Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Environ Manage ; 285: 112155, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33652186

RESUMEN

Fenton reaction is an oxidation process of interest in wastewater treatment because of its ability to degrade organic compounds. Iron-based magnetic particles can be a very useful catalyst when using heterogeneous Fenton process. The major problem of this heterogeneous process is the saturation of the Fe 3+ on the surface, which limits the process. In this study, the possibility of using magnetite particles as a substrate is presented, increasing its degradation efficiency by Fenton reaction through a regeneration process that achieves the electronic reduction of its surface using reducing agents. The results indicate that the regeneration process is quite effective, increasing the efficiency of the degradation of Methylene Blue up to 99%. The concentration of magnetite is the most influential factor in the efficiency of the reaction, while the regeneration time and the concentration of reducing agent do not significantly affect the results considering the range used. The presence of mechanical stirring may adversely affect the reaction in the long term. Increasing the oxidant agent concentration reduces the initial speed of the reaction but not the long-term efficiency. The use of hydrazine in this process allows the successive reuse of these particles maintaining a high percentage of elimination of methylene blue, above 70% even after 10 uses, compared to an elimination below 20% for particles not regenerated after the second use and for particles regenerated with ascorbic acid after the eighth use.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Peróxido de Hidrógeno , Fenómenos Magnéticos , Oxidación-Reducción , Agua , Contaminantes Químicos del Agua/análisis
2.
J Environ Manage ; 281: 111872, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33387738

RESUMEN

The application of magnetic sorption to treat wastewaters is nowadays seen as a potential industrial method. In this work we apply magnetite particles to remediate real wastewater samples, with several contaminants competing for the same active sorption center at the same time. We also apply our studies at three different sampling points of a Wastewater Treatment Plant. In general terms, magnetite particles have shown a very good behaviour concerning the reduction of detergents and COD, while phosphates and total nitrogen, and the majority of heavy metals are high to moderately removed. The influence of the type of wastewater (i.e., sampling point) has also shown to be important especially for high concentration of contaminants.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Fenómenos Magnéticos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
3.
J Environ Manage ; 285: 112177, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662763

RESUMEN

Magnetic sorption process is applied to real wastewater effluents from a Wastewater Treatment Plant. The complex media sorption is done by using different types of magnetic particles (resin and polymeric covered magnetite) giving good results for removing detergents, phosphates and COD and moderate results for the sorption of nitrogen and several heavy metals. Important kinetic parameters were obtained by data fitting for the pseudo first and second order, and for simplified Elovich models. Regeneration and reuse of the magnetic particles using a chemical-free method was also tested, as well as the effect of the concentration of the particles in the removal efficiency (which proved to be relevant).


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Fenómenos Magnéticos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
4.
Ecotoxicology ; 28(5): 550-558, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31119590

RESUMEN

Few studies have been conducted so far into the effects of humic substances (HS) on aquatic organisms and their influence on the toxicity of chemical pollutants in the tropics. The aim of the present study was therefore to evaluate the direct effects of locally-derived tropical natural HS on the cladoceran Daphnia similis, the midge Chironomus xanthus and the fish Danio rerio. The influence of a HS concentration series on the acute toxicity of copper to these organisms was also assessed through laboratory toxicity testing. The HS did not exert direct acute effects on the test organisms, but long-term exposure to higher HS concentrations provoked a stress response (increase in feces production) to D. rerio and exerted effects on chironomid adult emergence and sex ratio. The biotic ligand model proved to be a useful tool in converting total copper concentrations to the appropriate bio-available fraction to which tropical aquatic organisms are exposed.


Asunto(s)
Chironomidae/efectos de los fármacos , Cobre/toxicidad , Daphnia/efectos de los fármacos , Sustancias Húmicas , Contaminantes Químicos del Agua/toxicidad , Pez Cebra , Animales , Monitoreo del Ambiente , Femenino , Masculino , Pruebas de Toxicidad Aguda , Pruebas de Toxicidad Crónica
5.
Materials (Basel) ; 17(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38793346

RESUMEN

Currently, one of the main causes of death in the world is cancer; therefore, it is urgent to obtain a precocious diagnosis, as well as boost research and development of new potential treatments, which should be more efficient and much less invasive for the patient. Magnetic hyperthermia (MH) is an emerging cancer therapy using nanoparticles, which has proved to be effective when combined with chemotherapy, radiotherapy and/or surgery, or even by itself, depending on the type and location of the tumor's cells. This article presents the results obtained by using a previously developed economic homemade hyperthermia device with different types of magnetite nanoparticles, with sizes ranging between 12 ± 5 and 36 ± 11 nm and presenting different shapes (spherical and cubic particles). These magnetic nanoparticles (MNPs) were synthesized by three different methods (co-precipitation, solvothermal and hydrothermal processes), with their final form being naked, or possessing different kinds of covering layers (polyethylene glycol (PEG) or citric acid (CA)). The parameters used to characterize the heating by magnetic hyperthermia, namely the Specific Absorption Rate (SAR) and the intrinsic loss power (ILP), have been obtained by two different methods. Among other results, these experiments allowed for the determination of which synthesized MNPs showed the best performance concerning hyperthermia. From the results, it may be concluded that, as expected, the shape of MNPs is an important factor, as well as the time that the MNPs can remain suspended in solution (which is directly related to the concentration and covering layer of the MNPs). The MNPs that gave the best results in terms of the SAR were the cubic particles covered with PEG, while in terms of total heating the spherical particles covered with citric acid proved to be better.

6.
Nanomaterials (Basel) ; 13(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36985945

RESUMEN

Late diagnosis and systemic toxicity associated with conventional treatments make oncological therapy significantly difficult. In this context, nanomedicine emerges as a new approach in the prevention, diagnosis and treatment of cancer. In this work, pH-sensitive solid magnetoliposomes (SMLs) were developed for controlled release of the chemotherapeutic drug doxorubicin (DOX). Shape anisotropic magnetic nanoparticles of magnesium ferrite with partial substitution by calcium (Mg0.75Ca0.25Fe2O4) were synthesized, with and without calcination, and their structural, morphological and magnetic properties were investigated. Their superparamagnetic properties were evaluated and heating capabilities proven, either by exposure to an alternating magnetic field (AMF) (magnetic hyperthermia) or by irradiation with near-infrared (NIR) light (photothermia). The Mg0.75Ca0.25Fe2O4 calcined nanoparticles were selected to integrate the SMLs, surrounded by a lipid bilayer of DOPE:Ch:CHEMS (45:45:10). DOX was encapsulated in the nanosystems with an efficiency above 98%. DOX release assays showed a much more efficient release of the drug at pH = 5 compared to the release kinetics at physiological pH. By subjecting tumor cells to DOX-loaded SMLs, cell viability was significantly reduced, confirming that they can release the encapsulated drug. These results point to the development of efficient pH-sensitive nanocarriers, suitable for a synergistic action in cancer therapy with magnetic targeting, stimulus-controlled drug delivery and dual hyperthermia (magnetic and plasmonic) therapy.

7.
Nanomaterials (Basel) ; 11(7)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201717

RESUMEN

Cubic nanoparticles are referred to as the best shaped particles for magnetic hyperthermia applications. In this work, the best set of values for obtaining optimized shape and size of magnetic particles (namely: reagents quantities and proportions, type of solvents, temperature, etc.) is determined. A full industrial implementation study is also performed, including production system design and technical and economic viability.

8.
Materials (Basel) ; 13(11)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485890

RESUMEN

Very few economical and process engineering studies have been made concerning the scale-up and implementation of nanomagnetic particle manufacturing into a full-scale plant, and determination of its viability. In this work we describe such a study for two types of industrial plants, one for manufacturing magnetic particles for applications in the environmental area, and the other for manufacturing nanomagnetic particles for applications in the biotechnology area; the two different applications are compared. The following methodology was followed: establish the manufacturing process for each application; determine the market demand of the product (magnetic nanoparticles) for both applications; determine the production capacity of each plant; engineer all the manufacturing process, determining all the process units and performing all the mass and energy balances for both plants; scale-up the main equipment; and determine the global economic impact and profitability. At the end both plants are found to be technologically and economically viable, the characteristics of the final products being, however, quite different, as well as the process engineering, economic analysis, and scale-up.

9.
Materials (Basel) ; 13(10)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408621

RESUMEN

Many different processes for manufacturing of magnetic particles are present in scientific literature. However, the large majority are not able to be applied to large-scale real operations. In this study, we present an experiment undertaken to determine advisable values and options for the main variables and factors for the application of the reverse co-precipitation method to produce magnetic particles for real environmental applications. In such, we have tried a conjugation of values/factors that has led to 12 main experiments and production of 12 different particles. After an initial study concerning their main characteristics, these 12 different particles were applied for the sorption removal of COD from real wastewater samples (efficiencies between 70% and 81%) and degradation of Methylene blue by Fenton reaction (degradation efficiencies up to 100%). The main conclusion from this work is that the best set of values depends on the target environmental application, and this set of values were determined for the two applications studied.

10.
Sci Total Environ ; 648: 636-668, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30340309

RESUMEN

Leachates are still an open issue in environmental protection. Many of the applied methods for their treatment present low efficiency and thus need to be used collectively. In practice reverse osmosis is mostly used, as it is the most effective option, regardless of its cost. Magnetic methods to treat effluents have been used for water and wastewater treatment by the use of magnetic particles together with magnetic separation for the removal of contaminants. However, large-scale applications are few or even non-existent when we deal with complex contaminated media such as landfill leachates, for which not even research studies at laboratorial scale with real samples have been done yet. In this work, we apply for the first time magnetic sorption for the treatment of leachates, and close the full cycle by studying the regeneration and re-use of the magnetic particles; we also study the influence of the concentration of magnetic particles, the use of several pre-treatment methodologies and the type of particle used in the process, in real landfill samples from the waste treatment plant of Salamanca (Spain), for the removal of COD, NO3-, NO2-, NH4+, Total-N, PO43-, SO42- and Cl-. Regeneration of the magnetic particles after being used in the sorption stage is also studied, as well as their efficiency regarding their re-use. It is also determined the optimum number of batches for complete desorption and for regeneration of the particles, the effect of successive regeneration and re-use cycles, the use of two different regeneration methods, the efficiency of the desorption, the effect of the quantity of solvent and the influence of the time of sorption. Due to its innovative character and the complexity of the media, this work represents a first preliminary approach and, although some promising results have been obtained, further studies are required to completely understand and evaluate the proposed treatment process.

11.
Springerplus ; 5(1): 2069, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27995046

RESUMEN

BACKGROUND: We describe the design, the construction and performance of a narrow band ortho-mode transducer, currently used in the 5 GHz polarimetric receiver of the Galactic Emission Mapping project. RESULTS: The ortho-mode transducer was designed to achieve a high degree of transmission within the 400 MHz of the GEM band around the 5 GHz (4.8-5.2 GHz). It is composed of a circular-to-square waveguide transition, a septum polarizer, a thin waveguide coupler and a smooth square-to-rectangular waveguide transition with custom waveguide bends to the output ports. CONCLUSION: Our simulations and measurements show a very low level of cross-polarization of about -60 dB and a good impedance match for all three ports (S11; S22; S33 < -30 dB) with only 0:25 dB of insertion loss offset across the 400 MHz (4.8-5.2 GHz) of the reception bandwidth.

12.
Springerplus ; 5: 487, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27218002

RESUMEN

The detailed knowledge of the Milky Way radio emission is important to characterize galactic foregrounds masking extragalactic and cosmological signals. The update of the global sky models describing radio emissions over a very large spectral band requires high sensitivity experiments capable of observing large sky areas with long integration times. Here, we present the design of a new 10 GHz (X-band) polarimeter digital back-end to map the polarization components of the galactic synchrotron radiation field of the Northern Hemisphere sky. The design follows the digital processing trends in radio astronomy and implements a large bandwidth (1 GHz) digital complex cross-correlator to extract the Stokes parameters of the incoming synchrotron radiation field. The hardware constraints cover the implemented VLSI hardware description language code and the preliminary results. The implementation is based on the simultaneous digitized acquisition of the Cartesian components of the two linear receiver polarization channels. The design strategy involves a double data rate acquisition of the ADC interleaved parallel bus, and field programmable gate array device programming at the register transfer mode. The digital core of the back-end is capable of processing 32 Gbps and is built around an Altera field programmable gate array clocked at 250 MHz, 1 GSps analog to digital converters and a clock generator. The control of the field programmable gate array internal signal delays and a convenient use of its phase locked loops provide the timing requirements to achieve the target bandwidths and sensitivity. This solution is convenient for radio astronomy experiments requiring large bandwidth, high functionality, high volume availability and low cost. Of particular interest, this correlator was developed for the Galactic Emission Mapping project and is suitable for large sky area polarization continuum surveys. The solutions may also be adapted to be used at signal processing subsystem levels for large projects like the square kilometer array testbeds.

13.
Ciênc. rural ; 45(2): 267-273, 02/2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-732377

RESUMEN

Agriculture, roads, animal farms and other land uses may modify the water quality from rivers, dams and other surface freshwaters. In the control of the ecological process and for environmental management, it is necessary to quickly and accurately identify surface water contamination (in areas such as rivers and dams) with contaminated runoff waters coming, for example, from cultivation and urban areas. This paper presents a comparative analysis of different classification algorithms applied to the data collected from a sample of soil-contaminated water aiming to identify if the water quality classification proposed in this research agrees with reality. The sample was part of a laboratory experiment, which began with a sample of treated water added with increasing fractions of soil. The results show that the proposed classification for water quality in this scenario is coherent, because different algorithms indicated a strong statistic relationship between the classes and their instances, that is, in the classes that qualify the water sample and the values which describe each class. The proposed water classification varies from excelling to very awful (12 classes).


Agricultura, estradas, fazendas de pecuária e outros usos da terra podem alterar a qualidade da água dos rios, barragens e outras águas doces superficiais. No monitoramentode processos ecológicos para a gestão ambiental, é necessário identificar com rapidez e precisão a contaminação de águas superficiais (em áreas como rios e represas) e subterrâneas, com o escoamento da água contaminada que,advinda, por exemplo, de áreas de cultivo e urbanas. Este artigo apresenta uma análise comparativa dos diferentes algoritmos de classificação aplicados a dados coletados a partir de uma amostra de água contaminada do solo, com o objetivo de criar um modelo de classificação para identificar a qualidade da água. A amostra foi parte de um experimento de laboratório, que partiu de uma amostra de água tratada, adicionando-se frações crescentes de solo. Os resultados mostram que a classificação proposta para a qualidade da água neste cenário é coerente, porque diferentes algoritmos indicaram uma forte relação estatística entre as classes e suas instâncias, ou seja, entre as classes que qualificam a amostra de água e os valores que descrevem cada classe. O modelo de classificação proposto utiliza 12 classes, que variam de excelente a muito péssima.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA