Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Nature ; 555(7697): 534-537, 2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29539640

RESUMEN

In vast areas of the ocean, the scarcity of iron controls the growth and productivity of phytoplankton. Although most dissolved iron in the marine environment is complexed with organic molecules, picomolar amounts of labile inorganic iron species (labile iron) are maintained within the euphotic zone and serve as an important source of iron for eukaryotic phytoplankton and particularly for diatoms. Genome-enabled studies of labile iron utilization by diatoms have previously revealed novel iron-responsive transcripts, including the ferric iron-concentrating protein ISIP2A, but the mechanism behind the acquisition of picomolar labile iron remains unknown. Here we show that ISIP2A is a phytotransferrin that independently and convergently evolved carbonate ion-coordinated ferric iron binding. Deletion of ISIP2A disrupts high-affinity iron uptake in the diatom Phaeodactylum tricornutum, and uptake is restored by complementation with human transferrin. ISIP2A is internalized by endocytosis, and manipulation of the seawater carbonic acid system reveals a second-order dependence on the concentrations of labile iron and carbonate ions. In P. tricornutum, the synergistic interaction of labile iron and carbonate ions occurs at environmentally relevant concentrations, revealing that carbonate availability co-limits iron uptake. Phytotransferrin sequences have a broad taxonomic distribution and are abundant in marine environmental genomic datasets, suggesting that acidification-driven declines in the concentration of seawater carbonate ions will have a negative effect on this globally important eukaryotic iron acquisition mechanism.


Asunto(s)
Carbonatos/metabolismo , Diatomeas/metabolismo , Hierro/metabolismo , Transferrina/metabolismo , Organismos Acuáticos/clasificación , Organismos Acuáticos/genética , Organismos Acuáticos/metabolismo , Transporte Biológico , Diatomeas/genética , Endocitosis , Evolución Molecular , Genoma/genética , Humanos , Concentración de Iones de Hidrógeno , Fitoplancton/clasificación , Fitoplancton/genética , Fitoplancton/metabolismo , Agua de Mar/química
2.
Proc Natl Acad Sci U S A ; 116(47): 23609-23617, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31685631

RESUMEN

Iron uptake by diatoms is a biochemical process with global biogeochemical implications. In large regions of the surface ocean diatoms are both responsible for the majority of primary production and frequently experiencing iron limitation of growth. The strategies used by these phytoplankton to extract iron from seawater constrain carbon flux into higher trophic levels and sequestration into sediments. In this study we use reverse genetic techniques to target putative iron-acquisition genes in the model pennate diatom Phaeodactylum tricornutum We describe components of a reduction-dependent siderophore acquisition pathway that relies on a bacterial-derived receptor protein and provides a viable alternative to inorganic iron uptake under certain conditions. This form of iron uptake entails a close association between diatoms and siderophore-producing organisms during low-iron conditions. Homologs of these proteins are found distributed across diatom lineages, suggesting the significance of siderophore utilization by diatoms in the marine environment. Evaluation of specific proteins enables us to confirm independent iron-acquisition pathways in diatoms and characterize their preferred substrates. These findings refine our mechanistic understanding of the multiple iron-uptake systems used by diatoms and help us better predict the influence of iron speciation on taxa-specific iron bioavailability.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Diatomeas/metabolismo , FMN Reductasa/metabolismo , Hierro/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Receptores de Superficie Celular/metabolismo , Sideróforos/metabolismo , Disponibilidad Biológica , Transporte Biológico , Sistemas CRISPR-Cas , Cambio Climático , Diatomeas/genética , Diatomeas/crecimiento & desarrollo , FMN Reductasa/genética , Galio/metabolismo , Técnicas de Inactivación de Genes , Proteínas de Transporte de Membrana/genética , Microbiota , Oxidación-Reducción , Filogenia , Proteínas Recombinantes de Fusión/metabolismo , Agua de Mar/química , Especificidad de la Especie
3.
Proc Natl Acad Sci U S A ; 115(52): 13300-13305, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30530699

RESUMEN

Subsurface chlorophyll maximum layers (SCMLs) are nearly ubiquitous in stratified water columns and exist at horizontal scales ranging from the submesoscale to the extent of oligotrophic gyres. These layers of heightened chlorophyll and/or phytoplankton concentrations are generally thought to be a consequence of a balance between light energy from above and a limiting nutrient flux from below, typically nitrate (NO3). Here we present multiple lines of evidence demonstrating that iron (Fe) limits or with light colimits phytoplankton communities in SCMLs along a primary productivity gradient from coastal to oligotrophic offshore waters in the southern California Current ecosystem. SCML phytoplankton responded markedly to added Fe or Fe/light in experimental incubations and transcripts of diatom and picoeukaryote Fe stress genes were strikingly abundant in SCML metatranscriptomes. Using a biogeochemical proxy with data from a 40-y time series, we find that diatoms growing in California Current SCMLs are persistently Fe deficient during the spring and summer growing season. We also find that the spatial extent of Fe deficiency within California Current SCMLs has significantly increased over the last 25 y in line with a regional climate index. Finally, we show that diatom Fe deficiency may be common in the subsurface of major upwelling zones worldwide. Our results have important implications for our understanding of the biogeochemical consequences of marine SCML formation and maintenance.

4.
Proc Natl Acad Sci U S A ; 114(6): 1252-1257, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28115723

RESUMEN

Enhanced vertical carbon transport (gravitational sinking and subduction) at mesoscale ocean fronts may explain the demonstrated imbalance of new production and sinking particle export in coastal upwelling ecosystems. Based on flux assessments from 238U:234Th disequilibrium and sediment traps, we found 2 to 3 times higher rates of gravitational particle export near a deep-water front (305 mg C⋅m-2⋅d-1) compared with adjacent water or to mean (nonfrontal) regional conditions. Elevated particle flux at the front was mechanistically linked to Fe-stressed diatoms and high mesozooplankton fecal pellet production. Using a data assimilative regional ocean model fit to measured conditions, we estimate that an additional ∼225 mg C⋅m-2⋅d-1 was exported as subduction of particle-rich water at the front, highlighting a transport mechanism that is not captured by sediment traps and is poorly quantified by most models and in situ measurements. Mesoscale fronts may be responsible for over a quarter of total organic carbon sequestration in the California Current and other coastal upwelling ecosystems.

5.
Appl Environ Microbiol ; 82(5): 1613-1624, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26729720

RESUMEN

Heterotrophic bacteria in the SAR11 and Roseobacter lineages shape the marine carbon, nitrogen, phosphorous, and sulfur cycles, yet they do so having adopted divergent ecological strategies. Currently, it is unknown whether these globally significant groups partition into specific niches with respect to micronutrients (e.g., trace metals) and how that may affect marine trace metal cycling. Here, we used comparative genomics to identify diverse iron, cobalt, nickel, copper, and zinc uptake capabilities in SAR11 and Roseobacter genomes and uncover surprising unevenness within and between lineages. The strongest predictors for the extent of the metal uptake gene content are the total number of transporters per genome, genome size, total metal transporters, and GC content, but numerous exceptions exist in both groups. Taken together, our results suggest that SAR11 have strongly minimized their trace metal uptake versatility, with high-affinity zinc uptake being a unique exception. The larger Roseobacter genomes have greater trace metal uptake versatility on average, but they also appear to have greater plasticity, resulting in phylogenetically similar genomes having largely different capabilities. Ultimately, phylogeny is predictive of the diversity and extent of 20 to 33% of all metal uptake systems, suggesting that specialization in metal utilization mostly occurred independently from overall lineage diversification in both SAR11 and Roseobacter. We interpret these results as reflecting relatively recent trace metal niche partitioning in both lineages, suggesting that concentrations and chemical forms of metals in the marine environment are important factors shaping the gene content of marine heterotrophic Alphaproteobacteria of the SAR11 and Roseobacter lineages.


Asunto(s)
Organismos Acuáticos/metabolismo , Bacterias/metabolismo , Metales/metabolismo , Oligoelementos/metabolismo , Bacterias/genética , Proteínas de Transporte de Membrana/genética
6.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38624181

RESUMEN

Iron is an essential nutrient for all microorganisms of the marine environment. Iron limitation of primary production has been well documented across a significant portion of the global surface ocean, but much less is known regarding the potential for iron limitation of the marine heterotrophic microbial community. In this work, we characterize the transcriptomic response of the heterotrophic bacterial community to iron additions in the California Current System, an eastern boundary upwelling system, to detect in situ iron stress of heterotrophic bacteria. Changes in gene expression in response to iron availability by heterotrophic bacteria were detected under conditions of high productivity when carbon limitation was relieved but when iron availability remained low. The ratio of particulate organic carbon to dissolved iron emerged as a biogeochemical proxy for iron limitation of heterotrophic bacteria in this system. Iron stress was characterized by high expression levels of iron transport pathways and decreased expression of iron-containing enzymes involved in carbon metabolism, where a majority of the heterotrophic bacterial iron requirement resides. Expression of iron stress biomarkers, as identified in the iron-addition experiments, was also detected insitu. These results suggest iron availability will impact the processing of organic matter by heterotrophic bacteria with potential consequences for the marine biological carbon pump.


Asunto(s)
Bacterias , Carbono , Procesos Heterotróficos , Hierro , Agua de Mar , Hierro/metabolismo , Carbono/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Agua de Mar/microbiología , California , Microbiota
7.
Appl Environ Microbiol ; 79(18): 5753-62, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23872569

RESUMEN

The bioavailability and utilization of porphyrin-bound iron, specifically heme, by marine microorganisms have rarely been examined. This study used Ruegeria sp. strain TrichCH4B as a model organism to study heme acquisition by a member of the Roseobacter clade. Analogs of known heme transporter proteins were found within the Ruegeria sp. TrichCH4B genome. The identified heme uptake and utilization system appears to be functional, as the heme genes were upregulated under iron stress, the bacterium could grow on ferric-porphyrin complexes as the sole iron source, and internalization of (55) Fe from ferric protoporphyrin IX was observed. The potential ability to utilize heme in the Roseobacter clade appears to be common, as half of the isolates in the RoseoBase database were found to have a complete heme uptake system. A degenerate primer set was designed and successfully used to identify the putative heme oxygenase gene (hmus) in the roseobacter heme uptake system from diverse nonenriched marine environments. This study found that members of the Roseobacter clade are capable of utilizing heme as an iron source and that this capability may be present in all types of marine environments. The results of this study add a new perspective to the current picture of iron cycling in marine systems, whereby relatively refractory intracellular pools of heme-bound iron may be taken up quickly and directly reincorporated into living bacteria without previous degradation or the necessity of a siderophore intermediate.


Asunto(s)
Organismos Acuáticos/metabolismo , Hemo/metabolismo , Hierro/metabolismo , Rhodobacteraceae/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Marcaje Isotópico , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Rhodobacteraceae/genética , Rhodobacteraceae/crecimiento & desarrollo , Análisis de Secuencia de ADN
8.
Nat Commun ; 14(1): 7215, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940668

RESUMEN

Coastal upwelling regions are among the most productive marine ecosystems but may be threatened by amplified ocean acidification. Increased acidification is hypothesized to reduce iron bioavailability for phytoplankton thereby expanding iron limitation and impacting primary production. Here we show from community to molecular levels that phytoplankton in an upwelling region respond to short-term acidification exposure with iron uptake pathways and strategies that reduce cellular iron demand. A combined physiological and multi-omics approach was applied to trace metal clean incubations that introduced 1200 ppm CO2 for up to four days. Although variable, molecular-level responses indicate a prioritization of iron uptake pathways that are less hindered by acidification and reductions in iron utilization. Growth, nutrient uptake, and community compositions remained largely unaffected suggesting that these mechanisms may confer short-term resistance to acidification; however, we speculate that cellular iron demand is only temporarily satisfied, and longer-term acidification exposure without increased iron inputs may result in increased iron stress.


Asunto(s)
Fitoplancton , Agua de Mar , Fitoplancton/metabolismo , Ecosistema , Concentración de Iones de Hidrógeno , Hierro/metabolismo
9.
Environ Microbiol ; 14(1): 114-28, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21883791

RESUMEN

In the pelagic environment, iron is a scarce but essential micronutrient. The iron acquisition capabilities of selected marine bacteria have been investigated, but the recent proliferation of marine prokaryotic genomes and metagenomes offers a more comprehensive picture of microbial iron uptake pathways in the ocean. Searching these data sets, we were able to identify uptake mechanisms for Fe(3+), Fe(2+) and iron chelates (e.g. siderophore and haem iron complexes). Transport of iron chelates is accomplished by TonB-dependent transporters (TBDTs). After clustering the TBDTs from marine prokaryotic genomes, we identified TBDT clusters for the transport of hydroxamate and catecholate siderophore iron complexes and haem using gene neighbourhood analysis and co-clustering of TBDTs of known function. The genomes also contained two classes of siderophore biosynthesis genes: NRPS (non-ribosomal peptide synthase) genes and NIS (NRPS Independent Siderophore) genes. The most common iron transporters, in both the genomes and metagenomes, were Fe(3+) ABC transporters. Iron uptake-related TBDTs and siderophore biosynthesis genes were less common in pelagic marine metagenomes relative to the genomic data set, in part because Pelagibacter ubique and Prochlorococcus species, which almost entirely lacked these Fe uptake systems, dominate the metagenomes. Our results are largely consistent with current knowledge of iron speciation in the ocean, but suggest that in certain niches the ability to acquire siderophores and/or haem iron chelates is beneficial.


Asunto(s)
Bacterias/genética , Hierro/metabolismo , Metagenoma , Sideróforos/genética , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Secuencia de Aminoácidos , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Análisis por Conglomerados , Datos de Secuencia Molecular , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Agua de Mar/microbiología , Sideróforos/biosíntesis
10.
ISME J ; 16(2): 358-369, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34341506

RESUMEN

It is now widely accepted that siderophores play a role in marine iron biogeochemical cycling. However, the mechanisms by which siderophores affect the availability of iron from specific sources and the resulting significance of these processes on iron biogeochemical cycling as a whole have remained largely untested. In this study, we develop a model system for testing the effects of siderophore production on iron bioavailability using the marine copiotroph Alteromonas macleodii ATCC 27126. Through the generation of the knockout cell line ΔasbB::kmr, which lacks siderophore biosynthetic capabilities, we demonstrate that the production of the siderophore petrobactin enables the acquisition of iron from mineral sources and weaker iron-ligand complexes. Notably, the utilization of lithogenic iron, such as that from atmospheric dust, indicates a significant role for siderophores in the incorporation of new iron into marine systems. We have also detected petrobactin, a photoreactive siderophore, directly from seawater in the mid-latitudes of the North Pacific and have identified the biosynthetic pathway for petrobactin in bacterial metagenome-assembled genomes widely distributed across the global ocean. Together, these results improve our mechanistic understanding of the role of siderophore production in iron biogeochemical cycling in the marine environment wherein iron speciation, bioavailability, and residence time can be directly influenced by microbial activities.


Asunto(s)
Alteromonas , Sideróforos , Alteromonas/metabolismo , Benzamidas , Hierro/metabolismo , Océanos y Mares , Sideróforos/metabolismo
11.
mSystems ; 5(2)2020 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-32345736

RESUMEN

Iron is an essential micronutrient for all microbial growth in the marine environment, and in heterotrophic bacteria, iron is tightly linked to carbon metabolism due to its central role as a cofactor in enzymes of the respiratory chain. Here, we present the iron- and carbon-regulated transcriptomes of a representative marine copiotroph, Alteromonas macleodii ATCC 27126, and characterize its cellular transport mechanisms. ATCC 27126 has distinct metabolic responses to iron and carbon limitation and, accordingly, uses distinct sets of TonB-dependent transporters for the acquisition of iron and carbon. These distinct sets of TonB-dependent transporters were of a similar number, indicating that the diversity of carbon and iron substrates available to ATCC 27126 is of a similar scale. For the first time in a marine bacterium, we have also identified six characteristic inner membrane permeases for the transport of siderophores via an ATPase-independent mechanism. An examination of the distribution of specific TonB-dependent transporters in 31 genomes across the genus Alteromonas points to niche specialization in transport capacity, particularly for iron. We conclude that the substrate-specific bioavailability of both iron and carbon in the marine environment will likely be a key control on the processing of organic matter through the microbial loop.IMPORTANCE As the major facilitators of the turnover of organic matter in the marine environment, the ability of heterotrophic bacteria to acquire specific compounds within the diverse range of dissolved organic matter will affect the regeneration of essential nutrients such as iron and carbon. TonB-dependent transporters are a prevalent cellular tool in Gram-negative bacteria that allow a relatively high-molecular-weight fraction of organic matter to be directly accessed. However, these transporters are not well characterized in marine bacteria, limiting our understanding of the flow of specific substrates through the marine microbial loop. Here, we characterize the TonB-dependent transporters responsible for iron and carbon acquisition in a representative marine copiotroph and examine their distribution across the genus Alteromonas We provide evidence that substrate-specific bioavailability is niche specific, particularly for iron complexes, indicating that transport capacity may serve as a significant control on microbial community dynamics and the resultant cycling of organic matter.

12.
Appl Environ Microbiol ; 74(20): 6263-70, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18757577

RESUMEN

The ability to acquire diverse and abundant forms of iron would be expected to confer a survival advantage in the marine environment, where iron is scarce. Marine bacteria are known to use siderophores and inorganic iron, but their ability to use heme, an abundant intracellular iron form, has only been examined preliminarily. Microscilla marina, a cultured relative of a bacterial group frequently found on marine particulates, was used as a model organism to examine heme uptake. Searches of the genome revealed analogs to known heme transport proteins, and reverse transcription-quantitative PCR analysis of these genes showed that they were expressed and upregulated under iron stress and during growth on heme. M. marina was found to take up heme-bound iron and could grow on heme as a sole iron source, supporting the genetic evidence for heme transport. Similar putative heme transport components were identified in the genomes of diverse marine bacteria. These systems were found in the genomes of many bacteria thought to be particle associated but were lacking in known free-living organisms (e.g., Pelagibacter ubique and marine cyanobacteria). This distribution of transporters is consistent with the hydrophobic, light-sensitive nature of heme, suggesting that it is primarily available on phytoplankton or detritus or in nutrient-rich environments.


Asunto(s)
Proteínas Bacterianas/genética , Cytophagaceae/metabolismo , Hemo/metabolismo , Proteínas de Transporte de Membrana/genética , Bacterias/genética , Cytophagaceae/crecimiento & desarrollo , Perfilación de la Expresión Génica , Genes Bacterianos , Hierro/metabolismo , Familia de Multigenes , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Regulación hacia Arriba , Microbiología del Agua
13.
mSystems ; 2(1)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28083564

RESUMEN

Iron is an essential micronutrient and can limit the growth of both marine phytoplankton and heterotrophic bacterioplankton. In this study, we investigated the molecular basis of heme transport, an organic iron acquisition pathway, in phytoplankton-associated Roseobacter bacteria and explored the potential role of bacterial heme uptake in the marine environment. We searched 153 Roseobacter genomes and found that nearly half contained putative complete heme transport systems with nearly the same synteny. We also examined a publicly available coculture transcriptome and found that Roseobacter strain Sulfitobacter sp. strain SA11 strongly downregulated a putative heme transport gene cluster during mutualistic growth with a marine diatom, suggesting that the regulation of heme transport might be influenced by host cues. We generated a mutant of phytoplankton-associated Roseobacter strain Ruegeria sp. strain TM1040 by insertionally inactivating its homolog of the TonB-dependent heme transporter hmuR and confirmed the role of this gene in the uptake of heme and hemoproteins. We performed competition experiments between iron-limited wild-type and mutant TM1040 strains and found that the wild type maintains a growth advantage when competing with the mutant for iron compounds derived solely from lysed diatom cells. Heme transport systems were largely absent from public marine metagenomes and metatranscriptomes, suggesting that marine bacteria with the potential for heme transport likely have small standing populations in the free-living bacterioplankton. Heme transport is likely a useful strategy for phytoplankton-associated bacteria because it provides direct access to components of the host intracellular iron pool after lysis. IMPORTANCE Ecosystem productivity in large regions of the surface ocean is fueled by iron that has been microbially regenerated from biomass. Currently, the specific microbes and molecules that mediate the transfer of recycled iron between microbial trophic levels remain largely unknown. We characterized a marine bacterial heme transporter and verified its role in acquiring heme, an abundant iron-containing enzyme cofactor. We present evidence that after host cell lysis, phytoplankton-associated bacteria directly extract heme and hemoproteins from algal cellular debris in order to fulfill their iron requirements and that the regulation of this process may be modulated by host cues. Direct heme transport, in contrast to multistep extracellular processing of hemoproteins, may allow certain phytoplankton-associated bacteria to rapidly extract iron from decaying phytoplankton, thus efficiently recycling cellular iron into the wider microbial loop.

14.
ISME J ; 9(5): 1076-92, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25333462

RESUMEN

Transitions in community genomic features and biogeochemical processes were examined in surface and subsurface chlorophyll maximum (SCM) microbial communities across a trophic gradient from mesotrophic waters near San Diego, California to the oligotrophic Pacific. Transect end points contrasted in thermocline depth, rates of nitrogen and CO2 uptake, new production and SCM light intensity. Relative to surface waters, bacterial SCM communities displayed greater genetic diversity and enrichment in putative sulfur oxidizers, multiple actinomycetes, low-light-adapted Prochlorococcus and cell-associated viruses. Metagenomic coverage was not correlated with transcriptional activity for several key taxa within Bacteria. Low-light-adapted Prochlorococcus, Synechococcus, and low abundance gamma-proteobacteria enriched in the>3.0-µm size fraction contributed disproportionally to global transcription. The abundance of these groups also correlated with community functions, such as primary production or nitrate uptake. In contrast, many of the most abundant bacterioplankton, including SAR11, SAR86, SAR112 and high-light-adapted Prochlorococcus, exhibited low levels of transcriptional activity and were uncorrelated with rate processes. Eukaryotes such as Haptophytes and non-photosynthetic Aveolates were prevalent in surface samples while Mamielles and Pelagophytes dominated the SCM. Metatranscriptomes generated with ribosomal RNA-depleted mRNA (total mRNA) coupled to in vitro polyadenylation compared with polyA-enriched mRNA revealed a trade-off in detection eukaryotic organelle and eukaryotic nuclear origin transcripts, respectively. Gene expression profiles of SCM eukaryote populations, highly similar in sequence identity to the model pelagophyte Pelagomonas sp. CCMP1756, suggest that pelagophytes are responsible for a majority of nitrate assimilation within the SCM.


Asunto(s)
Clorofila/análisis , Genoma Bacteriano , Metagenómica , Prochlorococcus/genética , Agua de Mar/microbiología , Organismos Acuáticos/clasificación , Organismos Acuáticos/genética , Bacterias/clasificación , Bacterias/genética , California , Dióxido de Carbono/química , Clorofila A , Expresión Génica , Perfilación de la Expresión Génica , Variación Genética , Haptophyta/genética , Luz , Nitratos/química , Océano Pacífico , Synechococcus/genética , Transcriptoma
15.
Metallomics ; 6(11): 2042-51, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25222699

RESUMEN

Growth of the prevalent marine organism Trichodesmium can be limited by iron in natural and laboratory settings. This study investigated the iron uptake mechanisms that the model organism T. erythraeum IMS101 uses to acquire iron from inorganic iron and iron associated with the weak ligand complex, ferric citrate. IMS101 was observed to employ two different iron uptake mechanisms: superoxide-mediated reduction of inorganic iron in the surrounding milieu and a superoxide-independent uptake system for ferric citrate complexes. While the detailed pathway of ferric citrate utilization remains to be elucidated, transport of iron from this complex appears to involve reduction and/or exchange of the iron out of the complex prior to uptake, either at the outer membrane of the cell or within the periplasmic space. Various iron uptake strategies may allow Trichodesmium to effectively scavenge iron in oligotrophic ocean environments.


Asunto(s)
Cianobacterias/metabolismo , Cianobacterias/fisiología , Compuestos Férricos/metabolismo , Hierro/metabolismo , Transporte Biológico , Superóxidos/metabolismo
16.
Metallomics ; 6(6): 1107-20, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24811388

RESUMEN

Hemes are iron containing heterocyclic molecules important in many cellular processes. In the marine environment, hemes participate as enzymatic cofactors in biogeochemically significant processes like photosynthesis, respiration, and nitrate assimilation. Further, hemoproteins, hemes, and their analogs appear to be iron sources for some marine bacterioplankton under certain conditions. Current oceanographic analytical methodologies allow for the extraction and measurement of heme b from marine material, and a handful of studies have begun to examine the distribution of heme b in ocean basins. The study of heme in the marine environment is still in its infancy, but some trends can be gleaned from the work that has been published so far. In this review, we summarize what is known or might be inferred about the roles of heme in marine microbes as well as the few studies on heme in the marine environment that have been conducted to date. We conclude by presenting some future questions and challenges for the field.


Asunto(s)
Organismos Acuáticos/metabolismo , Hemo/análisis , Hemo/metabolismo , Hemoproteínas/metabolismo , Hierro/metabolismo , Animales , Organismos Acuáticos/química , Organismos Acuáticos/citología , Hemoproteínas/química , Hierro/análisis , Océanos y Mares , Fotosíntesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA