Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 23(2): 262-274, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35102345

RESUMEN

Tumors poorly infiltrated by T cells are more resistant to immunogenic chemotherapies and checkpoint inhibition than highly infiltrated tumors. Using murine models, we found that CCR6+ type 3 innate lymphoid cells (ILC3s) can trigger an increase in the number of T cells infiltrating a tumor. Shortly after administration of cisplatin chemotherapy, production of the chemokine CCL20 and proinflammatory cytokine IL-1ß at the tumor site led to the recruitment and activation of ILC3s. Within the tumor, ILC3 production of the chemokine CXCL10 was responsible for the recruitment of CD4+ and CD8+ T lymphocytes to the tumor. ILC3-dependent infiltration of T cells was essential for antitumor immune responses and increased the efficacy of checkpoint inhibition. Thus, we reveal an essential role of CCL20 and IL-1ß, which promote ILC3-dependent antitumor immunity and enhance tumor sensitivity to immunotherapy.


Asunto(s)
Inmunidad Innata/inmunología , Linfocitos/inmunología , Neoplasias/inmunología , Neoplasias/terapia , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Línea Celular Tumoral , Citocinas/inmunología , Femenino , Humanos , Inhibidores de Puntos de Control Inmunológico/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
2.
Nat Immunol ; 22(3): 322-335, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33531712

RESUMEN

Immune system dysfunction is paramount in coronavirus disease 2019 (COVID-19) severity and fatality rate. Mucosal-associated invariant T (MAIT) cells are innate-like T cells involved in mucosal immunity and protection against viral infections. Here, we studied the immune cell landscape, with emphasis on MAIT cells, in cohorts totaling 208 patients with various stages of disease. MAIT cell frequency is strongly reduced in blood. They display a strong activated and cytotoxic phenotype that is more pronounced in lungs. Blood MAIT cell alterations positively correlate with the activation of other innate cells, proinflammatory cytokines, notably interleukin (IL)-18, and with the severity and mortality of severe acute respiratory syndrome coronavirus 2 infection. We also identified a monocyte/macrophage interferon (IFN)-α-IL-18 cytokine shift and the ability of infected macrophages to induce the cytotoxicity of MAIT cells in an MR1-dependent manner. Together, our results suggest that altered MAIT cell functions due to IFN-α-IL-18 imbalance contribute to disease severity, and their therapeutic manipulation may prevent deleterious inflammation in COVID-19 aggravation.


Asunto(s)
COVID-19/inmunología , Interferón-alfa/inmunología , Interleucina-18/inmunología , Macrófagos/inmunología , Monocitos/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Lavado Broncoalveolar , Estudios de Casos y Controles , Chlorocebus aethiops , Estudios de Cohortes , Femenino , Francia , Humanos , Inmunofenotipificación , Interleucina-10/inmunología , Interleucina-15/inmunología , Interleucina-1beta/inmunología , Interleucina-6/inmunología , Interleucina-8/inmunología , Masculino , Persona de Mediana Edad , RNA-Seq , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Análisis de la Célula Individual , Células Vero , Adulto Joven
3.
EMBO J ; 41(12): e108306, 2022 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-35506364

RESUMEN

Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria-derived succinate that accumulated both in the respiratory fluids of virus-challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity in vitro as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus-triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate-dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Neumonía , Animales , Antivirales/farmacología , Humanos , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Ratones , Proteínas de la Nucleocápside , Nucleoproteínas/metabolismo , Ácido Succínico/metabolismo , Ácido Succínico/farmacología , Ácido Succínico/uso terapéutico , Replicación Viral
4.
Trends Immunol ; 43(7): 503-512, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35654639

RESUMEN

Invariant natural killer T (iNKT) cells are increasingly regarded as disease biomarkers and immunotherapeutic targets. However, a greater understanding of their biology is necessary to effectively target these cells in the clinic. The discovery of iNKT1/2/17 cell effector subsets was a milestone in our understanding of iNKT cell development and function. Recent transcriptomic studies have uncovered an even greater heterogeneity and challenge our understanding of iNKT cell ontogeny and effector differentiation. We propose a refined model whereby iNKT cells differentiate through a dynamic and continuous instructive process that requires the accumulation and integration of various signals within the thymus or peripheral tissues. Within this framework, we question the existence of true iNKT2 cells and discuss the parallels between mouse and human iNKT cells.


Asunto(s)
Células T Asesinas Naturales , Animales , Diferenciación Celular , Humanos , Ratones
5.
Mycopathologia ; 189(3): 42, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709375

RESUMEN

Pneumocystis pneumonia is a serious lung infection caused by an original ubiquitous fungus with opportunistic behavior, referred to as Pneumocystis jirovecii. P. jirovecii is the second most common fungal agent among invasive fungal infections after Candida spp. Unfortunately, there is still an inability to culture P. jirovecii in vitro, and so a great impairment to improve knowledge on the pathogenesis of Pneumocystis pneumonia. In this context, animal models have a high value to address complex interplay between Pneumocystis and the components of the host immune system. Here, we propose a protocol for a murine model of Pneumocystis pneumonia. Animals become susceptible to Pneumocystis by acquiring an immunocompromised status induced by iterative administration of steroids within drinking water. Thereafter, the experimental infection is completed by an intranasal challenge with homogenates of mouse lungs containing Pneumocystis murina. The onset of clinical signs occurs within 5 weeks following the infectious challenge and immunosuppression can then be withdrawn. At termination, lungs and bronchoalveolar lavage (BAL) fluids from infected mice are analyzed for fungal load (qPCR) and immune response (flow cytometry and biochemical assays). The model is a useful tool in studies focusing on immune responses initiated after the establishment of Pneumocystis pneumonia.


Asunto(s)
Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Pulmón , Neumonía por Pneumocystis , Animales , Neumonía por Pneumocystis/microbiología , Neumonía por Pneumocystis/patología , Neumonía por Pneumocystis/inmunología , Líquido del Lavado Bronquioalveolar/microbiología , Pulmón/microbiología , Pulmón/patología , Ratones , Pneumocystis , Recuento de Colonia Microbiana , Pneumocystis carinii , Huésped Inmunocomprometido
6.
Am J Physiol Lung Cell Mol Physiol ; 316(6): L1127-L1140, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30908937

RESUMEN

Host cell proteases are involved in influenza pathogenesis. We examined the role of tissue kallikrein 1 (KLK1) by comparing wild-type (WT) and KLK1-deficient mice infected with influenza H3N2 virus. The levels of KLK1 in lung tissue and in bronchoalveolar lavage (BAL) fluid increased substantially during infection. KLK1 did not promote virus infectivity despite its trypsin-like activity, but it did decrease the initial virus load. We examined two cell types involved in the early control of pathogen infections, alveolar macrophages (AMs) and natural killer (NK) cells to learn more about the antiviral action of KLK1. Inactivating the Klk1 gene or treating WT mice with an anti-KLK1 monoclonal antibody to remove KLK1 activity accelerated the initial virus-induced apoptotic depletion of AMs. Intranasal instillation of deficient mice with recombinant KLK1 (rKLK1) reversed the phenotype. The levels of granulocyte-macrophage colony-stimulating factor in infected BAL fluid were significantly lower in KLK1-deficient mice than in WT mice. Treating lung epithelial cells with rKLK1 increased secretion of this factor known to enhance AM resistance to pathogen-induced apoptosis. The recruitment of NK cells to the air spaces peaked 3 days after infection in WT mice but not in KLK1-deficient mice, as did increases in several NK-attracting chemokines (CCL2, CCL3, CCL5, and CXCL10) in BAL. Chronic obstructive pulmonary disease (COPD) patients are highly susceptible to viral infection, and we observed that the KLK1 mRNA levels decreased with increasing COPD severity. Our findings indicate that KLK1 intervenes early in the antiviral defense modulating the severity of influenza infection. Decreased KLK1 expression in COPD patients could contribute to the worsening of influenza.


Asunto(s)
Apoptosis/fisiología , Macrófagos Alveolares/patología , Infecciones por Orthomyxoviridae/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Calicreínas de Tejido/metabolismo , Células A549 , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/virología , Animales , Línea Celular , Quimiocina CCL2/metabolismo , Quimiocina CCL3/metabolismo , Quimiocina CCL5/metabolismo , Quimiocina CXCL10/metabolismo , Perros , Factor Estimulante de Colonias de Granulocitos y Macrófagos/análisis , Humanos , Subtipo H3N2 del Virus de la Influenza A , Células Asesinas Naturales/inmunología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Infecciones por Orthomyxoviridae/inmunología , Enfermedad Pulmonar Obstructiva Crónica/virología , Mucosa Respiratoria/metabolismo , Calicreínas de Tejido/antagonistas & inhibidores , Calicreínas de Tejido/genética
7.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L625-L638, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553637

RESUMEN

Cigarette smoking has marked effects on lung tissue, including induction of oxidative stress, inflammatory cell recruitment, and a protease/antiprotease imbalance. These effects contribute to tissue remodeling and destruction resulting in loss of lung function in chronic obstructive pulmonary disease (COPD) patients. Cathepsin S (CatS) is a cysteine protease that is involved in the remodeling/degradation of connective tissue and basement membrane. Aberrant expression or activity of CatS has been implicated in a variety of diseases, including arthritis, cancer, cardiovascular, and lung diseases. However, little is known about the effect of cigarette smoking on both CatS expression and activity, as well as its role in smoking-related lung diseases. Here, we evaluated the expression and activity of human CatS in lung tissues from never-smokers and smokers with or without COPD. Despite the presence of an oxidizing environment, CatS expression and activity were significantly higher in current smokers (both non-COPD and COPD) compared with never-smokers, and correlated positively with smoking history. Moreover, we found that the exposure of primary human bronchial epithelial cells to cigarette smoke extract triggered the activation of P2X7 receptors, which in turns drives CatS upregulation. The present data suggest that excessive CatS expression and activity contribute, beside other proteases, to the deleterious effects of cigarette smoke on pulmonary homeostasis.


Asunto(s)
Catepsinas/metabolismo , Fumar Cigarrillos/efectos adversos , Células Epiteliales/enzimología , Estrés Oxidativo/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/enzimología , Mucosa Respiratoria/enzimología , Fumadores/estadística & datos numéricos , Anciano , Estudios de Casos y Controles , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Mucosa Respiratoria/efectos de los fármacos
8.
J Virol ; 91(16)2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28615200

RESUMEN

Hemagglutinin (HA) of influenza virus must be activated by proteolysis before the virus can become infectious. Previous studies indicated that HA cleavage is driven by membrane-bound or extracellular serine proteases in the respiratory tract. However, there is still uncertainty as to which proteases are critical for activating HAs of seasonal influenza A viruses (IAVs) in humans. This study focuses on human KLK1 and KLK5, 2 of the 15 serine proteases known as the kallikrein-related peptidases (KLKs). We find that their mRNA expression in primary human bronchial cells is stimulated by IAV infection. Both enzymes cleaved recombinant HA from several strains of the H1 and/or H3 virus subtype in vitro, but only KLK5 promoted the infectivity of A/Puerto Rico/8/34 (H1N1) and A/Scotland/20/74 (H3N2) virions in MDCK cells. We assessed the ability of treated viruses to initiate influenza in mice. The nasal instillation of only the KLK5-treated virus resulted in weight loss and lethal outcomes. The secretion of this protease in the human lower respiratory tract is enhanced during influenza. Moreover, we show that pretreatment of airway secretions with a KLK5-selective inhibitor significantly reduced the activation of influenza A/Scotland/20/74 virions, providing further evidence of its importance. Differently, increased KLK1 secretion appeared to be associated with the recruitment of inflammatory cells in human airways regardless of the origin of inflammation. Thus, our findings point to the involvement of KLK5 in the proteolytic activation and spread of seasonal influenza viruses in humans.IMPORTANCE Influenza A viruses (IAVs) cause acute infection of the respiratory tract that affects millions of people during seasonal outbreaks every year. Cleavage of the hemagglutinin precursor by host proteases is a critical step in the life cycle of these viruses. Consequently, host proteases that activate HA can be considered promising targets for the development of new antivirals. However, the specific proteases that activate seasonal influenza viruses, especially H3N2 viruses, in the human respiratory tract have remain undefined despite many years of work. Here we demonstrate that the secreted, extracellular protease KLK5 (kallikrein-related peptidase 5) is efficient in promoting the infectivity of H3N2 IAV in vitro and in vivo Furthermore, we found that its secretion was selectively enhanced in the human lower respiratory tract during a seasonal outbreak dominated by an H3N2 virus. Collectively, our data support the clinical relevance of this protease in human influenza pathogenesis.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Interacciones Huésped-Patógeno , Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Calicreínas/metabolismo , Animales , Peso Corporal , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/virología , Humanos , Subtipo H1N1 del Virus de la Influenza A/crecimiento & desarrollo , Ratones Endogámicos C57BL , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Proteolisis , Análisis de Supervivencia
11.
Eur Respir J ; 46(3): 771-82, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26250498

RESUMEN

Chronic obstructive pulmonary disease (COPD) is punctuated by episodes of infection-driven acute exacerbations. Despite the life-threatening nature of these exacerbations, the underlying mechanisms remain unclear, although a high number of neutrophils in the lungs of COPD patients is known to correlate with poor prognosis. Interleukin (IL)-22 is a cytokine that plays a pivotal role in lung antimicrobial defence and tissue protection. We hypothesised that neutrophils secrete proteases that may have adverse effects in COPD, by altering the IL-22 receptor (IL-22R)-dependent signalling.Using in vitro and in vivo approaches as well as reverse transcriptase quantitative PCR, flow cytometry and/or Western blotting techniques, we first showed that pathogens such as the influenza virus promote IL-22R expression in human bronchial epithelial cells, whereas Pseudomonas aeruginosa, bacterial lipopolysaccharide or cigarette smoke do not. Most importantly, neutrophil proteases cleave IL-22R and impair IL-22-dependent immune signalling and expression of antimicrobial effectors such as ß-defensin-2. This proteolysis resulted in the release of a soluble fragment of IL-22R, which was detectable both in cellular and animal models as well as in sputa from COPD patients with acute exacerbations.Hence, our study reveals an unsuspected regulation by the proteolytic action of neutrophil enzymes of IL-22-dependent lung host response. This process probably enhances pathogen replication, and ultimately COPD exacerbations.


Asunto(s)
Células Epiteliales/enzimología , Inmunidad Innata/efectos de los fármacos , Neutrófilos/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/microbiología , Receptores de Interleucina/metabolismo , Animales , Biomarcadores/metabolismo , Western Blotting , Células Cultivadas , Modelos Animales de Enfermedad , Células Epiteliales/microbiología , Humanos , Inmunidad Innata/fisiología , Ratones , Neutrófilos/efectos de los fármacos , Péptido Hidrolasas/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/patogenicidad , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Interleucina/inmunología , Muestreo , Sensibilidad y Especificidad , Fumar/efectos adversos , Estadísticas no Paramétricas , beta-Defensinas/farmacología
12.
Eur J Immunol ; 43(7): 1706-15, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23553052

RESUMEN

DCs express receptors sensing microbial, danger or cytokine signals, which when triggered in combination drive DC maturation and functional polarization. Maturation was proposed to result from a discrete number of modifications in conventional DCs (cDCs), in contrast to a cell-fate conversion in plasmacytoid DCs (pDCs). cDC maturation is generally assessed by measuring cytokine production and membrane expression of MHC class II and co-stimulation molecules. pDC maturation complexity was demonstrated by functional genomics. Here, pDCs and cDCs were shown to undergo profound and convergent changes in their gene expression programs in vivo during viral infection. This observation was generalized to other stimulation conditions and DC subsets, by public microarray data analyses, PCR confirmation of selected gene expression profiles, and gene regulatory sequence bioinformatics analyses. Thus, maturation is a complex process similarly reshaping all DC subsets, including through the induction of a core set of NF-κB- or IFN-stimulated genes irrespective of stimuli.


Asunto(s)
Diferenciación Celular/genética , Células Dendríticas/citología , Transcriptoma , Animales , Infecciones por Citomegalovirus/inmunología , Células Dendríticas/inmunología , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Immunol Rev ; 234(1): 177-98, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20193019

RESUMEN

During evolution, vertebrates have developed an adaptive immune system able to cope with a variety of pathogens. Dendritic cells (DCs) are central to this process. DCs integrate information derived from pathogens or endogenous danger signals and convey them to T lymphocytes. Most of the present knowledge on DCs was generated in mice or by using human DCs differentiated in vitro from monocytes. In both species, several DC subsets have been identified in vivo based on differences in their phenotypes, anatomical locations or functions. In mice, protective immunity against intracellular pathogens or tumors can be induced most efficiently by targeting antigens to the CD8 alpha(+) DCs, a subset of DCs which resides in lymphoid tissues and is especially efficient at cross-presenting exogenous antigens to CD8(+) T lymphocytes. In contrary, harnessing human DC subsets for medical purposes is currently hampered by insufficient knowledge about these cells. To overcome this cognitive gap, we are using comparative genomics as a tool for designing hypotheses and experiments to further characterize DC subset functions and their molecular control, including the investigation of the functional equivalences that might exist between human and mouse DC subsets.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Dendríticas/inmunología , Genómica , Animales , Antígenos CD1 , Antígenos de Superficie/inmunología , Antígeno CD11b/inmunología , Antígenos CD8/inmunología , Diferenciación Celular/genética , Diferenciación Celular/inmunología , Linaje de la Célula/genética , Linaje de la Célula/inmunología , Enfermedades Transmisibles/inmunología , Perfilación de la Expresión Génica , Genómica/métodos , Glicoproteínas , Humanos , Ratones , Fenotipo , Especificidad de la Especie
14.
J Fungi (Basel) ; 8(2)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35205883

RESUMEN

Pneumocystis pneumonia is a severe lung infection that occurs primarily in largely immunocompromised patients. Few treatment options exist, and the mortality rate remains substantial. To develop new strategies in the fields of diagnosis and treatment, it appears to be critical to improve the scientific knowledge about the biology of the Pneumocystis agent and the course of the disease. In the absence of in vitro continuous culture system, in vivo animal studies represent a crucial cornerstone for addressing Pneumocystis pneumonia in laboratories. Here, we provide an overview of the animal models of Pneumocystis pneumonia that were reported in the literature over the last 60 years. Overall, this review highlights the great heterogeneity of the variables studied: the choice of the host species and its genetics, the different immunosuppressive regimens to render an animal susceptible, the experimental challenge, and the different validation methods of the model. With this work, the investigator will have the keys to choose pivotal experimental parameters and major technical features that are assumed to likely influence the results according to the question asked. As an example, we propose an animal model to explore the immune response during Pneumocystis pneumonia.

15.
Cancers (Basel) ; 13(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34298791

RESUMEN

The vast majority of studies on T cell biology in tumor immunity have focused on peptide-reactive conventional T cells that are restricted to polymorphic major histocompatibility complex molecules. However, emerging evidence indicated that unconventional T cells, including γδ T cells, natural killer T (NKT) cells and mucosal-associated invariant T (MAIT) cells are also involved in tumor immunity. Unconventional T cells span the innate-adaptive continuum and possess the unique ability to rapidly react to nonpeptide antigens via their conserved T cell receptors (TCRs) and/or to activating cytokines to orchestrate many aspects of the immune response. Since unconventional T cell lineages comprise discrete functional subsets, they can mediate both anti- and protumoral activities. Here, we review the current understanding of the functions and regulatory mechanisms of protumoral unconventional T cell subsets in the tumor environment. We also discuss the therapeutic potential of these deleterious subsets in solid cancers and why further feasibility studies are warranted.

16.
Cell Rep ; 32(10): 108116, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32905761

RESUMEN

CD1d-restricted invariant Natural Killer T (iNKT) cells represent a unique class of T lymphocytes endowed with potent regulatory and effector immune functions. Although these functions are acquired during thymic ontogeny, the sequence of events that gives rise to discrete effector subsets remains unclear. Using an unbiased single-cell transcriptomic analysis combined with functional assays, we reveal an unappreciated diversity among thymic iNKT cells, especially among iNKT1 cells. Mathematical modeling and biological methods unravel a developmental map whereby iNKT2 cells constitute a transient branching point toward the generation of iNKT1 and iNKT17 cells, which reconciles the two previously proposed models. In addition, we identify the transcription co-factor Four-and-a-half LIM domains protein 2 (FHL2) as a critical cell-intrinsic regulator of iNKT1 specification. Thus, these data illustrate the changing transcriptional network that guides iNKT cell effector fate.


Asunto(s)
Células T Asesinas Naturales/inmunología , Análisis de la Célula Individual/métodos , Diferenciación Celular , Humanos
17.
J Exp Med ; 217(12)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32886755

RESUMEN

COVID-19 includes lung infection ranging from mild pneumonia to life-threatening acute respiratory distress syndrome (ARDS). Dysregulated host immune response in the lung is a key feature in ARDS pathophysiology. However, cellular actors involved in COVID-19-driven ARDS are poorly understood. Here, in blood and airways of severe COVID-19 patients, we serially analyzed unconventional T cells, a heterogeneous class of T lymphocytes (MAIT, γδT, and iNKT cells) with potent antimicrobial and regulatory functions. Circulating unconventional T cells of COVID-19 patients presented with a profound and persistent phenotypic alteration. In the airways, highly activated unconventional T cells were detected, suggesting a potential contribution in the regulation of local inflammation. Finally, expression of the CD69 activation marker on blood iNKT and MAIT cells of COVID-19 patients on admission was predictive of clinical course and disease severity. Thus, COVID-19 patients present with an altered unconventional T cell biology, and further investigations will be required to precisely assess their functions during SARS-CoV-2-driven ARDS.


Asunto(s)
Betacoronavirus/genética , Infecciones por Coronavirus/inmunología , Células T Invariantes Asociadas a Mucosa/metabolismo , Células T Asesinas Naturales/metabolismo , Fenotipo , Neumonía Viral/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Síndrome de Dificultad Respiratoria/inmunología , Anciano , Antígenos CD/sangre , Antígenos de Diferenciación de Linfocitos T/sangre , COVID-19 , Células Cultivadas , Infecciones por Coronavirus/virología , Citocinas/metabolismo , Femenino , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Lectinas Tipo C/sangre , Masculino , Persona de Mediana Edad , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Asesinas Naturales/inmunología , Pandemias , Neumonía Viral/virología , Pronóstico , Estudios Prospectivos , Síndrome de Dificultad Respiratoria/virología , SARS-CoV-2 , Índice de Severidad de la Enfermedad
18.
Mucosal Immunol ; 13(1): 128-139, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31628425

RESUMEN

Interleukin-7 (IL-7) is a critical cytokine in B- and T-lymphocyte development and maturation. Recent evidence suggests that IL-7 is a preferential homeostatic and survival factor for RORγt+ innate T cells such as natural killer T (NKT) cells, γδT cells, and mucosal-associated invariant T (MAIT) cells in the periphery. Given the important contribution of these populations in antibacterial immunity at barrier sites, we questioned whether IL-7 could be instrumental in boosting the local host immune response against respiratory bacterial infection. By using a cytokine-monoclonal antibody approach, we illustrated a role for topical IL-7 delivery in increasing the pool of RORγt+ IL-17A-producing innate T cells. Prophylactic IL-7 treatment prior to Streptococcus pneumoniae infection led to better bacterial containment, a process associated with increased neutrophilia and that depended on γδT cells and IL-17A. Last, combined delivery of IL-7 and α-galactosylceramide (α-GalCer), a potent agonist for invariant NKT (iNKT) cells, conferred an almost total protection in terms of survival, an effect associated with enhanced IL-17 production by innate T cells and neutrophilia. Collectively, we provide a proof of concept that IL-7 enables fine-tuning of innate T- cell functions. This might pave the way for considering IL-7 as an innovative biotherapeutic against bacterial infection.


Asunto(s)
Inmunoterapia/métodos , Interleucina-17/metabolismo , Interleucina-7/metabolismo , Células T Asesinas Naturales/metabolismo , Neutrófilos/inmunología , Infecciones Neumocócicas/inmunología , Infecciones del Sistema Respiratorio/inmunología , Streptococcus pneumoniae/fisiología , Animales , Anticuerpos Bloqueadores/metabolismo , Células Cultivadas , Galactosilceramidas/inmunología , Humanos , Inmunidad Innata , Interleucina-7/administración & dosificación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células T Asesinas Naturales/inmunología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo
19.
J Immunother Cancer ; 8(2)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33257408

RESUMEN

BACKGROUND: Microorganisms that can be used for their lytic activity against tumor cells as well as inducing or reactivating antitumor immune responses are a relevant part of the available immunotherapy strategies. Viruses, bacteria and even protozoa have been largely explored with success as effective human antitumor agents. To date, only one oncolytic virus-T-VEC-has been approved by the US Food and Drug Administration for use in biological cancer therapy in clinical trials. The goal of our study is to evaluate the potential of a livestock pathogen, the protozoan Neospora caninum, non-pathogenic in humans, as an effective and safe antitumorous agent. METHODS/RESULTS: We demonstrated that the treatment of murine thymoma EG7 by subcutaneous injection of N. caninum tachyzoites either in or remotely from the tumor strongly inhibits tumor development, and often causes their complete eradication. Analysis of immune responses showed that N. caninum had the ability to 1) lyze infected cancer cells, 2) reactivate the immunosuppressed immune cells and 3) activate the systemic immune system by generating a protective antitumor response dependent on natural killer cells, CD8-T cells and associated with a strong interferon (IFN)-γ secretion in the tumor microenvironment. Most importantly, we observed a total clearance of the injected agent in the treated animals: N. caninum exhibited strong anticancer effects without persisting in the organism of treated mice. We also established in vitro and an in vivo non-obese diabetic/severe combined immunodeficiency mouse model that N. caninum infected and induced a strong regression of human Merkel cell carcinoma. Finally, we engineered a N. caninum strain to secrete human interleukin (IL)-15, associated with the alpha-subunit of the IL-15 receptor thus strengthening the immuno-stimulatory properties of N. caninum. Indeed, this NC1-IL15hRec strain induced both proliferation of and IFN-γ secretion by human peripheral blood mononuclear cells, as well as improved efficacy in vivo in the EG7 tumor model. CONCLUSION: These results highlight N. caninum as a potential, extremely effective and non-toxic anticancer agent, capable of being engineered to either express at its surface or to secrete biodrugs. Our work has identified the broad clinical possibilities of using N. caninum as an oncolytic protozoan in human medicine.


Asunto(s)
Productos Biológicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neospora/química , Animales , Productos Biológicos/farmacología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones
20.
Mol Immunol ; 113: 75-86, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-29941219

RESUMEN

Cross-presentation is thought to require transport of proteasome-generated peptides by the TAP transporters into MHC class I loading compartments for most antigens. However, a proteasome-dependent but TAP-independent pathway has also been described. Depletion of the pool of recycling cell surface MHC class I molecules available for loading with cross-presented peptides might partly or largely account for the critical role of TAP in cross-presentation of phagocytosed antigens. Here we examined a potential role of the homodimeric lysosomal TAP-like transporter in cross-presentation and in presentation of endogenous peptides by MHC class II molecules. We find that TAP-L is strongly recruited to dendritic cell phagosomes at a late stage, when internalized antigen and MHC class I molecules have been degraded or sorted away from phagosomes. Cross-presentation of a receptor-targeted antigen in vitro and of a phagocytosed antigen in vivo, as well as presentation of a cytosolic antigen by MHC class II molecules, is not affected by TAP-L deficiency. However, accumulation in vitro of a peptide optimally adapted to TAP-L selectivity in purified phagosomes is abolished by TAP-L deficiency. Unexpectedly, we find that TAP-L deficiency accelerates phagosome maturation, as reflected in increased Lamp2b recruitment and enhanced proteolytic degradation of phagocytosed antigen and in vitro transported peptides. Although additional experimentation will be required to definitely conclude on the role of TAP-L in transport of peptides presented by MHC class I and class II molecules, our data suggest that the principal role of TAP-L in dendritic cells may be related to regulation of phagosome maturation.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , Presentación de Antígeno/inmunología , Fagosomas/inmunología , Animales , Línea Celular Tumoral , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Células HeLa , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos , Proteínas de Transporte de Membrana/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos/inmunología , Fagocitosis/inmunología , Complejo de la Endopetidasa Proteasomal/inmunología , Transporte de Proteínas/inmunología , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA