes are large multicomponent cellulose-degrading assemblies found on the surfaces of cellulolytic microorganisms. Often containing hundreds of components, the self-assembly of cellulosomes is mediated by the ultra-high-affinity cohesin-dockerin interaction, which allows them to adopt the complex architectures necessary for degrading recalcitrant cellulose. Better understanding of how the cellulosome assembles and functions and what kinds of structures it adopts will further effort to develop industrial applications of cellulosome components, including their use in bioenergy production. Ruminococcus flavefaciens is a well-studied anaerobic cellulolytic bacteria found in the intestinal tracts of ruminants and other herbivores. Key to cellulosomal self-assembly in this bacterium is the dockerin ScaADoc, found on the non-catalytic structural subunit scaffoldin ScaA, which is responsible for assembling arrays of cellulose-degrading enzymes. This work expands on previous efforts by conducting a series of binding studies on ScaADoc constructs that contain mutations in their cohesin recognition interface, in order to identify which residues play important roles in binding. Molecular dynamics simulations were employed to gain insight into the structural basis for our findings. A specific residue pair in the first helix of ScaADoc, as well as a glutamate near the C-terminus, was identified to be essential for cohesin binding. By advancing our understanding of the cohesin binding of ScaADoc, this study serves as a foundation for future work to more fully understand the structural basis of cellulosome assembly in R. flavefaciens.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Ácido Glutámico/metabolismo , Ruminococcus/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Celulosa/metabolismo , Celulosomas/química , Celulosomas/metabolismo , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Estructura Secundaria de Proteína , CohesinasRESUMEN
Cellulose-degrading enzyme systems are of significant interest from both a scientific and technological perspective due to the diversity of cellulase families, their unique assembly and substrate binding mechanisms, and their potential applications in several key industrial sectors, notably cellulose hydrolysis for second-generation biofuel production. Particularly fascinating are cellulosomes, the multimodular extracellular complexes produced by numerous anaerobic bacteria. Using single-molecule force spectroscopy, we analyzed the mechanical stability of the intermolecular interfaces between the cohesin and the dockerin modules responsible for self-assembly of the cellulosomal components into the multienzyme complex. The observed cohesin-dockerin rupture forces (>120 pN) are among the highest reported for a receptor-ligand system to date. Using an atomic force microscope protocol that quantified single-molecule binding activity, we observed force-induced dissociation of calcium ions from the duplicated loop-helix F-hand motif located within the dockerin module, which in the presence of EDTA resulted in loss of affinity to the cohesin partner. A cohesin amino acid mutation (D39A) that eliminated hydrogen bonding with the dockerin's critically conserved serine residues reduced the observed rupture forces. Consequently, no calcium loss occurred and dockerin activity was maintained throughout multiple forced dissociation events. These results offer insights at the single-molecule level into the stability and folding of an exquisite class of high-affinity protein-protein interactions that dictate fabrication and architecture of cellulose-degrading molecular machines.
Asunto(s)
Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biofisica , Calcio/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Cristalografía por Rayos X , Enlace de Hidrógeno , Microscopía de Fuerza Atómica , Modelos Moleculares , Complejos Multiproteicos/química , Mutagénesis Sitio-Dirigida , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Termodinámica , Respuesta de Proteína Desplegada , CohesinasRESUMEN
The combined effects of the cellular environment on proteins led to the definition of a fifth level of protein structural organization termed quinary structure. To explore the implication of potential quinary structure for globular proteins, we studied the dynamics and conformations of Escherichia coli (E. coli) peptidyl-prolyl cis/trans isomerase B (PpiB) in E. coli cells. PpiB plays a major role in maturation and regulation of folded proteins by catalyzing the cis/trans isomerization of the proline imidic peptide bond. We applied electron paramagnetic resonance (EPR) techniques, utilizing both Gadolinium (Gd(III)) and nitroxide spin labels. In addition to using standard spin labeling approaches with genetically engineered cysteines, we incorporated an unnatural amino acid to achieve Gd(III)-nitroxide orthogonal labeling. We probed PpiB's residue-specific dynamics by X-band continuous wave EPR at ambient temperatures and its structure by double electron-electron resonance (DEER) on frozen samples. PpiB was delivered to E. coli cells by electroporation. We report a significant decrease in the dynamics induced by the cellular environment for two chosen labeling positions. These changes could not be reproduced by adding crowding agents and cell extracts. Concomitantly, we report a broadening of the distance distribution in E. coli, determined by Gd(III)-Gd(III) DEER measurements, as compared with solution and human HeLa cells. This suggests an increase in the number of PpiB conformations present in E. coli cells, possibly due to interactions with other cell components, which also contributes to the reduction in mobility and suggests the presence of a quinary structure.
Asunto(s)
Escherichia coli , Óxidos de Nitrógeno , Proteínas , Humanos , Espectroscopía de Resonancia por Spin del Electrón/métodos , Escherichia coli/genética , Escherichia coli/química , Células HeLa , Marcadores de Spin , Proteínas/químicaRESUMEN
Realizing genetic circuits on single DNA molecules as self-encoded dissipative nanodevices is a major step toward miniaturization of autonomous biological systems. A circuit operating on a single DNA implies that genetically encoded proteins localize during coupled transcription-translation to DNA, but a single-molecule measurement demonstrating this has remained a challenge. Here, we use a genetically encoded fluorescent reporter system with improved temporal resolution and observe the synthesis of individual proteins tethered to a DNA molecule by transient complexes of RNA polymerase, messenger RNA, and ribosome. Against expectations in dilute cell-free conditions where equilibrium considerations favor dispersion, these nascent proteins linger long enough to regulate cascaded reactions on the same DNA. We rationally design a pulsatile genetic circuit by encoding an activator and repressor in feedback on the same DNA molecule. Driven by the local synthesis of only several proteins per hour and gene, the circuit dynamics exhibit enhanced variability between individual DNA molecules, and fluctuations with a broad power spectrum. Our results demonstrate that co-expressional localization, as a nonequilibrium process, facilitates single-DNA genetic circuits as dissipative nanodevices, with implications for nanobiotechnology applications and artificial cell design.
Asunto(s)
Células Artificiales , ADN , ADN/genética , Redes Reguladoras de Genes , Nanotecnología , ARN Mensajero/metabolismoRESUMEN
ß-Xylosidases are hemicellulases that hydrolyze short xylo-oligosaccharides into xylose units, thus complementing endoxylanase degradation of the hemicellulose component of lignocellulosic substrates. Here, we describe the cloning, characterization, and kinetic analysis of a glycoside hydrolase family 43 ß-xylosidase (Xyl43A) from the aerobic cellulolytic bacterium, Thermobifida fusca. Temperature and pH optima of 55-60 °C and 5.5-6, respectively, were determined. The apparent K(m) value was 0.55 mM, using p-nitrophenyl xylopyranoside as substrate, and the catalytic constant (k(cat)) was 6.72 s(-1). T. fusca Xyl43A contains a catalytic module at the N terminus and an ancillary module (termed herein as Module-A) of undefined function at the C terminus. We expressed the two recombinant modules independently in Escherichia coli and examined their remaining catalytic activity and binding properties. The separation of the two Xyl43A modules caused the complete loss of enzymatic activity, whereas potent binding to xylan was fully maintained in the catalytic module and partially in the ancillary Module-A. Nondenaturing gel electrophoresis revealed a specific noncovalent coupling of the two modules, thereby restoring enzymatic activity to 66.7% (relative to the wild-type enzyme). Module-A contributes a phenylalanine residue that functions as an essential part of the active site, and the two juxtaposed modules function as a single functional entity.
Asunto(s)
Actinomycetales/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Xilosidasas/química , Xilosidasas/metabolismo , Actinomycetales/química , Actinomycetales/genética , Proteínas Bacterianas/genética , Dominio Catalítico , Estabilidad de Enzimas , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Especificidad por Sustrato , Xilosidasas/genéticaRESUMEN
The chaperonin GroEL is a multisubunit molecular machine that assists in protein folding in the Escherichia coli cytosol. Past studies have shown that GroEL undergoes large allosteric conformational changes during its reaction cycle. Here, we report single-molecule Förster resonance energy transfer measurements that directly probe the conformational transitions of one subunit within GroEL and its single-ring variant under equilibrium conditions. We find that four microstates span the conformational manifold of the protein and interconvert on the submillisecond time scale. A unique set of relative populations of these microstates, termed a macrostate, is obtained by varying solution conditions, e.g., adding different nucleotides or the cochaperone GroES. Strikingly, ATP titration studies demonstrate that the partition between the apo and ATP-ligated conformational macrostates traces a sigmoidal response with a Hill coefficient similar to that obtained in bulk experiments of ATP hydrolysis. These coinciding results from bulk measurements for an entire ring and single-molecule measurements for a single subunit provide new evidence for the concerted allosteric transition of all seven subunits.
Asunto(s)
Adenosina Trifosfato , Transferencia Resonante de Energía de Fluorescencia , Adenosina Trifosfato/metabolismo , Conformación Proteica , Escherichia coli/metabolismo , Pliegue de Proteína , Chaperonina 60/metabolismo , Unión ProteicaRESUMEN
In nitrite reductase (cd(1) NIR), the c-heme mediates electron transfer to the catalytic d(1)-heme where nitrite (NO(2)(-)) is reduced to nitric oxide (NO). An interesting feature of this enzyme is the relative lability of the reaction product NO bound to the d(1)-heme. Marked differences in the c- to d(1)-heme electron-transfer rates were reported for cd(1) NIRs from different sources, such as Pseudomonas stutzeri (P. stutzeri) and Pseudomonas aeruginosa (P. aeruginosa). The three-dimensional structure of the P. aeruginosa enzyme has been determined, but that of the P. stutzeri enzyme is still unknown. The difference in electron transfer rates prompted a comparison of the structural properties of the d(1)-heme pocket of P. stutzeri cd(1) NIR with those of the P. aeruginosa wild type enzyme (WT) and its Y10F using their nitrosyl d(1)-heme complexes. We applied high field pulse electron paramagnetic resonance (EPR) techniques that detect nuclear spins in the close environment of the spin bearing Fe(II)-NO entity. We observed similarities in the rhombic g-tensor and detected a proximal histidine ligand with (14)N hyperfine and quadrupole interactions also similar to those of P. aeruginosa WT and Y10F mutant complexes. In contrast, we also observed significant differences in the H-bond network involving the NO ligand and a larger solvent accessibility for P. stutzeri attributed to the absence of this tyrosine residue. For P. aeruginosa, cd(1) NIR domain swapping allows Tyr(10) to become H-bonded to the bound NO substrate. These findings support a previous suggestion that the large difference in the c- to d(1)-heme electron transfer rates between the two enzymes is related to solvent accessibility of their d(1)-heme pockets.
Asunto(s)
Citocromos/química , Hemo/química , Nitrito Reductasas/química , Medición de Intercambio de Deuterio , Espectroscopía de Resonancia por Spin del Electrón , Pseudomonas aeruginosa/enzimología , Pseudomonas stutzeri/enzimología , Espectrofotometría UltravioletaRESUMEN
The interaction between the cohesin and dockerin modules serves to attach cellulolytic enzymes (carrying dockerins) to non-catalytic scaffoldin units (carrying multiple cohesins) in cellulosome, a multienzyme plant cell-wall degrading complex. This interaction is species-specific, for example, the enzyme-borne dockerin from Clostridium thermocellum bacteria binds to scaffoldin cohesins from the same bacteria but not to cohesins from Clostridium cellulolyticum and vice versa. We studied the role of interface residues, contributing either to affinity or specificity, by mutating these residues on the cohesin counterpart from C. thermocellum. The high affinity of the cognate interactions makes it difficult to evaluate the effect of these mutations by common methods used for measuring protein-protein interactions, especially when subtle discrimination between the mutants is needed. We described in this article an approach based on indirect enzyme-linked immunosorbent assay (ELISA) that is able to detect differences in binding between the various cohesin mutants, whereas surface plasmon resonance and standard ELISA failed to distinguish between high-affinity interactions. To be able to calculate changes in energy of binding (ΔΔG) and dissociation constants (K(d)) of mutants relative to wild type, a pre-equilibrium step was added to the standard indirect ELISA procedure. Thus, the cohesin-dockerin interaction under investigation occurs in solution rather than between soluble and immobilized proteins. Unbound dockerins are then detected through their interaction with immobilized cohesins. Because our method allows us to assess the effect of mutations on particularly tenacious protein-protein interactions much more accurately than do other prevalent methods used to measure binding affinity, we therefore suggest this approach as a method of choice for comparing relative binding in high-affinity interactions.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Proteínas de Ciclo Celular/química , Celulasa/química , Celulosomas/química , Proteínas Cromosómicas no Histona/química , Clostridium cellulolyticum/química , Clostridium thermocellum/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Celulasa/genética , Proteínas Cromosómicas no Histona/genética , Pruebas de Enzimas , Ensayo de Inmunoadsorción Enzimática , Cinética , Mutación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Resonancia por Plasmón de Superficie , Termodinámica , CohesinasRESUMEN
Cellulose, a major component of plant matter, is degraded by a cell surface multiprotein complex called the cellulosome produced by several anaerobic bacteria. This complex coordinates the assembly of different glycoside hydrolases, via a high-affinity Ca(2+)-dependent interaction between the enzyme-borne dockerin and the scaffoldin-borne cohesin modules. In this study, we characterized a new protein affinity tag, ΔDoc, a truncated version (48 residues) of the Clostridium thermocellum Cel48S dockerin. The truncated dockerin tag has a binding affinity (K(A)) of 7.7 × 10(8)M(-1), calculated by a competitive enzyme-linked assay system. In order to examine whether the tag can be used for general application in affinity chromatography, it was fused to a range of target proteins, including Aequorea victoria green fluorescent protein (GFP), C. thermocellum ß-glucosidase, Escherichia coli thioesterase/protease I (TEP1), and the antibody-binding ZZ-domain from Staphylococcus aureus protein A. The results of this study significantly extend initial studies performed using the Geobacillus stearothermophilus xylanase T-6 as a model system. In addition, the enzymatic activity of a C. thermocellum ß-glucosidase, purified using this approach, was tested and found to be similar to that of a ß-glucosidase preparation (without the ΔDoc tag) purified using the standard His-tag. The truncated dockerin derivative functioned as an effective affinity tag through specific interaction with a cognate cohesin, and highly purified target proteins were obtained in a single step directly from crude cell extracts. The relatively inexpensive beaded cellulose-based affinity column was reusable and maintained high capacity after each cycle. This study demonstrates that deletion into the first Ca(2+)-binding loop of the dockerin module results in an efficient and robust affinity tag that can be generally applied for protein purification.
Asunto(s)
Marcadores de Afinidad/química , Proteínas Bacterianas/química , Proteínas de Ciclo Celular/química , Cromatografía de Afinidad/métodos , Proteínas Cromosómicas no Histona/química , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Marcadores de Afinidad/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Clonación Molecular , Clostridium thermocellum/química , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Histidina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Especificidad por Sustrato , CohesinasRESUMEN
The anaerobic, thermophilic cellulolytic bacterium Clostridium thermocellum is known for its elaborate cellulosome complex, but it also produces a separate free cellulase system. Among the free enzymes, the noncellulosomal enzyme Cel9I is a processive endoglucanase whose sequence and architecture are very similar to those of the cellulosomal enzyme Cel9R; likewise, the noncellulosomal exoglucanase Cel48Y is analogous to the principal cellulosomal enzyme Cel48S. In this study we used the designer cellulosome approach to examine the interplay of prominent cellulosomal and noncellulosomal cellulases from C. thermocellum. Toward this end, we converted the cellulosomal enzymes to noncellulosomal chimeras by swapping the dockerin module of the cellulosomal enzymes with a carbohydrate-binding module from the free enzyme analogues and vice versa. This enabled us to study the importance of the targeting effect of the free enzymes due to their carbohydrate-binding module and the proximity effect for cellulases on the designer cellulosome. C. thermocellum is the only cellulosome-producing bacterium known to express two different glycoside hydrolase family 48 enzymes and thus the only bacterial system that can currently be used for such studies. The different activities with crystalline cellulose were examined, and the results demonstrated that the individual chimeric cellulases were essentially equivalent to the corresponding wild-type analogues. The wild-type cellulases displayed a synergism of about 1.5-fold; the cellulosomal pair acted synergistically when they were converted into free enzymes, whereas the free enzymes acted synergistically mainly in the wild-type state. The targeting effect was found to be the major factor responsible for the elevated activity observed for these specific enzyme combinations, whereas the proximity effect appeared to play a negligible role.
Asunto(s)
Celulasas/genética , Celulasas/metabolismo , Celulosomas/enzimología , Clostridium thermocellum/enzimología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Clonación Molecular , Clostridium thermocellum/genética , Clostridium thermocellum/metabolismo , Regulación Bacteriana de la Expresión Génica , Especificidad por Sustrato , CohesinasRESUMEN
Conversion of components of the Thermobifida fusca free-enzyme system to the cellulosomal mode using the designer cellulosome approach can be employed to discover the properties and inherent advantages of the cellulosome system. In this article, we describe the conversion of the T. fusca xylanases Xyn11A and Xyn10B and their synergistic interaction in the free state or within designer cellulosome complexes in order to enhance specific degradation of hatched wheat straw as a model for a complex cellulosic substrate. Endoglucanase Cel5A from the same bacterium and its recombinant dockerin-containing chimera were also studied for their combined effect, together with the xylanases, on straw degradation. Synergism was demonstrated when Xyn11A was combined with Xyn10B and/or Cel5A, and approximately 1.5-fold activity enhancements were achieved by the designer cellulosome complexes compared to the free wild-type enzymes. These improvements in activity were due to both substrate-targeting and proximity effects among the enzymes contained in the designer cellulosome complexes. The intrinsic cellulose/xylan-binding module (XBM) of Xyn11A appeared to be essential for efficient substrate degradation. Indeed, only designer cellulosomes in which the XBM was maintained as a component of Xyn11A achieved marked enhancement in activity compared to the combination of wild-type enzymes. Moreover, integration of the XBM in designer cellulosomes via a dockerin module (separate from the Xyn11A catalytic module) failed to enhance activity, suggesting a role in orienting the parent xylanase toward its preferred polysaccharide component of the complex wheat straw substrate. The results provide novel mechanistic insight into the synergistic activity of designer cellulosome components on natural plant cell wall substrates.
Asunto(s)
Actinomycetales/enzimología , Celulosa/metabolismo , Celulosomas/metabolismo , Xilanos/metabolismo , Proteínas Bacterianas/metabolismo , Celulasa/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Tallos de la Planta/metabolismo , Triticum/metabolismoRESUMEN
We have been developing the cellulases of Thermobifida fusca as a model to explore the conversion from a free cellulase system to the cellulosomal mode. Three of the six T. fusca cellulases (endoglucanase Cel6A and exoglucanases Cel6B and Cel48A) have been converted in previous work by replacing their cellulose-binding modules (CBMs) with a dockerin, and the resultant recombinant "cellulosomized" enzymes were incorporated into chimeric scaffolding proteins that contained cohesin(s) together with a CBM. The activities of the resultant designer cellulosomes were compared with an equivalent mixture of wild-type enzymes. In the present work, a fourth T. fusca cellulase, Cel5A, was equipped with a dockerin and intervening linker segments of different lengths to assess their contribution to the overall activity of simple one- and two-enzyme designer cellulosome complexes. The results demonstrated that cellulose binding played a major role in the degradation of crystalline cellulosic substrates. The combination of the converted Cel5A endoglucanase with the converted Cel48A exoglucanase also exhibited a measurable proximity effect for the most recalcitrant cellulosic substrate (Avicel). The length of the linker between the catalytic module and the dockerin had little, if any, effect on the activity. However, positioning of the dockerin on the opposite (C-terminal) side of the enzyme, consistent with the usual position of dockerins on most cellulosomal enzymes, resulted in an enhanced synergistic response. These results promote the development of more complex multienzyme designer cellulosomes, which may eventually be applied for improved degradation of plant cell wall biomass.
Asunto(s)
Actinomycetales/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Celulasa/genética , Celulasa/metabolismo , Celulosomas/genética , Celulosomas/metabolismo , Celulosa/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de ProteínaRESUMEN
The cellulosome is an intricate multi-enzyme complex, known for its efficient degradation of recalcitrant cellulosic substrates. Its supramolecular architecture is determined by the high-affinity intermodular cohesin-dockerin interaction. The dockerin module comprises a calcium-binding, duplicated 'F-hand' loop-helix motif that bears striking similarity to the EF-hand loop-helix-loop motif of eukaryotic calcium-binding proteins. In the present study, we demonstrate by progressive truncation and alanine scanning of a representative type-I dockerin module from Clostridium thermocellum, that only one of the repeated motifs is critical for high-affinity cohesin binding. The results suggest that the near-symmetry in sequence and structure of the repeated elements of the dockerin is not essential to cohesin binding. The first calcium-binding loop can be deleted entirely, with almost full retention of binding. Likewise, significant deletion of the second repeated segment can be achieved, provided that its calcium-binding loop remains intact. Essentially the same conclusion was verified by systematically mutating the highly conserved residues in the calcium-binding loop. Mutations in one of the calcium-binding loops failed to disrupt cohesin recognition and binding, whereas a single mutation in both loops served to reduce the affinity significantly. The results are mutually compatible with recent crystal structures of the type-I cohesin-dockerin heterodimer, which demonstrate that the dockerin can bind in an equivalent manner to its cohesin counterpart through either its first or second repeated motif. The observed plasticity in cohesin-dockerin binding may facilitate cellulosome assembly in vivo or, alternatively, provide a conformational switch that promotes access of the tethered cellulosomal enzymes to their polysaccharide substrates.
Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Celulosa/biosíntesis , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Clostridium thermocellum/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Bacterianas/genética , Sitios de Unión , Calcio , Proteínas de Ciclo Celular/genética , Proteínas Cromosómicas no Histona/genética , Clostridium thermocellum/genética , Escherichia coli/genética , Cinética , Modelos Moleculares , Complejos Multienzimáticos/metabolismo , Mutagénesis Sitio-Dirigida , Proteínas Nucleares/genética , Polimorfismo de Nucleótido Simple , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , CohesinasRESUMEN
Nrf2 is an important transcription factor implicated in the oxidative stress response, which has been reported to play an important role in the way by which air pollution particulate matter (PM2.5) induces adverse health effects. This study investigates the mechanism by which Nrf2 exerts its protective effect in PM2.5 induced toxicity in lung cells. Lung cells silenced for Nrf2 (shNrf2) demonstrated diverse susceptibility to various PM extracts; water extracts containing high levels of dissolved metals exhibited higher capacity to generate mitochondrial reactive oxygen species (ROS) and hence increased oxidative stress levels. Organic extracts containing high levels of polycyclic aromatic hydrocarbons (PAHs) increased mortality and reduced ROS production in the silenced cells. shNrf2 cells exhibited a higher basal mitochondrial respiration rate compared to the control cells. Following exposure to water extracts, the mitochondrial respiration increased, which was not observed with the organic extracts. shNrf2 cells exposed to the organic extracts showed lower mitochondrial membrane potential and lower mtDNA copy number. Nrf2 may act as a signaling mediator for the mitochondria function following PM2.5 exposure.