Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(10): 2393-2410.e14, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653235

RESUMEN

SARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g., MIC-A/B). We found that SARS-CoV-2 evades NKG2D recognition by surface downregulation of MIC-A/B via shedding, observed in human lung tissue and COVID-19 patient serum. Systematic testing of SARS-CoV-2 proteins revealed that ORF6, an accessory protein uniquely conserved among sarbecoviruses, was responsible for MIC-A/B downregulation via shedding. Further investigation demonstrated that natural killer (NK) cells efficiently killed SARS-CoV-2-infected cells and limited viral spread. However, inhibition of MIC-A/B shedding with a monoclonal antibody, 7C6, further enhanced NK-cell activity toward SARS-CoV-2-infected cells. Our findings unveil a strategy employed by SARS-CoV-2 to evade cytotoxic immunity, identify the culprit immunevasin shared among sarbecoviruses, and suggest a potential novel antiviral immunotherapy.


Asunto(s)
COVID-19 , Evasión Inmune , Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK , SARS-CoV-2 , Humanos , SARS-CoV-2/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , COVID-19/inmunología , COVID-19/virología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Animales , Citotoxicidad Inmunológica , Regulación hacia Abajo , Pulmón/inmunología , Pulmón/virología , Pulmón/patología
2.
Cell ; 181(4): 954-954.e1, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32413300

RESUMEN

Coronavirus disease 2019 (COVID-19) is a novel respiratory illness caused by SARS-CoV-2. Viral entry is mediated through viral spike protein and host ACE2 enzyme interaction. Most cases are mild; severe disease often involves cytokine storm and organ failure. Therapeutics including antivirals, immunomodulators, and vaccines are in development. To view this SnapShot, open or download the PDF.


Asunto(s)
Betacoronavirus/fisiología , Infecciones por Coronavirus/patología , Neumonía Viral/patología , Animales , Betacoronavirus/clasificación , Betacoronavirus/genética , COVID-19 , Prueba de COVID-19 , Vacunas contra la COVID-19 , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/terapia , Infecciones por Coronavirus/transmisión , Humanos , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/terapia , Neumonía Viral/transmisión , SARS-CoV-2 , Vacunas Virales/inmunología , Tratamiento Farmacológico de COVID-19
3.
Proc Natl Acad Sci U S A ; 121(25): e2315670121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38861604

RESUMEN

Tuberculosis (TB) is the world's deadliest infectious disease, with over 1.5 million deaths and 10 million new cases reported anually. The causative organism Mycobacterium tuberculosis (Mtb) can take nearly 40 d to culture, a required step to determine the pathogen's antibiotic susceptibility. Both rapid identification and rapid antibiotic susceptibility testing of Mtb are essential for effective patient treatment and combating antimicrobial resistance. Here, we demonstrate a rapid, culture-free, and antibiotic incubation-free drug susceptibility test for TB using Raman spectroscopy and machine learning. We collect few-to-single-cell Raman spectra from over 25,000 cells of the Mtb complex strain Bacillus Calmette-Guérin (BCG) resistant to one of the four mainstay anti-TB drugs, isoniazid, rifampicin, moxifloxacin, and amikacin, as well as a pan-susceptible wildtype strain. By training a neural network on this data, we classify the antibiotic resistance profile of each strain, both on dried samples and on patient sputum samples. On dried samples, we achieve >98% resistant versus susceptible classification accuracy across all five BCG strains. In patient sputum samples, we achieve ~79% average classification accuracy. We develop a feature recognition algorithm in order to verify that our machine learning model is using biologically relevant spectral features to assess the resistance profiles of our mycobacterial strains. Finally, we demonstrate how this approach can be deployed in resource-limited settings by developing a low-cost, portable Raman microscope that costs <$5,000. We show how this instrument and our machine learning model enable combined microscopy and spectroscopy for accurate few-to-single-cell drug susceptibility testing of BCG.


Asunto(s)
Antituberculosos , Aprendizaje Automático , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis , Espectrometría Raman , Espectrometría Raman/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Antituberculosos/farmacología , Farmacorresistencia Bacteriana , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Isoniazida/farmacología
4.
Artículo en Inglés | MEDLINE | ID: mdl-39141569

RESUMEN

Post-tuberculosis (TB) lung disease (PTLD) is increasingly recognized as a major contributor to the global burden of chronic lung disease, with recent estimates indicating that over half of TB survivors have impaired lung function after successful completion of TB treatment. However, the pathologic mechanisms that contribute to PTLD are not well understood, thus limiting the development of therapeutic interventions to improve long-term outcomes after TB. This report summarizes the work of the "Pathogenesis and Risk Factors Committee" for the Second International Post-Tuberculosis Symposium, which took place in Stellenbosch, South Africa in April 2023. The committee first identified six areas with high translational potential: (1) tissue matrix destruction, including the role of matrix metalloproteinase dysregulation and neutrophil activity, (2) fibroblasts and profibrotic activity, (3) granuloma fate and cell death pathways, (4) mycobacterial factors including pathogen burden, (5) animal models, and (6) the impact of key clinical risk factors including HIV, diabetes, smoking, malnutrition, and alcohol. We share here the key findings from a literature review of those areas, highlighting knowledge gaps and areas where further research is needed.

5.
Ann Intern Med ; 176(12): 1577-1585, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37956428

RESUMEN

BACKGROUND: Data are conflicting regarding an association between treatment of acute COVID-19 with nirmatrelvir-ritonavir (N-R) and virologic rebound (VR). OBJECTIVE: To compare the frequency of VR in patients with and without N-R treatment for acute COVID-19. DESIGN: Observational cohort study. SETTING: Multicenter health care system in Boston, Massachusetts. PARTICIPANTS: Ambulatory adults with acute COVID-19 with and without use of N-R. INTERVENTION: Receipt of 5 days of N-R treatment versus no COVID-19 therapy. MEASUREMENTS: The primary outcome was VR, defined as either a positive SARS-CoV-2 viral culture result after a prior negative result or 2 consecutive viral loads above 4.0 log10 copies/mL that were also at least 1.0 log10 copies/mL higher than a prior viral load below 4.0 log10 copies/mL. RESULTS: Compared with untreated persons (n = 55), those taking N-R (n = 72) were older, received more COVID-19 vaccinations, and more commonly had immunosuppression. Fifteen participants (20.8%) taking N-R had VR versus 1 (1.8%) who was untreated (absolute difference, 19.0 percentage points [95% CI, 9.0 to 29.0 percentage points]; P = 0.001). All persons with VR had a positive viral culture result after a prior negative result. In multivariable models, only N-R use was associated with VR (adjusted odds ratio, 10.02 [CI, 1.13 to 88.74]; P = 0.038). Virologic rebound was more common among those who started therapy within 2 days of symptom onset (26.3%) than among those who started 2 or more days after symptom onset (0%) (P = 0.030). Among participants receiving N-R, those who had VR had prolonged shedding of replication-competent virus compared with those who did not have VR (median, 14 vs. 3 days). Eight of 16 participants (50% [CI, 25% to 75%]) with VR also reported symptom rebound; 2 were completely asymptomatic. No post-VR resistance mutations were detected. LIMITATIONS: Observational study design with differences between the treated and untreated groups; positive viral culture result was used as a surrogate marker for risk for ongoing viral transmission. CONCLUSION: Virologic rebound occurred in approximately 1 in 5 people taking N-R, often without symptom rebound, and was associated with shedding of replication-competent virus. PRIMARY FUNDING SOURCE: National Institutes of Health.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Ritonavir/uso terapéutico , Tratamiento Farmacológico de COVID-19
6.
Clin Infect Dis ; 76(3): e526-e529, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35737946

RESUMEN

We enrolled 7 individuals with recurrent symptoms or antigen test conversion following nirmatrelvir-ritonavir treatment. High viral loads (median 6.1 log10 copies/mL) were detected after rebound for a median of 17 days after initial diagnosis. Three had culturable virus for up to 16 days after initial diagnosis. No known resistance-associated mutations were identified.


Asunto(s)
COVID-19 , Humanos , Tratamiento Farmacológico de COVID-19 , Ritonavir/uso terapéutico , Mutación
7.
J Infect Dis ; 224(11): 1821-1829, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34647601

RESUMEN

BACKGROUND: Data on pediatric coronavirus disease 2019 (COVID-19) has lagged behind adults throughout the pandemic. An understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral dynamics in children would enable data-driven public health guidance. METHODS: Respiratory swabs were collected from children with COVID-19. Viral load was quantified by reverse-transcription polymerase chain reaction (RT-PCR); viral culture was assessed by direct observation of cytopathic effects and semiquantitative viral titers. Correlations with age, symptom duration, and disease severity were analyzed. SARS-CoV-2 whole genome sequences were compared with contemporaneous sequences. RESULTS: One hundred ten children with COVID-19 (median age, 10 years [range, 2 weeks-21 years]) were included in this study. Age did not impact SARS-CoV-2 viral load. Children were most infectious within the first 5 days of illness, and severe disease did not correlate with increased viral loads. Pediatric SARS-CoV-2 sequences were representative of those in the community and novel variants were identified. CONCLUSIONS: Symptomatic and asymptomatic children can carry high quantities of live, replicating SARS-CoV-2, creating a potential reservoir for transmission and evolution of genetic variants. As guidance around social distancing and masking evolves following vaccine uptake in older populations, a clear understanding of SARS-CoV-2 infection dynamics in children is critical for rational development of public health policies and vaccination strategies to mitigate the impact of COVID-19.


Asunto(s)
COVID-19 , Carga Viral , Adolescente , COVID-19/diagnóstico , COVID-19/patología , Niño , Preescolar , Humanos , Lactante , Recién Nacido , Pandemias , SARS-CoV-2/genética , Adulto Joven
10.
PLoS Pathog ; 13(5): e1006363, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28505176

RESUMEN

A key to the pathogenic success of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the capacity to survive within host macrophages. Although several factors required for this survival have been identified, a comprehensive knowledge of such factors and how they work together to manipulate the host environment to benefit bacterial survival are not well understood. To systematically identify Mtb factors required for intracellular growth, we screened an arrayed, non-redundant Mtb transposon mutant library by high-content imaging to characterize the mutant-macrophage interaction. Based on a combination of imaging features, we identified mutants impaired for intracellular survival. We then characterized the phenotype of infection with each mutant by profiling the induced macrophage cytokine response. Taking a systems-level approach to understanding the biology of identified mutants, we performed a multiparametric analysis combining pathogen and host phenotypes to predict functional relationships between mutants based on clustering. Strikingly, mutants defective in two well-known virulence factors, the ESX-1 protein secretion system and the virulence lipid phthiocerol dimycocerosate (PDIM), clustered together. Building upon the shared phenotype of loss of the macrophage type I interferon (IFN) response to infection, we found that PDIM production and export are required for coordinated secretion of ESX-1-substrates, for phagosomal permeabilization, and for downstream induction of the type I IFN response. Multiparametric clustering also identified two novel genes that are required for PDIM production and induction of the type I IFN response. Thus, multiparametric analysis combining host and pathogen infection phenotypes can be used to identify novel functional relationships between genes that play a role in infection.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Mycobacterium tuberculosis/patogenicidad , Fagosomas/microbiología , Tuberculosis/microbiología , Animales , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Línea Celular , Citocinas/inmunología , Citocinas/metabolismo , Biblioteca de Genes , Interacciones Huésped-Patógeno , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/crecimiento & desarrollo , Mycobacterium tuberculosis/inmunología , Fagosomas/inmunología , Fenotipo , Tuberculosis/inmunología , Virulencia
12.
PLoS Pathog ; 11(6): e1005010, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26114871

RESUMEN

Cell growth and division are required for the progression of bacterial infections. Most rod-shaped bacteria grow by inserting new cell wall along their mid-section. However, mycobacteria, including the human pathogen Mycobacterium tuberculosis, produce new cell wall material at their poles. How mycobacteria control this different mode of growth is incompletely understood. Here we find that PonA1, a penicillin binding protein (PBP) capable of transglycosylation and transpeptidation of cell wall peptidoglycan (PG), is a major governor of polar growth in mycobacteria. PonA1 is required for growth of Mycobacterium smegmatis and is critical for M. tuberculosis during infection. In both cases, PonA1's catalytic activities are both required for normal cell length, though loss of transglycosylase activity has a more pronounced effect than transpeptidation. Mutations that alter the amount or the activity of PonA1 result in abnormal formation of cell poles and changes in cell length. Moreover, altered PonA1 activity results in dramatic differences in antibiotic susceptibility, suggesting that a balance between the two enzymatic activities of PonA1 is critical for survival. We also find that phosphorylation of a cytoplasmic region of PonA1 is required for normal activity. Mutations in a critical phosphorylated residue affect transglycosylase activity and result in abnormal rates of cell elongation. Together, our data indicate that PonA1 is a central determinant of polar growth in mycobacteria, and its governance of cell elongation is required for robust cell fitness during both host-induced and antibiotic stress.


Asunto(s)
Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Ciclo Celular/fisiología , División Celular/fisiología , Procesos de Crecimiento Celular/genética , Pared Celular/metabolismo , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/enzimología , Proteínas de Unión a las Penicilinas/genética , Fosforilación
13.
PLoS Pathog ; 10(2): e1003946, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24586159

RESUMEN

Mycobacterium tuberculosis remains a significant threat to global health. Macrophages are the host cell for M. tuberculosis infection, and although bacteria are able to replicate intracellularly under certain conditions, it is also clear that macrophages are capable of killing M. tuberculosis if appropriately activated. The outcome of infection is determined at least in part by the host-pathogen interaction within the macrophage; however, we lack a complete understanding of which host pathways are critical for bacterial survival and replication. To add to our understanding of the molecular processes involved in intracellular infection, we performed a chemical screen using a high-content microscopic assay to identify small molecules that restrict mycobacterial growth in macrophages by targeting host functions and pathways. The identified host-targeted inhibitors restrict bacterial growth exclusively in the context of macrophage infection and predominantly fall into five categories: G-protein coupled receptor modulators, ion channel inhibitors, membrane transport proteins, anti-inflammatories, and kinase modulators. We found that fluoxetine, a selective serotonin reuptake inhibitor, enhances secretion of pro-inflammatory cytokine TNF-α and induces autophagy in infected macrophages, and gefitinib, an inhibitor of the Epidermal Growth Factor Receptor (EGFR), also activates autophagy and restricts growth. We demonstrate that during infection signaling through EGFR activates a p38 MAPK signaling pathway that prevents macrophages from effectively responding to infection. Inhibition of this pathway using gefitinib during in vivo infection reduces growth of M. tuberculosis in the lungs of infected mice. Our results support the concept that screening for inhibitors using intracellular models results in the identification of tool compounds for probing pathways during in vivo infection and may also result in the identification of new anti-tuberculosis agents that work by modulating host pathways. Given the existing experience with some of our identified compounds for other therapeutic indications, further clinically-directed study of these compounds is merited.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Macrófagos/metabolismo , Macrófagos/parasitología , Mycobacterium tuberculosis , Tuberculosis/metabolismo , Animales , Antituberculosos/farmacología , Modelos Animales de Enfermedad , Ensayos Analíticos de Alto Rendimiento , Macrófagos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
14.
Proc Natl Acad Sci U S A ; 109(16): 6217-22, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22474362

RESUMEN

With rising rates of drug-resistant infections, there is a need for diagnostic methods that rapidly can detect the presence of pathogens and reveal their susceptibility to antibiotics. Here we propose an approach to diagnosing the presence and drug-susceptibility of infectious diseases based on direct detection of RNA from clinical samples. We demonstrate that species-specific RNA signatures can be used to identify a broad spectrum of infectious agents, including bacteria, viruses, yeast, and parasites. Moreover, we show that the behavior of a small set of bacterial transcripts after a brief antibiotic pulse can rapidly differentiate drug-susceptible and -resistant organisms and that these measurements can be made directly from clinical materials. Thus, transcriptional signatures could form the basis of a uniform diagnostic platform applicable across a broad range of infectious agents.


Asunto(s)
Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana/métodos , ARN/genética , Orina/microbiología , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Células Cultivadas , Eritrocitos/parasitología , Hongos/clasificación , Hongos/efectos de los fármacos , Hongos/genética , Células HEK293 , Células HeLa , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 1/genética , Herpesvirus Humano 2/efectos de los fármacos , Herpesvirus Humano 2/genética , Humanos , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Reproducibilidad de los Resultados , Especificidad de la Especie
16.
ArXiv ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-37332564

RESUMEN

Tuberculosis (TB) is the world's deadliest infectious disease, with over 1.5 million deaths annually and 10 million new cases reported each year. The causative organism, Mycobacterium tuberculosis (Mtb) can take nearly 40 days to culture, a required step to determine the pathogen's antibiotic susceptibility. Both rapid identification of Mtb and rapid antibiotic susceptibility testing (AST) are essential for effective patient treatment and combating antimicrobial resistance. Here, we demonstrate a rapid, culture-free, and antibiotic incubation-free drug susceptibility test for TB using Raman spectroscopy and machine learning. We collect few-to-single-cell Raman spectra from over 25,000 cells of the MtB complex strain Bacillus Calmette Guerin (BCG) resistant to one of the four mainstay anti-TB drugs, isoniazid, rifampicin, moxifloxacin and amikacin, as well as a pan susceptible wildtype strain. By training a neural network on this data, we classify the antibiotic resistance profile of each strain, both on dried samples and in patient sputum samples. On dried samples, we achieve >98% resistant versus susceptible classification accuracy across all 5 BCG strains. In patient sputum samples, we achieve ~79% average classification accuracy. We develop a feature recognition algorithm in order to verify that our machine learning model is using biologically relevant spectral features to assess the resistance profiles of our mycobacterial strains. Finally, we demonstrate how this approach can be deployed in resource-limited settings by developing a low-cost, portable Raman microscope that costs <$5000. We show how this instrument and our machine learning model enables combined microscopy and spectroscopy for accurate few-to-single-cell drug susceptibility testing of BCG.

17.
bioRxiv ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38895338

RESUMEN

Post-TB lung disease (PTLD) causes a significant burden of global disease. Fibrosis is a central component of many clinical features of PTLD. To date, we have a limited understanding of the mechanisms of TB-associated fibrosis and how these mechanisms are similar to or dissimilar from other fibrotic lung pathologies. We have adapted a mouse model of TB infection to facilitate the mechanistic study of TB-associated lung fibrosis. We find that the morphologies of fibrosis that develop in the mouse model are similar to the morphologies of fibrosis observed in human tissue samples. Using Second Harmonic Generation (SHG) microscopy, we are able to quantify a major component of fibrosis, fibrillar collagen, over time and with treatment. Inflammatory macrophage subpopulations persist during treatment; matrix remodeling enzymes and inflammatory gene signatures remain elevated. Our mouse model suggests that there is a therapeutic window during which adjunctive therapies could change matrix remodeling or inflammatory drivers of tissue pathology to improve functional outcomes after treatment for TB infection.

18.
Nat Commun ; 15(1): 795, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291019

RESUMEN

Protein-based virus-like particles (P-VLPs) are commonly used to spatially organize antigens and enhance humoral immunity through multivalent antigen display. However, P-VLPs are thymus-dependent antigens that are themselves immunogenic and can induce B cell responses that may neutralize the platform. Here, we investigate thymus-independent DNA origami as an alternative material for multivalent antigen display using the receptor binding domain (RBD) of the SARS-CoV-2 spike protein, the primary target of neutralizing antibody responses. Sequential immunization of mice with DNA-based VLPs (DNA-VLPs) elicits protective neutralizing antibodies to SARS-CoV-2 in a manner that depends on the valency of the antigen displayed and on T cell help. Importantly, the immune sera do not contain boosted, class-switched antibodies against the DNA scaffold, in contrast to P-VLPs that elicit strong B cell memory against both the target antigen and the scaffold. Thus, DNA-VLPs enhance target antigen immunogenicity without generating scaffold-directed immunity and thereby offer an important alternative material for particulate vaccine design.


Asunto(s)
Formación de Anticuerpos , Glicoproteína de la Espiga del Coronavirus , Vacunas de Partículas Similares a Virus , Humanos , Animales , Ratones , Anticuerpos Bloqueadores , Vacunas de Partículas Similares a Virus/genética , Anticuerpos Neutralizantes , ADN , Anticuerpos Antivirales
19.
bioRxiv ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39345409

RESUMEN

In a subset of SARS-CoV-2 infected individuals treated with the oral antiviral nirmatrelvir-ritonavir, the virus rebounds following treatment. The mechanisms driving this rebound are not well understood. We used a mathematical model to describe the longitudinal viral load dynamics of 51 individuals treated with nirmatrelvir-ritonavir, 20 of whom rebounded. Target cell preservation, either by a robust innate immune response or initiation of nirmatrelvir-ritonavir near the time of symptom onset, coupled with incomplete viral clearance, appear to be the main factors leading to viral rebound. Moreover, the occurrence of viral rebound is likely influenced by time of treatment initiation relative to the progression of the infection, with earlier treatments leading to a higher chance of rebound. Finally, our model demonstrates that extending the course of nirmatrelvir-ritonavir treatment, in particular to a 10-day regimen, may greatly diminish the risk for rebound in people with mild-to-moderate COVID-19 and who are at high risk of progression to severe disease. Altogether, our results suggest that in some individuals, a standard 5-day course of nirmatrelvir-ritonavir starting around the time of symptom onset may not completely eliminate the virus. Thus, after treatment ends, the virus can rebound if an effective adaptive immune response has not fully developed. These findings on the role of target cell preservation and incomplete viral clearance also offer a possible explanation for viral rebounds following other antiviral treatments for SARS-CoV-2. Importance: Nirmatrelvir-ritonavir is an effective treatment for SARS-CoV-2. In a subset of individuals treated with nirmatrelvir-ritonavir, the initial reduction in viral load is followed by viral rebound once treatment is stopped. We show the timing of treatment initiation with nirmatrelvir-ritonavir may influence the risk of viral rebound. Nirmatrelvir-ritonavir stops viral growth and preserves target cells but may not lead to full clearance of the virus. Thus, once treatment ends, if an effective adaptive immune response has not adequately developed, the remaining virus can lead to rebound. Our results provide insights into the mechanisms of rebound and can help develop better treatment strategies to minimize this possibility.

20.
JAMA Netw Open ; 7(9): e2435431, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39320890

RESUMEN

Importance: Previous studies have identified mutations in SARS-CoV-2 strains that confer resistance to nirmatrelvir, yet how often this resistance arises and its association with posttreatment virologic rebound is not well understood. Objective: To examine the prevalence of emergent antiviral resistance after nirmatrelvir treatment and its association with virologic rebound. Design, Setting, and Participants: This cohort study enrolled outpatient adults with acute COVID-19 infection from May 2021 to October 2023. Participants were divided into those who received antiviral therapy and those who did not. The study was conducted at a multicenter health care system in Boston, Massachusetts. Exposure: Treatment regimen, including none, nirmatrelvir, and remdesivir. Main Outcomes and Measures: The primary outcome was emergent SARS-CoV-2 antiviral resistance, defined as the detection of antiviral resistance mutations, which were not present at baseline, were previously associated with decreased antiviral efficacy, and emerged during or after completion of a participant's treatment. Next-generation sequencing was used to detect low frequency mutations down to 1% of the total viral population. Results: Overall, 156 participants (114 female [73.1%]; median [IQR] age, 56 [38-69] years) were included. Compared with 63 untreated individuals, the 79 who received nirmatrelvir were older and more commonly immunosuppressed. After sequencing viral RNA from participants' anterior nasal swabs, nirmatrelvir resistance mutations were detected in 9 individuals who received nirmatrelvir (11.4%) compared with 2 of those who did not (3.2%) (P = .09). Among the individuals treated with nirmatrelvir, those who were immunosuppressed had the highest frequency of resistance emergence (5 of 22 [22.7%]), significantly greater than untreated individuals (2 of 63 [3.1%]) (P = .01). Similar rates of nirmatrelvir resistance were found in those who had virologic rebound (3 of 23 [13.0%]) vs those who did not (6 of 56 [10.7%]) (P = .86). Most of these mutations (10 of 11 [90.9%]) were detected at low frequencies (<20% of viral population) and reverted to the wild type at subsequent time points. Emerging remdesivir resistance mutations were only detected in immunosuppressed individuals (2 of 14 [14.3%]) but were similarly low frequency and transient. Global Initiative on Sharing All Influenza Data analysis showed no evidence of increased nirmatrelvir resistance in the United States after the authorization of nirmatrelvir. Conclusions and Relevance: In this cohort study of 156 participants, treatment-emergent nirmatrelvir resistance mutations were commonly detected, especially in individuals who were immunosuppressed. However, these mutations were generally present at low frequencies and were transient in nature, suggesting a low risk for the spread of nirmatrelvir resistance in the community with the current variants and drug usage patterns.


Asunto(s)
Adenosina Monofosfato , Alanina , Antivirales , Tratamiento Farmacológico de COVID-19 , Farmacorresistencia Viral , SARS-CoV-2 , Humanos , Femenino , Masculino , Antivirales/uso terapéutico , Farmacorresistencia Viral/genética , Persona de Mediana Edad , Alanina/análogos & derivados , Alanina/uso terapéutico , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/uso terapéutico , Adulto , Mutación , COVID-19/epidemiología , Anciano , Estudios de Cohortes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA