Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
PLoS Genet ; 18(3): e1010110, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35324887

RESUMEN

Germline stem cells (GSCs) are the progenitor cells of the germline for the lifetime of an animal. In Drosophila, these cells reside in a cellular niche that is required for both their maintenance (self-renewal) and differentiation (asymmetric division resulting in a daughter cell that differs from the GSC). The stem cell-daughter cell transition is tightly regulated by a number of processes, including an array of proteins required for genome stability. The germline stem-cell maintenance factor Stonewall (Stwl) associates with heterochromatin, but its molecular function is poorly understood. We performed RNA-Seq on stwl mutant ovaries and found significant derepression of many transposon families but not heterochromatic genes. We also discovered inappropriate expression of multiple classes of genes. Most prominent are testis-enriched genes, including the male germline sex-determination switch Phf7, the differentiation factor bgcn, and a large testis-specific gene cluster on chromosome 2, all of which are upregulated or ectopically expressed in stwl mutant ovaries. Surprisingly, we also found that RNAi knockdown of stwl in somatic S2 cells results in ectopic expression of these testis genes. Using parallel ChIP-Seq and RNA-Seq experiments in S2 cells, we discovered that Stwl localizes upstream of transcription start sites and at heterochromatic sequences including repetitive sequences associated with telomeres. Stwl is also enriched at bgcn, suggesting that it directly regulates this essential differentiation factor. Finally, we identify Stwl binding motifs that are shared with known insulator binding proteins. We propose that Stwl affects gene regulation, including repression of male transcripts in the female germline, by binding insulators and establishing chromatin boundaries.


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Drosophila , Drosophila melanogaster , Factores de Transcripción , Animales , Diferenciación Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Células Germinativas/metabolismo , Proteínas de Homeodominio/genética , Elementos Aisladores/genética , Masculino , Ovario/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Mol Biol Evol ; 39(1)2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34921315

RESUMEN

Transposable elements (TEs) are self-replicating "genetic parasites" ubiquitous to eukaryotic genomes. In addition to conflict between TEs and their host genomes, TEs of the same family are in competition with each other. They compete for the same genomic niches while experiencing the same regime of copy-number selection. This suggests that competition among TEs may favor the emergence of new variants that can outcompete their ancestral forms. To investigate the sequence evolution of TEs, we developed a method to infer clades: collections of TEs that share SNP variants and represent distinct TE family lineages. We applied this method to a panel of 85 Drosophila melanogaster genomes and found that the genetic variation of several TE families shows significant population structure that arises from the population-specific expansions of single clades. We used population genetic theory to classify these clades into younger versus older clades and found that younger clades are associated with a greater abundance of sense and antisense piRNAs per copy than older ones. Further, we find that the abundance of younger, but not older clades, is positively correlated with antisense piRNA production, suggesting a general pattern where hosts preferentially produce antisense piRNAs from recently active TE variants. Together these findings suggest a pattern whereby new TE variants arise by mutation and then increase in copy number, followed by the host producing antisense piRNAs that may be used to silence these emerging variants.


Asunto(s)
Elementos Transponibles de ADN , Drosophila melanogaster , ARN Interferente Pequeño , Animales , Drosophila melanogaster/genética , Evolución Molecular , ARN Interferente Pequeño/genética
3.
Trends Genet ; 36(7): 474-489, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32473745

RESUMEN

Transposable elements (TEs) are mobile genetic parasites that can exponentially increase their genomic abundance through self-propagation. Classic theoretical papers highlighted the importance of two potentially escalating forces that oppose TE spread: regulated transposition and purifying selection. Here, we review new insights into mechanisms of TE regulation and purifying selection, which reveal the remarkable foresight of these theoretical models. We further highlight emergent connections between transcriptional control enacted by small RNAs and the contribution of TE insertions to structural mutation and host-gene regulation. Finally, we call for increased comparative analysis of TE dynamics and fitness effects, as well as host control mechanisms, to reveal how interconnected forces shape the differential prevalence and distribution of TEs across the tree of life.


Asunto(s)
Elementos Transponibles de ADN/genética , Evolución Molecular , Modelos Genéticos , Selección Genética , Animales , Humanos , Interferencia de ARN
4.
Cell ; 135(6): 1002-3, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-19070568

RESUMEN

Full-genome sequences of multiple yeast species offer exciting possibilities for the functional analysis of yeast evolution and speciation. Lee et al. (2008) now report that hybrid sterility between two yeast species is caused by incompatibility between a nuclear-encoded mitochondrial regulatory protein and its mitochondrial-encoded target gene.


Asunto(s)
Especiación Genética , Genoma Fúngico , Saccharomyces/genética , Quimera , Mitocondrias
5.
PLoS Genet ; 16(6): e1008861, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32525870

RESUMEN

In metazoan germlines, the piRNA pathway acts as a genomic immune system, employing small RNA-mediated silencing to defend host DNA from the harmful effects of transposable elements (TEs). Expression of genomic TEs is proposed to initiate self regulation by increasing the production of repressive piRNAs, thereby "adapting" piRNA-mediated control to the most active TE families. Surprisingly, however, piRNA pathway proteins, which execute piRNA biogenesis and enforce silencing of targeted sequences, evolve rapidly and adaptively in animals. If TE silencing is ensured through piRNA biogenesis, what necessitates changes in piRNA pathway proteins? Here we used interspecific complementation to test for functional differences between Drosophila melanogaster and D. simulans alleles of three adaptively evolving piRNA pathway proteins: Armitage, Aubergine and Spindle-E. In contrast to piRNA-mediated transcriptional regulators examined in previous studies, these three proteins have cytoplasmic functions in piRNA maturation and post-transcriptional silencing. Across all three proteins we observed interspecific divergence in the regulation of only a handful of TE families, which were more robustly silenced by the heterospecific piRNA pathway protein. This unexpected result suggests that unlike transcriptional regulators, positive selection has not acted on cytoplasmic piRNA effector proteins to enhance their function in TE repression. Rather, TEs may evolve to "escape" silencing by host proteins. We further discovered that D. simulans alleles of aub and armi exhibit enhanced off-target effects on host transcripts in a D. melanogaster background, as well as modest reductions in the efficiency of piRNA biogenesis, suggesting that promiscuous binding of D. simulans Aub and Armi proteins to host transcripts reduces their participation in piRNA production. Avoidance of genomic auto-immunity may therefore be a critical target of selection. Our observations suggest that piRNA effector proteins are subject to an evolutionary trade-off between defending the host genome from the harmful effect of TEs while also minimizing collateral damage to host genes.


Asunto(s)
Autoinmunidad/genética , Elementos Transponibles de ADN/inmunología , Drosophila simulans/genética , Evolución Molecular , Genoma de los Insectos/inmunología , ARN Interferente Pequeño/biosíntesis , Alelos , Animales , Animales Modificados Genéticamente , Citoplasma/genética , Citoplasma/metabolismo , Elementos Transponibles de ADN/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/inmunología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/inmunología , Drosophila melanogaster/metabolismo , Drosophila simulans/metabolismo , Femenino , Regulación de la Expresión Génica/inmunología , Genoma de los Insectos/genética , Masculino , Mutación , Interferencia de ARN/inmunología
6.
J Evol Biol ; 35(5): 693-707, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35411988

RESUMEN

Speciation is driven by traits that can act to prevent mating between nascent lineages, including male courtship and female preference for male traits. Mating barriers involving these traits evolve quickly because there is strong selection on males and females to maximize reproductive success, and the tight co-evolution of mating interactions can lead to rapid diversification of sexual behaviour. Populations of Drosophila melanogaster show strong asymmetrical reproductive isolation that is correlated with geographic origin. Using strains that capture natural variation in mating traits, we ask two key questions: which specific male traits are females selecting, and are these traits under divergent sexual selection? These questions have proven extremely challenging to answer, because even in closely related lineages males often differ in multiple traits related to mating behaviour. We address these questions by estimating selection gradients for male courtship and cuticular hydrocarbons for two different female genotypes. We identify specific behaviours and particular cuticular hydrocarbons that are under divergent sexual selection and could potentially contribute to premating reproductive isolation. Additionally, we report that a subset of these traits are plastic; males adjust these traits based on the identity of the female genotype they interact with. These results suggest that even when male courtship is not fixed between lineages, ongoing selection can act on traits that are important for reproductive isolation.


Asunto(s)
Drosophila melanogaster , Preferencia en el Apareamiento Animal , Animales , Cortejo , Drosophila melanogaster/genética , Femenino , Hidrocarburos , Masculino , Aislamiento Reproductivo , Conducta Sexual Animal
7.
Genome Res ; 28(5): 714-725, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29588362

RESUMEN

Eukaryotic genomes are replete with repeated sequences in the form of transposable elements (TEs) dispersed across the genome or as satellite arrays, large stretches of tandemly repeated sequences. Many satellites clearly originated as TEs, but it is unclear how mobile genetic parasites can transform into megabase-sized tandem arrays. Comprehensive population genomic sampling is needed to determine the frequency and generative mechanisms of tandem TEs, at all stages from their initial formation to their subsequent expansion and maintenance as satellites. The best available population resources, short-read DNA sequences, are often considered to be of limited utility for analyzing repetitive DNA due to the challenge of mapping individual repeats to unique genomic locations. Here we develop a new pipeline called ConTExt that demonstrates that paired-end Illumina data can be successfully leveraged to identify a wide range of structural variation within repetitive sequence, including tandem elements. By analyzing 85 genomes from five populations of Drosophila melanogaster, we discover that TEs commonly form tandem dimers. Our results further suggest that insertion site preference is the major mechanism by which dimers arise and that, consequently, dimers form rapidly during periods of active transposition. This abundance of TE dimers has the potential to provide source material for future expansion into satellite arrays, and we discover one such copy number expansion of the DNA transposon hobo to approximately 16 tandem copies in a single line. The very process that defines TEs-transposition-thus regularly generates sequences from which new satellites can arise.


Asunto(s)
Elementos Transponibles de ADN/genética , ADN Satélite/genética , Drosophila melanogaster/genética , Evolución Molecular , Mutagénesis Insercional , Animales , Sitios de Unión/genética , Genoma de los Insectos/genética , Genómica/métodos , Retroelementos/genética
8.
Mol Biol Evol ; 35(4): 925-941, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29361128

RESUMEN

Simple satellites are tandemly repeating short DNA motifs that can span megabases in eukaryotic genomes. Because they can cause genomic instability through nonallelic homologous exchange, they are primarily found in the repressive heterochromatin near centromeres and telomeres where recombination is minimal, and on the Y chromosome, where they accumulate as the chromosome degenerates. Interestingly, the types and abundances of simple satellites often vary dramatically between closely related species, suggesting that they turn over rapidly. However, limited sampling has prevented detailed understanding of their evolutionary dynamics. Here, we characterize simple satellites from whole-genome sequences generated from males and females of nine Drosophila species, spanning 40 Ma of evolution. We show that PCR-free library preparation and postsequencing GC-correction better capture satellite quantities than conventional methods. We find that over half of the 207 simple satellites identified are species-specific, consistent with previous descriptions of their rapid evolution. Based on a maximum parsimony framework, we determined that most interspecific differences are due to lineage-specific gains. Simple satellites gained within a species are typically a single mutation away from abundant existing satellites, suggesting that they likely emerge from existing satellites, especially in the genomes of satellite-rich species. Interestingly, unlike most of the other lineages which experience various degrees of gains, the lineage leading up to the satellite-poor D. pseudoobscura and D. persimilis appears to be recalcitrant to gains, providing a counterpoint to the notion that simple satellites are universally rapidly evolving.


Asunto(s)
Evolución Biológica , ADN Satélite/genética , Drosophila/genética , Animales , Femenino , Masculino , Cromosoma Y
9.
Annu Rev Genet ; 45: 331-55, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21910629

RESUMEN

Incompatibilities in interspecific hybrids, such as sterility and lethality, are widely observed causes of reproductive isolation and thus contribute to speciation. Because hybrid incompatibilities are caused by divergence in each of the hybridizing species, they also reveal genomic changes occurring on short evolutionary time scales that have functional consequences. These changes include divergence in protein-coding gene sequence, structure, and location, as well as divergence in noncoding DNAs. The most important unresolved issue is understanding the evolutionary causes of the divergence within species that in turn leads to incompatibility between species. Surprisingly, much of this divergence does not appear to be driven by ecological adaptation but may instead result from responses to purely mutational mechanisms or to internal genetic conflicts.


Asunto(s)
Quimera/genética , Hibridación Genética , Aislamiento Reproductivo , Adaptación Biológica , Alelos , Animales , Aberraciones Cromosómicas , ADN/genética , Elementos Transponibles de ADN , Epistasis Genética , Pleiotropía Genética , Especiación Genética , Heterocromatina/genética , Mutación , Secuencias Repetitivas de Ácidos Nucleicos , Especificidad de la Especie , Transcripción Genética
10.
PLoS Biol ; 13(4): e1002077, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25881199

RESUMEN

A new study reveals multiple dramatic changes in sex chromosome structure and identity in flies; such transitions are accompanied by a series of genomic events that affect chromosome biology, gene regulation, and sex determination. See the accompanying Research Article.


Asunto(s)
Dípteros/genética , Cromosomas Sexuales , Animales , Femenino , Masculino
11.
PLoS Genet ; 11(8): e1005453, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26291077

RESUMEN

Many reproductive proteins from diverse taxa evolve rapidly and adaptively. These proteins are typically involved in late stages of reproduction such as sperm development and fertilization, and are more often functional in males than females. Surprisingly, many germline stem cell (GSC) regulatory genes, which are essential for the earliest stages of reproduction, also evolve adaptively in Drosophila. One example is the bag of marbles (bam) gene, which is required for GSC differentiation and germline cyst development in females and for regulating mitotic divisions and entry to spermatocyte differentiation in males. Here we show that the extensive divergence of bam between Drosophila melanogaster and D. simulans affects bam function in females but has no apparent effect in males. We further find that infection with Wolbachia pipientis, an endosymbiotic bacterium that can affect host reproduction through various mechanisms, partially suppresses female sterility caused by bam mutations in D. melanogaster and interacts differentially with bam orthologs from D. melanogaster and D. simulans. We propose that the adaptive evolution of bam has been driven at least in part by the long-term interactions between Drosophila species and Wolbachia. More generally, we suggest that microbial infections of the germline may explain the unexpected pattern of evolution of several GSC regulatory genes.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Wolbachia/fisiología , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/microbiología , Evolución Molecular , Femenino , Expresión Génica , Prueba de Complementación Genética , Interacciones Huésped-Patógeno , Infertilidad/genética , Masculino , Ovario/metabolismo , Ovario/patología , Caracteres Sexuales
12.
Proc Natl Acad Sci U S A ; 111(52): 18793-8, 2014 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-25512552

RESUMEN

Tandemly repeating satellite DNA elements in heterochromatin occupy a substantial portion of many eukaryotic genomes. Although often characterized as genomic parasites deleterious to the host, they also can be crucial for essential processes such as chromosome segregation. Adding to their interest, satellite DNA elements evolve at high rates; among Drosophila, closely related species often differ drastically in both the types and abundances of satellite repeats. However, due to technical challenges, the evolutionary mechanisms driving this rapid turnover remain unclear. Here we characterize natural variation in simple-sequence repeats of 2-10 bp from inbred Drosophila melanogaster lines derived from multiple populations, using a method we developed called k-Seek that analyzes unassembled Illumina sequence reads. In addition to quantifying all previously described satellite repeats, we identified many novel repeats of low to medium abundance. Many of the repeats show population differentiation, including two that are present in only some populations. Interestingly, the population structure inferred from overall satellite quantities does not recapitulate the expected population relationships based on the demographic history of D. melanogaster. We also find that some satellites of similar sequence composition are correlated across lines, revealing concerted evolution. Moreover, correlated satellites tend to be interspersed with each other, further suggesting that concerted change is partially driven by higher order structure. Surprisingly, we identified negative correlations among some satellites, suggesting antagonistic interactions. Our study demonstrates that current genome assemblies vastly underestimate the complexity, abundance, and variation of highly repetitive satellite DNA and presents approaches to understand their rapid evolutionary divergence.


Asunto(s)
ADN Satélite/genética , Evolución Molecular , Variación Genética , Genoma de los Insectos/fisiología , Animales , Drosophila melanogaster , Análisis de Secuencia de ADN
13.
PLoS Genet ; 10(3): e1004240, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24651406

RESUMEN

Hybrid incompatibilities (HIs) cause reproductive isolation between species and thus contribute to speciation. Several HI genes encode adaptively evolving proteins that localize to or interact with heterochromatin, suggesting that HIs may result from co-evolution with rapidly evolving heterochromatic DNA. Little is known, however, about the intraspecific function of these HI genes, the specific sequences they interact with, or the evolutionary forces that drive their divergence. The genes Hmr and Lhr genetically interact to cause hybrid lethality between Drosophila melanogaster and D. simulans, yet mutations in both genes are viable. Here, we report that Hmr and Lhr encode proteins that form a heterochromatic complex with Heterochromatin Protein 1 (HP1a). Using RNA-Seq analyses we discovered that Hmr and Lhr are required to repress transcripts from satellite DNAs and many families of transposable elements (TEs). By comparing Hmr and Lhr function between D. melanogaster and D. simulans we identify several satellite DNAs and TEs that are differentially regulated between the species. Hmr and Lhr mutations also cause massive overexpression of telomeric TEs and significant telomere lengthening. Hmr and Lhr therefore regulate three types of heterochromatic sequences that are responsible for the significant differences in genome size and structure between D. melanogaster and D. simulans and have high potential to cause genetic conflicts with host fitness. We further find that many TEs are overexpressed in hybrids but that those specifically mis-expressed in lethal hybrids do not closely correlate with Hmr function. Our results therefore argue that adaptive divergence of heterochromatin proteins in response to repetitive DNAs is an important underlying force driving the evolution of hybrid incompatibility genes, but that hybrid lethality likely results from novel epistatic genetic interactions that are distinct to the hybrid background.


Asunto(s)
Proteínas de Drosophila/genética , Heterocromatina/genética , Aislamiento Reproductivo , Animales , Evolución Biológica , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Elementos Transponibles de ADN/genética , ADN Satélite/genética , Drosophila melanogaster , Genes Letales , Hibridación Genética
14.
Mol Biol Evol ; 31(7): 1767-78, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24723419

RESUMEN

Misregulation of gene expression is often observed in interspecific hybrids and is generally attributed to regulatory incompatibilities caused by divergence between the two genomes. However, it has been challenging to distinguish effects of regulatory divergence from secondary effects including developmental and physiological defects common to hybrids. Here, we use RNA-Seq to profile gene expression in F1 hybrid male larvae from crosses of Drosophila melanogaster to its sibling species D. simulans. We analyze lethal and viable hybrid males, the latter produced using a mutation in the X-linked D. melanogaster Hybrid male rescue (Hmr) gene and compare them with their parental species and to public data sets of gene expression across development. We find that Hmr has drastically different effects on the parental and hybrid genomes, demonstrating that hybrid incompatibility genes can exhibit novel properties in the hybrid genetic background. Additionally, we find that D. melanogaster alleles are preferentially affected between lethal and viable hybrids. We further determine that many of the differences between the hybrids result from developmental delay in the Hmr(+) hybrids. Finally, we find surprisingly modest expression differences in hybrids when compared with the parents, with only 9% and 4% of genes deviating from additivity or expressed outside of the parental range, respectively. Most of these differences can be attributed to developmental delay and differences in tissue types. Overall, our study suggests that hybrid gene misexpression is prone to overestimation and that even between species separated by approximately 2.5 Ma, regulatory incompatibilities are not widespread in hybrids.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/clasificación , Drosophila/genética , Animales , Drosophila/fisiología , Regulación de la Expresión Génica , Genes Letales , Genes Ligados a X , Especiación Genética , Hibridación Genética , Masculino , Análisis de Secuencia de ARN , Especificidad de la Especie
15.
PLoS Biol ; 10(11): e1001428, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23189033

RESUMEN

The Piwi-interacting RNA (piRNA) pathway defends the germline of animals from the deleterious activity of selfish transposable elements (TEs) through small-RNA mediated silencing. Adaptation to novel invasive TEs is proposed to occur by incorporating their sequences into the piRNA pool that females produce and deposit into their eggs, which then propagates immunity against specific TEs to future generations. In support of this model, the F1 offspring of crosses between strains of the same Drosophila species sometimes suffer from germline derepression of paternally inherited TE families, caused by a failure of the maternal strain to produce the piRNAs necessary for their regulation. However, many protein components of the Drosophila piRNA pathway exhibit signatures of positive selection, suggesting that they also contribute to the evolution of host genome defense. Here we investigate piRNA pathway function and TE regulation in the F1 hybrids of interspecific crosses between D. melanogaster and D. simulans and compare them with intraspecific control crosses of D. melanogaster. We confirm previous reports showing that intraspecific crosses are characterized by derepression of paternally inherited TE families that are rare or absent from the maternal genome and piRNA pool, consistent with the role of maternally deposited piRNAs in shaping TE silencing. In contrast to the intraspecific cross, we discover that interspecific hybrids are characterized by widespread derepression of both maternally and paternally inherited TE families. Furthermore, the pattern of derepression of TE families in interspecific hybrids cannot be attributed to their paucity or absence from the piRNA pool of the maternal species. Rather, we demonstrate that interspecific hybrids closely resemble piRNA effector-protein mutants in both TE misregulation and aberrant piRNA production. We suggest that TE derepression in interspecific hybrids largely reflects adaptive divergence of piRNA pathway genes rather than species-specific differences in TE-derived piRNAs.


Asunto(s)
Drosophila/genética , Hibridación Genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Adaptación Biológica , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Cruzamientos Genéticos , Elementos Transponibles de ADN , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Evolución Molecular , Femenino , Prueba de Complementación Genética , Genoma de los Insectos , Inmunohistoquímica , Patrón de Herencia , Masculino , Mutación , Ovario/citología , Ovario/metabolismo , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Fenotipo , ARN Interferente Pequeño/genética , Selección Genética , Especificidad de la Especie
16.
PLoS Genet ; 8(3): e1002597, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22457639

RESUMEN

The Dobzhansky and Muller (D-M) model explains the evolution of hybrid incompatibility (HI) through the interaction between lineage-specific derived alleles at two or more loci. In agreement with the expectation that HI results from functional divergence, many protein-coding genes that contribute to incompatibilities between species show signatures of adaptive evolution, including Lhr, which encodes a heterochromatin protein whose amino acid sequence has diverged extensively between Drosophila melanogaster and D. simulans by natural selection. The lethality of D. melanogaster/D. simulans F1 hybrid sons is rescued by removing D. simulans Lhr, but not D. melanogaster Lhr, suggesting that the lethal effect results from adaptive evolution in the D. simulans lineage. It has been proposed that adaptive protein divergence in Lhr reflects antagonistic coevolution with species-specific heterochromatin sequences and that defects in LHR protein localization cause hybrid lethality. Here we present surprising results that are inconsistent with this coding-sequence-based model. Using Lhr transgenes expressed under native conditions, we find no evidence that LHR localization differs between D. melanogaster and D. simulans, nor do we find evidence that it mislocalizes in their interspecific hybrids. Rather, we demonstrate that Lhr orthologs are differentially expressed in the hybrid background, with the levels of D. simulans Lhr double that of D. melanogaster Lhr. We further show that this asymmetric expression is caused by cis-by-trans regulatory divergence of Lhr. Therefore, the non-equivalent hybrid lethal effects of Lhr orthologs can be explained by asymmetric expression of a molecular function that is shared by both orthologs and thus was presumably inherited from the ancestral allele of Lhr. We present a model whereby hybrid lethality occurs by the interaction between evolutionarily ancestral and derived alleles.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Aislamiento Reproductivo , Animales , Animales Modificados Genéticamente , Evolución Biológica , Regulación de la Expresión Génica , Genes Letales , Especiación Genética , Heterocromatina/genética , Hibridación Genética
17.
Mol Biol Evol ; 30(8): 1816-29, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23625890

RESUMEN

The Piwi-interacting RNA (piRNA) pathway defends animal genomes against the harmful consequences of transposable element (TE) infection by imposing small-RNA-mediated silencing. Because silencing is targeted by TE-derived piRNAs, piRNA production is posited to be central to the evolution of genome defense. We harnessed genomic data sets from Drosophila melanogaster, including genome-wide measures of piRNA, mRNA, and genomic abundance, along with estimates of age structure and risk of ectopic recombination, to address fundamental questions about the functional and evolutionary relationships between TE families and their regulatory piRNAs. We demonstrate that mRNA transcript abundance, robustness of "ping-pong" amplification, and representation in piRNA clusters together explain the majority of variation in piRNA abundance between TE families, providing the first robust statistical support for the prevailing model of piRNA biogenesis. Intriguingly, we also discover that the most transpositionally active TE families, with the greatest capacity to induce harmful mutations or disrupt gametogenesis, are not necessarily the most abundant among piRNAs. Rather, the level of piRNA targeting is largely independent of recent transposition rate for active TE families, but is rapidly lost for inactive TEs. These observations are consistent with population genetic theory that suggests a limited selective advantage for host repression of transposition. Additionally, we find no evidence that piRNA targeting responds to selection against a second major cost of TE infection: ectopic recombination between TE insertions. Our observations confirm the pivotal role of piRNA-mediated silencing in defending the genome against selfish transposition, yet also suggest limits to the optimization of host genome defense.


Asunto(s)
Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Evolución Molecular , Silenciador del Gen , Genoma de los Insectos , ARN Interferente Pequeño/genética , Animales , Amplificación de Genes , Dosificación de Gen , Familia de Multigenes , Recombinación Genética , Selección Genética , Transcripción Genética
18.
Nature ; 450(7167): 203-18, 2007 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-17994087

RESUMEN

Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.


Asunto(s)
Drosophila/clasificación , Drosophila/genética , Evolución Molecular , Genes de Insecto/genética , Genoma de los Insectos/genética , Genómica , Filogenia , Animales , Codón/genética , Elementos Transponibles de ADN/genética , Drosophila/inmunología , Drosophila/metabolismo , Proteínas de Drosophila/genética , Orden Génico/genética , Genoma Mitocondrial/genética , Inmunidad/genética , Familia de Multigenes/genética , ARN no Traducido/genética , Reproducción/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Sintenía/genética
19.
G3 (Bethesda) ; 13(11)2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37766472

RESUMEN

Meiotic drive biases the transmission of alleles in heterozygous individuals, such that Mendel's law of equal segregation is violated. Most examples of meiotic drive have been discovered over the past century based on causing sex ratio distortion or the biased transmission of easily scoreable genetic markers that were linked to drive alleles. More recently, several approaches have been developed that attempt to identify distortions of Mendelian segregation genome wide. Here, we test a candidate female meiotic drive locus in Drosophila melanogaster, identified previously as causing a ∼54:46 distortion ratio using sequencing of large pools of backcross progeny. We inserted fluorescent visible markers near the candidate locus and scored transmission in thousands of individual progeny. We observed a small but significant deviation from the Mendelian expectation; however, it was in the opposite direction to that predicted based on the original experiments. We discuss several possible causes of the discrepancy between the 2 approaches, noting that subtle viability effects are particularly challenging to disentangle from potential small-effect meiotic drive loci. We conclude that pool sequencing approaches remain a powerful method to identify candidate meiotic drive loci but that genotyping of individual progeny at early developmental stages may be required for robust confirmation.


Asunto(s)
Drosophila melanogaster , Meiosis , Humanos , Animales , Femenino , Drosophila melanogaster/genética , Heterocigoto , Meiosis/genética
20.
PLoS Biol ; 7(10): e1000234, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19859525

RESUMEN

Postzygotic reproductive barriers such as sterility and lethality of hybrids are important for establishing and maintaining reproductive isolation between species. Identifying the causal loci and discerning how they interfere with the development of hybrids is essential for understanding how hybrid incompatibilities (HIs) evolve, but little is known about the mechanisms of how HI genes cause hybrid dysfunctions. A previously discovered Drosophila melanogaster locus called Zhr causes lethality in F1 daughters from crosses between Drosophila simulans females and D. melanogaster males. Zhr maps to a heterochromatic region of the D. melanogaster X that contains 359-bp satellite repeats, suggesting either that Zhr is a rare protein-coding gene embedded within heterochromatin, or is a locus consisting of the noncoding repetitive DNA that forms heterochromatin. The latter possibility raises the question of how heterochromatic DNA can induce lethality in hybrids. Here we show that hybrid females die because of widespread mitotic defects induced by lagging chromatin at the time during early embryogenesis when heterochromatin is first established. The lagging chromatin is confined solely to the paternally inherited D. melanogaster X chromatids, and consists predominantly of DNA from the 359-bp satellite block. We further found that a rearranged X chromosome carrying a deletion of the entire 359-bp satellite block segregated normally, while a translocation of the 359-bp satellite block to the Y chromosome resulted in defective Y segregation in males, strongly suggesting that the 359-bp satellite block specifically and directly inhibits chromatid separation. In hybrids produced from wild-type parents, the 359-bp satellite block was highly stretched and abnormally enriched with Topoisomerase II throughout mitosis. The 359-bp satellite block is not present in D. simulans, suggesting that lethality is caused by the absence or divergence of factors in the D. simulans maternal cytoplasm that are required for heterochromatin formation of this species-specific satellite block. These findings demonstrate how divergence of noncoding repetitive sequences between species can directly cause reproductive isolation by altering chromosome segregation.


Asunto(s)
Segregación Cromosómica/genética , Drosophila/genética , Heterocromatina/genética , Hibridación Genética/genética , Mitosis , Animales , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Satélite/genética , ADN Satélite/metabolismo , Drosophila/embriología , Femenino , Genes de Insecto , Genes Letales , Especiación Genética , Heterocromatina/metabolismo , Masculino , Especificidad de la Especie , Cromosoma X/genética , Cromosoma X/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA