RESUMEN
Oxytocin plays an important role in modulating social recognition memory. However, the direct implication of oxytocin neurons of the paraventricular nucleus of the hypothalamus (PVH) and their downstream hypothalamic targets in regulating short- and long-term forms of social recognition memory has not been fully investigated. In this study, we employed a chemogenetic approach to target the activity of PVH oxytocin neurons in male rats and found that specific silencing of this neuronal population led to an impairment in short- and long-term social recognition memory. We combined viral-mediated fluorescent labeling of oxytocin neurons with immunohistochemical techniques and identified the supramammillary nucleus (SuM) of the hypothalamus as a target of PVH oxytocinergic axonal projections in rats. We used multiplex fluorescence in situ hybridization to label oxytocin receptors in the SuM and determined that they are predominantly expressed in glutamatergic neurons, including those that project to the CA2 region of the hippocampus. Finally, we used a highly selective oxytocin receptor antagonist in the SuM to examine the involvement of oxytocin signaling in modulating short- and long-term social recognition memory and found that it is necessary for the formation of both. This study discovered a previously undescribed role for the SuM in regulating social recognition memory via oxytocin signaling and reinforced the specific role of PVH oxytocin neurons in regulating this form of memory.
RESUMEN
The insular cortex (INS) is extensively connected to the central nucleus of the amygdala (CEA), and both regions send convergent projections into the caudal lateral hypothalamus (LHA) encompassing the parasubthalamic nucleus (PSTN). However, the organization of the network between these structures has not been clearly delineated in the literature, although there has been an upsurge in functional studies related to these structures, especially with regard to the cognitive and psychopathological control of feeding. We conducted tract-tracing experiments from the INS and observed a pathway to the PSTN region that runs parallel to the canonical hyperdirect pathway from the isocortex to the subthalamic nucleus (STN) adjacent to the PSTN. In addition, an indirect pathway with a relay in the central amygdala was also observed that is similar in its structure to the classic indirect pathway of the basal ganglia that also targets the STN. C-Fos experiments showed that the PSTN complex reacts to neophobia and sickness induced by lipopolysaccharide or cisplatin. Chemogenetic (designer receptors exclusively activated by designer drugs [DREADD]) inhibition of tachykininergic neurons (Tac1) in the PSTN revealed that this nucleus gates a stop "no-eat" signal to refrain from feeding when the animal is subjected to sickness or exposed to a previously unknown source of food. Therefore, our anatomical findings in rats and mice indicate that the INS-PSTN network is organized in a similar manner as the hyperdirect and indirect basal ganglia circuitry. Functionally, the PSTN is involved in gating feeding behavior, which is conceptually homologous to the motor no-go response of the adjacent STN.
Asunto(s)
Ganglios Basales/fisiología , Corteza Cerebral/patología , Conducta Alimentaria/fisiología , Hipotálamo/fisiología , Corteza Olfatoria/fisiología , Animales , Conducta Animal , Núcleo Amigdalino Central , Masculino , Ratones , Modelos Animales , Vías Nerviosas/fisiología , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Núcleo SubtalámicoRESUMEN
BACKGROUND: The posterior intralaminar complex of the thalamus (PIL) is a multimodal nucleus that has been implicated in maternal behaviors and conspecific social behaviors in male and female rodents. Glutamatergic neurons are a major component of the PIL; however, their specific activity and role during social interactions has not yet been assessed. METHODS: We used immunohistochemistry for the immediate early gene c-fos as a proxy for neuronal activity in the PIL of mice exposed to a novel social stimulus, a novel object stimulus, or no stimulus. We then used fiber photometry to record neural activity of glutamatergic neurons in the PIL in real time during social and nonsocial interactions. Finally, we used inhibitory DREADDs (designer receptors exclusively activated by designer drugs) in glutamatergic PIL neurons and tested social preference and social habituation-dishabituation. RESULTS: We observed significantly more c-fos-positive cells in the PIL of mice exposed to a social stimulus versus an object stimulus or no stimulus. Neural activity of PIL glutamatergic neurons was increased when male and female mice were engaged in social interaction with a same-sex juvenile or opposite-sex adult, but not a toy mouse. Neural activity was positively correlated with social investigation bout length and negatively correlated with chronological order of bouts. Social preference was unaffected by inhibition; however, inhibiting activity of glutamatergic neurons in the PIL delayed the time that it took for female mice to form social habituation. CONCLUSIONS: Together, these findings suggest that glutamatergic PIL neurons respond to social stimuli in both male and female mice and may regulate perceptual encoding of social information to facilitate recognition of social stimuli.
Asunto(s)
Interacción Social , Tálamo , Animales , Ratones , Femenino , Masculino , Neuronas/fisiología , Conducta SocialRESUMEN
Social behaviors are crucial for human connection and belonging, often impacted in conditions like Autism Spectrum Disorder (ASD). The mesoaccumbens pathway (VTA and NAc) plays a pivotal role in social behavior and is implicated in ASD. However, the impact of ASD-related mutations on social reward processing remains insufficiently explored. This study focuses on the Shank3 mutation, associated with a rare genetic condition and linked to ASD, examining its influence on the mesoaccumbens pathway during behavior, using the Shank3-deficient rat model. Our findings indicate that Shank3-deficient rats exhibit atypical social interactions and have difficulty adjusting behavior based on reward values, associated with modified neuronal activity of VTA dopaminergic and GABAergic neurons and reduced dopamine release in the NAc. Moreover, we demonstrate that manipulating VTA neuronal activity can normalize this behavior, providing insights into the effects of Shank3 mutations on social reward and behavior, and identify a potential neural pathway for intervention.
RESUMEN
The lateral hypothalamus (LHA) is still a poorly understood brain region. Based on published Dlx and Gad gene expression patterns in the embryonic and adult hypothalamus respectively, three large areas are identified in the LHA. A central tuberal LHA region is already well described as it contains neurons producing the peptides melanin-concentrating hormone or hypocretin. This region is rich in GABAergic neurons and is specified by Dlx gene expression in the rodent embryo. Rostrally and caudally bordering the tuberal LHA, two Dlx-GAD-GABA poor regions are then easily delineated. The three regions show different organizational schema. The tuberal region is reticularly organized, connected with the cerebral cortex and the spinal cord, and its embryonic development occurs along the tractus postopticus. The region anterior to it is associated with the stria medullaris in both embryonic and adult subjects. The posterior LHA region is made of differentiated nuclei and includes the subthalamic nucleus. Therefore, the LHA is divided into three distinct parts: in addition to the well-known tuberal LHA, caudal and anterior LHA regions exist that have specific anatomical and functional characteristics. The hypothalamus is made up of several dozens of nuclei or areas that are more or less well differentiated and whose boundaries and arrangements are drawn differently according to authors and atlases (Allen Institute, 2004; Paxinos and Franklin, 2019; Paxinos and Watson, 2013; Swanson, 2004). The dominant hypothesis for more than 50 years is that these structures are distributed within three antero-posterior areas (anterior, tuberal, posterior) and more or less three longitudinal zones (lateral, medial and periventricular) (Fig. 1). In addition to these regions, several adjacent territories are often associated to the hypothalamus. The preoptic area is functionally related to the hypothalamus, but it is better seen as a telencephalic structure based on developmental data (Croizier et al., 2015; Puelles and Rubenstein, 2015). Lately, the zona incerta and the subthalamic nucleus (STN) have also been associated to the hypothalamus on the basis of their connections and development for the STN (Altman and Bayer, 1986; Barbier and Risold, 2021; Swaab et al., 2021). However, the zona incerta is still included in the 'pre-thalamus' or "ventral thalamus" in the embryo (Puelles and Rubenstein, 2015). Thus, the boundaries of the hypothalamus remain blurred around what we can call a 'core' made of the anterior to posterior regions (Brooks, 1988). In addition, unlike other large brain regions that are characterized early on by a molecular signature, i.e. by the embryonic expression of specific molecular markers, data illustrating the distribution of dozens of transcription factors involved in brain patterning and cell lineage specification confirmed the extremely heterogeneous and mosaic nature of the anterior and posterior regions of the hypothalamus (Alvarez-Bolado, 2019; Puelles et al., 2013; Puelles and Rubenstein, 2015). The rich nuclear organization of the medial and periventricular zones of the hypothalamus is consistent with the mosaic expression of developmental genes. The LHA, however, is often perceived as much more homogeneous in its cytoarchitectural organization. At the same time, there is little information regarding the expression of developmental genes in the anterior and posterior territories of the LHA. Most studies focus on the tuberal LHA which expresses many of these genes. Admittedly, even in the adult hypothalamus, the internal boundaries of the LHA are difficult to identify and the same is true in the embryo. Developmental data alone are insufficient to achieve a better understanding of the LHA anatomical organization and for this region as for medial and periventricular zones, a coherence must be established between development and adult anatomical organization. Among the most useful neurochemical markers to identify large regions of the forebrain, those involved in the identification of GABAergic and glutamatergic neurons have proven to be particularly efficient. Indeed, GABAergic neurons are not ubiquitously distributed. Large regions of the forebrain are rich in such cells, including the basal telencephalon, but others contain few or no GABAergic cells and are rich in glutamatergic neurons instead (for example the dorsal thalamus that is free of GABA-neurons in rodents). The same applies for the hypothalamus: several structures of the hypothalamus are free of GABAergic neurons, as, for example, the mammillary nuclei (Hahn et al., 2019). Recently, we also identified a GABA-poor posterior LHA territory that includes the (STN), and is localized caudal to the GABA-rich tuberal LHA (Barbier et al., 2020; Barbier and Risold, 2021; Chometton et al., 2016b). Therefore, the LHA seems partitioned into GABA-rich/GABA-poor regions. However, to define or confirm distinct neuroanatomical entities, these regions must have a specific embryological origin, and show specific hodological patterns and functions. Hence, the purpose of this short review is to identify divisions of the LHA based on developmental and neurochemical criteria. Such an analysis seems to us relevant in order to allow later functional studies on regions whose boundaries will be based on objective criteria.
Asunto(s)
Glutamato Descarboxilasa , Roedores , Animales , Femenino , Glutamato Descarboxilasa/metabolismo , Humanos , Hipotálamo/metabolismo , Embarazo , Prosencéfalo/metabolismo , Factores de Transcripción/metabolismo , Ácido gamma-AminobutíricoRESUMEN
BACKGROUND: Although there is growing awareness about the potential for people with Down syndrome (DS) to become literate, we know little about the characteristics of handwriting within this population. METHODS: Thirty-three participants took part in this experiment. Eleven adults with DS and 22 typically developing individuals (11 children matched on mental age and 11 adults matched on chronological age) performed a copy task. A French adaptation of the Concise Evaluation Scale for Children's Handwriting (BHK) was used to assess speed and quality. RESULTS: Handwriting of adults with DS was relatively similar to that of the mental age control group, but comparisons with the chronological age control group showed differences on quality and spatial organisation. CONCLUSIONS: Results revealed that adults with DS are capable of producing acceptable writing. Observed differences could be explained by the mode of movement control involved in production. Implications for future research and education are discussed.
Asunto(s)
Síndrome de Down/fisiopatología , Escritura Manual , Desempeño Psicomotor , Adolescente , Adulto , Estudios de Casos y Controles , Síndrome de Down/complicaciones , Femenino , Humanos , Masculino , Destreza Motora , Adulto JovenRESUMEN
The subthalamic nucleus (STN) is an essential component of the basal ganglia and has long been considered to be a part of the ventral thalamus. However, recent neurodevelopmental data indicated that this nucleus is of hypothalamic origin which is now commonly acknowledged. In this work, we aimed to verify whether the inclusion of the STN in the hypothalamus could influence the way we understand and conduct research on the organization of the whole ventral and posterior diencephalon. Developmental and neurochemical data indicate that the STN is part of a larger glutamatergic posterior hypothalamic region that includes the premammillary and mammillary nuclei. The main anatomic characteristic common to this region involves the convergent cortical and pallidal projections that it receives, which is based on the model of the hyperdirect and indirect pathways to the STN. This whole posterior hypothalamic region is then integrated into distinct functional networks that interact with the ventral mesencephalon to adjust behavior depending on external and internal contexts.
Asunto(s)
Núcleo Subtalámico , Ganglios Basales , Globo Pálido , Hipotálamo , Vías NerviosasRESUMEN
The zona incerta (ZI) is a large structure made of four neurochemically defined regions (at least, in rodents). It is globally involved in complex connections with telencephalic and brainstem centers. In this work, we focus on some of the anatomical links this structure develops with the cerebral cortex and the tectum. We also point to its integration within a larger basal ganglia network. The functions of this region are still mysterious, even if recent works suggest its participation in behavioral expression. Studies about the functional organization of the vibrissal system have provided the first integrated model, illustrating the ZI's role in sensory-motor programing. In addition, ZI connections with the superior colliculus and the cerebral cortex as well as recent behavioral studies point to this region playing a role in cognitive processes related to attention toward salient stimuli.
Asunto(s)
Zona Incerta , Atención , Tronco Encefálico , Corteza Cerebral , Humanos , MovimientoRESUMEN
As stressful environment is a potent modulator of feeding, we seek in the present work to decipher the neuroanatomical basis for an interplay between stress and feeding behaviors. For this, we combined anterograde and retrograde tracing with immunohistochemical approaches to investigate the patterns of projections between the dorsomedial division of the bed nucleus of the stria terminalis (BNST), well connected to the amygdala, and hypothalamic structures such as the paraventricular (PVH) and dorsomedial (DMH), the arcuate (ARH) nuclei and the lateral hypothalamic areas (LHA) known to control feeding and motivated behaviors. We particularly focused our study on afferences to proopiomelanocortin (POMC), agouti-related peptide (AgRP), melanin-concentrating-hormone (MCH) and orexin (ORX) neurons characteristics of the ARH and the LHA, respectively. We found light to intense innervation of all these hypothalamic nuclei. We particularly showed an innervation of POMC, AgRP, MCH and ORX neurons by the dorsomedial and dorsolateral divisions of the BNST. Therefore, these results lay the foundation for a better understanding of the neuroanatomical basis of the stress-related feeding behaviors.
Asunto(s)
Amígdala del Cerebelo/anatomía & histología , Hipotálamo/anatomía & histología , Ratones/anatomía & histología , Vías Nerviosas/anatomía & histología , Núcleos Septales/anatomía & histología , Proteína Relacionada con Agouti/análisis , Animales , Transporte Axonal , Conducta Alimentaria/fisiología , Conducta Alimentaria/psicología , Hormonas Hipotalámicas/análisis , Proteínas Luminiscentes/análisis , Masculino , Melaninas/análisis , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/análisis , Neuronas/química , Neuronas/clasificación , Neuronas/ultraestructura , Orexinas/análisis , Fitohemaglutininas/análisis , Hormonas Hipofisarias/análisis , Proproteína Convertasas/análisis , Virus de la Rabia , Especificidad de la Especie , Tirosina 3-Monooxigenasa/análisis , Proteína Fluorescente RojaRESUMEN
Hypothalamic oxytocin (OXT) and arginine-vasopressin (AVP) neurons have been at the center of several physiological and behavioral studies. Advances in viral vector biology and the development of transgenic rodent models have allowed for targeted gene expression to study the functions of specific cell populations and brain circuits. In this study, we compared the efficiency of various adeno-associated viral vectors in these cell populations and demonstrated that none of the widely used promoters were, on their own, effective at driving expression of a down-stream fluorescent protein in OXT or AVP neurons. As anticipated, the OXT promoter could efficiently drive gene expression in OXT neurons and this efficiency is solely attributed to the promoter and not the viral serotype. We also report that a dual virus approach using an OXT promoter driven Cre recombinase significantly improved the efficiency of viral transduction in OXT neurons. Finally, we demonstrate the utility of the OXT promoter for conducting functional studies on OXT neurons by using an OXT specific viral system to record neural activity of OXT neurons in lactating female rats across time. We conclude that extreme caution is needed when employing non-neuron-specific viral approaches/promoters to study neural populations within the paraventricular nucleus of the hypothalamus.
Asunto(s)
Lactancia/metabolismo , Modelos Neurológicos , Neuronas/metabolismo , Oxitocina/metabolismo , Regiones Promotoras Genéticas , Animales , Animales Modificados Genéticamente , Arginina Vasopresina/metabolismo , Electrofisiología , Femenino , Hipotálamo , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Hipotalámico Paraventricular/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
Injection of the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHAL) into the rat rostral and caudal supramammillary nucleus (SUM) provided expected patterns of projections into the hippocampus and the septal region. In addition, unexpectedly intense projections were observed into the claustrum defined by parvalbumin expression. Injections of the retrograde tracer fluorogold (FG) into the hippocampus and the region of the claustrum showed that the cells of origin of these projections distributed similarly within the borders of the SUM. The SUM is usually involved in control of hippocampal theta activity, but the observation of intense projections into the claustrum indicates that it may also influence isocortical processes. Therefore, the SUM may coordinate sensory processing in the isocortex with memory formation in the hippocampus.
Asunto(s)
Claustro/fisiología , Hipotálamo Posterior/fisiología , Neuronas/fisiología , Animales , Claustro/efectos de los fármacos , Hipotálamo Posterior/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Técnicas de Trazados de Vías Neuroanatómicas , Trazadores del Tracto Neuronal/farmacología , Neuronas/efectos de los fármacos , RatasRESUMEN
Projections from the central nucleus of the amygdala (CEA) into the lateral hypothalamic area (LHA) show a very complex pattern. After injection of an anterograde tracer (Phaseolus vulgaris leucoagglutinin-PHAL) into the medial and intermediate parts of the CEA, we observed that labeled axons converged onto the caudal lateral LHA but provided distinct patterns in rostral tuberal regions. These projections were compared to that of neurons containing the peptides "melanin-concentrating hormone" (MCH) or hypocretin (Hcrt). Because the distribution of these neurons is stereotyped, it was possible to characterize distinct divisions into the LHA. Some of them in the rostral tuberal LHA [the dorsal (LHAd) and suprafornical regions (LHAs)] received a distinct innervation by projections that originated from neurons in respectively anterior or posterior regions of the medial part (CEAm) or from the intermediate part (CEAi) of the central nucleus. Therefore, this work illustrates that projections from the CEAm and CEAi converge into the caudal lateral LHA but diverge into the rostral tuberal LHA.
RESUMEN
The actual organization of the central nucleus of the amygdala (CEA) in the rat is mostly based on cytoarchitecture and the distribution of several cell types, as described by McDonald in 1982. Four divisions were identified by this author. However, since this original work, one of these divisions, the intermediate part, has not been consistently recognized based on Nissl-stained material. In the present study, we observed that a compact condensation of retrogradely labeled cells is found in the CEA after fluorogold injection in the anterior region of the tuberal lateral hypothalamic area (LHA) in the rat. We then searched for neurochemical markers of this cell condensation and found that it is quite specifically labeled for calbindin (Cb), but also contains calretinin (Cr), tyrosine hydroxylase (TH) and methionine-enkephalin (Met-Enk) immunohistochemical signals. These neurochemical features are specific to this cell group which, therefore, is distinct from the other parts of the CEA. We then performed cholera toxin injections in the mouse LHA to identify this cell group in this species. We found that neurons exist in the medial and rostral CEAl that project into the LHA but they have a less tight organization than in the rat.
Asunto(s)
Núcleo Amigdalino Central/fisiología , Animales , Calbindina 2/metabolismo , Calbindinas/metabolismo , Núcleo Amigdalino Central/anatomía & histología , Encefalina Metionina/metabolismo , Área Hipotalámica Lateral/anatomía & histología , Área Hipotalámica Lateral/fisiología , Inmunohistoquímica , Masculino , Ratones , Vías Nerviosas/anatomía & histología , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley , Tirosina 3-Monooxigenasa/metabolismoRESUMEN
The origin of spontaneous preference for dietary lipids in humans and rodents is debated, though recent compelling evidence has shown the existence of fat taste that might be considered a sixth taste quality. We investigated the implication of gustatory and reward brain circuits, triggered by linoleic acid (LA), a long-chain fatty acid. The LA was applied onto the circumvallate papillae for 30 min in conscious C57BL/6J mice, and neuronal activation was assessed using c-Fos immunohistochemistry. By using real-time reverse transcription polymerase chain reaction (RT-qPCR), we also studied the expression of mRNA encoding brain-derived neurotrophic factor (BDNF), Zif-268, and Glut-1 in some brain areas of these animals. LA induced a significant increase in c-Fos expression in the nucleus of solitary tract (NST), parabrachial nucleus (PBN), and ventroposterior medialis parvocellularis (VPMPC) of the thalamus, which are the regions known to be activated by gustatory signals. LA also triggered c-Fos expression in the central amygdala and ventral tegmental area (VTA), involved in food reward, in conjunction with emotional traits. Interestingly, we noticed a high expression of BDNF, Zif-268, and Glut-1 mRNA in the arcuate nucleus (Arc) and hippocampus (Hipp), where neuronal activation leads to memory formation. Our study demonstrates that oral lipid taste perception might trigger the activation of canonical gustatory and reward pathways.
Asunto(s)
Conducta Animal , Encéfalo/fisiología , Ácido Linoleico/administración & dosificación , Recompensa , Papilas Gustativas/fisiología , Percepción del Gusto , Gusto , Animales , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína 1 de la Respuesta de Crecimiento Precoz/genética , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Ácido Linoleico/metabolismo , Masculino , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Plasticidad Neuronal , Proteínas Proto-Oncogénicas c-fos/metabolismo , Papilas Gustativas/metabolismoRESUMEN
The claustrum is a small, elongated nucleus close to the external capsule and deep in the insular cortex. In rodents, this nucleus is characterized by a dense cluster of parvalbumin labeling. The claustrum is connected with the cerebral cortex. It does not project to the brainstem, but brainstem structures can influence this nucleus. To identify some specific projections from the lateral hypothalamus and midbrain, we analyzed the distribution of projections labeled with antibodies against tyrosine hydroxylase (TH), melanin-concentrating hormone (MCH), and hypocretin (Hcrt) in the region of the claustrum. The claustrum contains a significant projection by MCH axons, whereas it is devoid of TH projections. Unlike TH and MCH axons, Hcrt axons are scattered throughout the region. This observation is discussed mainly with regard to the role of the claustrum in cognitive functions and that of MCH in REM sleep. J. Comp. Neurol. 525:1489-1498, 2017. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Axones/metabolismo , Ganglios Basales/citología , Ganglios Basales/metabolismo , Vías Nerviosas/citología , Vías Nerviosas/metabolismo , Animales , Técnica del Anticuerpo Fluorescente , Hormonas Hipotalámicas/metabolismo , Imagenología Tridimensional , Masculino , Melaninas/metabolismo , Orexinas/metabolismo , Hormonas Hipofisarias/metabolismo , Ratas , Ratas Sprague-Dawley , Tirosina 3-Monooxigenasa/metabolismoRESUMEN
The parasubthalamic nucleus (PSTN) and the ventrally adjacent calbindin nucleus (CbN) form a nuclear complex in the posterior lateral hypothalamic area (LHA), recently characterized as connected with the central nucleus of the amygdala (CEA). The aim of the present work is to analyze in detail the projections from the amygdala into the PSTN/CbN, also focusing on pathways into the LHA. After fluorogold injections into the PSTN/CbN, the medial part of the CEA (CEAm) appears to be the main supplier of projections from the CEA. Other amygdalar nuclei contribute to the innervation of the PSTN/CbN complex, including the anterior part of the basomedial nucleus (BMAa). Injections of the anterograde tracer, Phaseolus vulgaris leucoagglutinin (PHAL), into the CEAm and BMAa revealed that projections from the CEAm follow two pathways into the LHA: a dorsal pathway formed by axons that also innervate the paraventricular hypothalamic nucleus, the anterior perifornical LHA and the PSTN, and a ventral pathway that runs laterally adjacent to the ventrolateral hypothalamic tract (vlt) and ends in the CbN. By contrast, the BMAa and other telencephalic structures, such as the fundus striatum project to the CbN via the ventral pathway. Confirming the microscopic observation, a semi-quantitative analysis of the density of these projections showed that the PSTN and the CbN are the major hypothalamic targets for the projections from the CEAm and the BMAa, respectively. PSTN and CbN receive these projections through distinct dorsal and ventral routes in the LHA. The ventral pathway forms a differentiated tract, named here the ventrolateral amygdalo-hypothalamic tract (vlah), that is distinct from, but runs adjacent to, the vlt. Both the vlt and the vlah had been previously described as forming an olfactory path into the LHA. These results help to better characterize the CbN within the PSTN/CbN complex and are discussed in terms of the functional organization of the network involving the PSTN and the CbN as well as the CEA and the BMAa.
Asunto(s)
Complejo Nuclear Basolateral/fisiología , Mapeo Encefálico , Calbindinas/metabolismo , Área Hipotalámica Lateral/fisiología , Vías Nerviosas/fisiología , Neuronas/metabolismo , Animales , Complejo Nuclear Basolateral/citología , Calbindina 2/metabolismo , Péptido Relacionado con Gen de Calcitonina/metabolismo , Área Hipotalámica Lateral/metabolismo , Masculino , Parvalbúminas/metabolismo , Fitohemaglutininas/metabolismo , Ratas , Ratas Sprague-Dawley , Estilbamidinas/metabolismoRESUMEN
INTRODUCTION: The clinical signs of acute trichlorethylene overdose are commonly coma, cardiac conduction disturbances, diarrhea, and vomiting. We report a case of intentional massive trichlorethylene ingestion inducing a fatal abdominal compartment syndrome (ACS). CASE REPORT: A 47-year-old woman was admitted to the emergency department after intentionally ingesting 500 mL of trichlorethylene and benzodiazepines. She rapidly developed coma and abdominal distension leading to multiple organ failure. Subsequent surgical evaluation revealed abdominal perforation and necrosis, and life-sustaining treatments were therefore withdrawn. DISCUSSION: This is a primary ACS that can be explained from experimental data on the pathophysiology of pneumatosis cystoides coli. For this case, we discuss multiple etiological factors for intra-abdominal hypertension (IAP), such as paralytic ileus and massive fluid resuscitation due to the direct toxicity of ingested trichlorethylene. CONCLUSION: Patients ingesting trichlorethylene need to be closely evaluated for risk of digestive damage and perforation. Early prompt laparotomy must be performed in cases of ACS.