Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(1): 57-70.e17, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30220455

RESUMEN

Neurons in Caenorhabditis elegans and other nematodes have been thought to lack classical action potentials. Unexpectedly, we observe membrane potential spikes with defining characteristics of action potentials in C. elegans AWA olfactory neurons recorded under current-clamp conditions. Ion substitution experiments, mutant analysis, pharmacology, and modeling indicate that AWA fires calcium spikes, which are initiated by EGL-19 voltage-gated CaV1 calcium channels and terminated by SHK-1 Shaker-type potassium channels. AWA action potentials result in characteristic signals in calcium imaging experiments. These calcium signals are also observed when intact animals are exposed to odors, suggesting that natural odor stimuli induce AWA spiking. The stimuli that elicit action potentials match AWA's specialized function in climbing odor gradients. Our results provide evidence that C. elegans neurons can encode information through regenerative all-or-none action potentials, expand the computational repertoire of its nervous system, and inform future modeling of its neural coding and network dynamics.


Asunto(s)
Potenciales de Acción/fisiología , Nervio Olfatorio/fisiología , Olfato/fisiología , Animales , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Calcio/metabolismo , Canales de Calcio/fisiología , Quimiotaxis/fisiología , Potenciales de la Membrana/fisiología , Odorantes , Neuronas Receptoras Olfatorias/metabolismo
2.
Cell ; 171(7): 1649-1662.e10, 2017 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-29198526

RESUMEN

Animals generate complex patterns of behavior across development that may be shared or unique to individuals. Here, we examine the contributions of developmental programs and individual variation to behavior by monitoring single Caenorhabditis elegans nematodes over their complete developmental trajectories and quantifying their behavior at high spatiotemporal resolution. These measurements reveal reproducible trajectories of spontaneous foraging behaviors that are stereotyped within and between developmental stages. Dopamine, serotonin, the neuropeptide receptor NPR-1, and the TGF-ß peptide DAF-7 each have stage-specific effects on behavioral trajectories, implying the existence of a modular temporal program controlled by neuromodulators. In addition, a fraction of individuals within isogenic populations raised in controlled environments have consistent, non-genetic behavioral biases that persist across development. Several neuromodulatory systems increase or decrease the degree of non-genetic individuality to shape sustained patterns of behavior across the population.


Asunto(s)
Variación Biológica Individual , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/fisiología , Neuropéptidos/metabolismo , Animales , Conducta Animal , Dopamina/metabolismo , Regulación de la Expresión Génica , Larva/fisiología , Neuroimagen/instrumentación , Neuroimagen/métodos , Neuropéptidos/genética , Receptores de Serotonina/genética , Receptores de Serotonina/metabolismo
3.
Cell ; 164(4): 632-43, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26871629

RESUMEN

Memories formed early in life are particularly stable and influential, representing privileged experiences that shape enduring behaviors. We show that exposing newly hatched C. elegans to pathogenic bacteria results in persistent aversion to those bacterial odors, whereas adult exposure generates only transient aversive memory. Long-lasting imprinted aversion has a critical period in the first larval stage and is specific to the experienced pathogen. Distinct groups of neurons are required during formation (AIB, RIM) and retrieval (AIY, RIA) of the imprinted memory. RIM synthesizes the neuromodulator tyramine, which is required in the L1 stage for learning. AIY memory retrieval neurons sense tyramine via the SER-2 receptor, which is essential for imprinted, but not for adult-learned, aversion. Odor responses in several neurons, most notably RIA, are altered in imprinted animals. These findings provide insight into neuronal substrates of different forms of memory, and lay a foundation for further understanding of early learning.


Asunto(s)
Caenorhabditis elegans/fisiología , Vías Nerviosas , Neuronas/metabolismo , Animales , Bacterias/química , Conducta Animal , Caenorhabditis elegans/crecimiento & desarrollo , Impronta Psicológica , Larva/fisiología , Memoria , Receptores de Amina Biogénica/metabolismo , Olfato , Tiramina/metabolismo
4.
Cell ; 161(2): 215-27, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25772698

RESUMEN

Variability is a prominent feature of behavior and is an active element of certain behavioral strategies. To understand how neuronal circuits control variability, we examined the propagation of sensory information in a chemotaxis circuit of C. elegans where discrete sensory inputs can drive a probabilistic behavioral response. Olfactory neurons respond to odor stimuli with rapid and reliable changes in activity, but downstream AIB interneurons respond with a probabilistic delay. The interneuron response to odor depends on the collective activity of multiple neurons-AIB, RIM, and AVA-when the odor stimulus arrives. Certain activity states of the network correlate with reliable responses to odor stimuli. Artificially generating these activity states by modifying neuronal activity increases the reliability of odor responses in interneurons and the reliability of the behavioral response to odor. The integration of sensory information with network states may represent a general mechanism for generating variability in behavior.


Asunto(s)
Caenorhabditis elegans/fisiología , Vías Olfatorias , Animales , Conducta Animal , Señalización del Calcio , Neuronas/metabolismo , Odorantes
5.
Cell ; 154(5): 1023-1035, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23972393

RESUMEN

Foraging animals have distinct exploration and exploitation behaviors that are organized into discrete behavioral states. Here, we characterize a neuromodulatory circuit that generates long-lasting roaming and dwelling states in Caenorhabditis elegans. We find that two opposing neuromodulators, serotonin and the neuropeptide pigment dispersing factor (PDF), each initiate and extend one behavioral state. Serotonin promotes dwelling states through the MOD-1 serotonin-gated chloride channel. The spontaneous activity of serotonergic neurons correlates with dwelling behavior, and optogenetic modulation of the critical MOD-1-expressing targets induces prolonged dwelling states. PDF promotes roaming states through a Gαs-coupled PDF receptor; optogenetic activation of cAMP production in PDF receptor-expressing cells induces prolonged roaming states. The neurons that produce and respond to each neuromodulator form a distributed circuit orthogonal to the classical wiring diagram, with several essential neurons that express each molecule. The slow temporal dynamics of this neuromodulatory circuit supplement fast motor circuits to organize long-lasting behavioral states.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Neuropéptidos/metabolismo , Serotonina/metabolismo , Transducción de Señal , Animales , Conducta Animal , Canales de Cloruro/metabolismo , AMP Cíclico/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
6.
PLoS Biol ; 20(6): e3001677, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35696430

RESUMEN

The valence and salience of individual odorants are modulated by an animal's innate preferences, learned associations, and internal state, as well as by the context of odorant presentation. The mechanisms underlying context-dependent flexibility in odor valence are not fully understood. Here, we show that the behavioral response of Caenorhabditis elegans to bacterially produced medium-chain alcohols switches from attraction to avoidance when presented in the background of a subset of additional attractive chemicals. This context-dependent reversal of odorant preference is driven by cell-autonomous inversion of the response to these alcohols in the single AWC olfactory neuron pair. We find that while medium-chain alcohols inhibit the AWC olfactory neurons to drive attraction, these alcohols instead activate AWC to promote avoidance when presented in the background of a second AWC-sensed odorant. We show that these opposing responses are driven via engagement of distinct odorant-directed signal transduction pathways within AWC. Our results indicate that context-dependent recruitment of alternative intracellular signaling pathways within a single sensory neuron type conveys opposite hedonic valences, thereby providing a robust mechanism for odorant encoding and discrimination at the periphery.


Asunto(s)
Neuronas Receptoras Olfatorias , Receptores Odorantes , Alcoholes , Animales , Caenorhabditis elegans/fisiología , Odorantes , Neuronas Receptoras Olfatorias/fisiología , Células Receptoras Sensoriales , Olfato/fisiología
7.
PLoS Biol ; 19(6): e3001305, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34191794

RESUMEN

Oxytocin/vasopressin-related neuropeptides are highly conserved and play major roles in regulating social behavior across vertebrates. However, whether their insect orthologue, inotocin, regulates the behavior of social groups remains unknown. Here, we show that in the clonal raider ant Ooceraea biroi, individuals that perform tasks outside the nest have higher levels of inotocin in their brains than individuals of the same age that remain inside the nest. We also show that older ants, which spend more time outside the nest, have higher inotocin levels than younger ants. Inotocin thus correlates with the propensity to perform tasks outside the nest. Additionally, increasing inotocin pharmacologically increases the tendency of ants to leave the nest. However, this effect is contingent on age and social context. Pharmacologically treated older ants have a higher propensity to leave the nest only in the presence of larvae, whereas younger ants seem to do so only in the presence of pupae. Our results suggest that inotocin signaling plays an important role in modulating behaviors that correlate with age, such as social foraging, possibly by modulating behavioral response thresholds to specific social cues. Inotocin signaling thereby likely contributes to behavioral individuality and division of labor in ant societies.


Asunto(s)
Hormigas/fisiología , Conducta Animal/fisiología , Oxitocina/metabolismo , Conducta Social , Vasopresinas/metabolismo , Envejecimiento/fisiología , Animales , Encéfalo/fisiología , Células HEK293 , Humanos , Oxitocina/química , Vasopresinas/química
8.
Nature ; 562(7725): 119-123, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30258230

RESUMEN

DEET (N,N-diethyl-meta-toluamide) is a synthetic chemical identified by the US Department of Agriculture in 1946 in a screen for repellents to protect soldiers from mosquito-borne diseases1,2. Since its discovery, DEET has become the world's most widely used arthropod repellent and is effective against invertebrates separated by millions of years of evolution-including biting flies3, honeybees4, ticks5, and land leeches3. In insects, DEET acts on the olfactory system5-12 and requires the olfactory receptor co-receptor Orco7,9-12, but exactly how it works remains controversial13. Here we show that the nematode Caenorhabditis elegans is sensitive to DEET and use this genetically tractable animal to study the mechanism of action of this chemical. We found that DEET is not a volatile repellent, but instead interferes selectively with chemotaxis to a variety of attractant and repellent molecules. In a forward genetic screen for DEET-resistant worms, we identified a gene that encodes a single G protein-coupled receptor, str-217, which is expressed in a single pair of chemosensory neurons that are responsive to DEET, called ADL neurons. Mis-expression of str-217 in another chemosensory neuron conferred responses to DEET. Engineered str-217 mutants, and a wild isolate of C. elegans that carries a str-217 deletion, are resistant to DEET. We found that DEET can interfere with behaviour by inducing an increase in average pause length during locomotion, and show that this increase in pausing requires both str-217 and ADL neurons. Finally, we demonstrated that ADL neurons are activated by DEET and that optogenetic activation of ADL neurons increased average pause length. This is consistent with the 'confusant' hypothesis, which proposes that DEET is not a simple repellent but that it instead modulates multiple olfactory pathways to scramble behavioural responses10,11. Our results suggest a consistent motif in the effectiveness of DEET across widely divergent taxa: an effect on multiple chemosensory neurons that disrupts the pairing between odorant stimulus and behavioural response.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , DEET/farmacología , Resistencia a Medicamentos/efectos de los fármacos , Resistencia a Medicamentos/genética , Mutación , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Quimiotaxis/efectos de los fármacos , Mutagénesis , Neuronas/efectos de los fármacos
9.
Nature ; 539(7628): 254-258, 2016 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-27799655

RESUMEN

The optimal foraging strategy in a given environment depends on the number of competing individuals and their behavioural strategies. Little is known about the genes and neural circuits that integrate social information into foraging decisions. Here we show that ascaroside pheromones, small glycolipids that signal population density, suppress exploratory foraging in Caenorhabditis elegans, and that heritable variation in this behaviour generates alternative foraging strategies. We find that natural C. elegans isolates differ in their sensitivity to the potent ascaroside icas#9 (IC-asc-C5). A quantitative trait locus (QTL) regulating icas#9 sensitivity includes srx-43, a G-protein-coupled icas#9 receptor that acts in the ASI class of sensory neurons to suppress exploration. Two ancient haplotypes associated with this QTL confer competitive growth advantages that depend on ascaroside secretion, its detection by srx-43 and the distribution of food. These results suggest that balancing selection at the srx-43 locus generates alternative density-dependent behaviours, fulfilling a prediction of foraging game theory.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Conducta Alimentaria , Selección Genética , Animales , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/aislamiento & purificación , Proteínas de Caenorhabditis elegans/metabolismo , Conducta Alimentaria/efectos de los fármacos , Alimentos , Teoría del Juego , Haplotipos , Hexosas/metabolismo , Hexosas/farmacología , Indoles/farmacología , Masculino , Feromonas/metabolismo , Feromonas/farmacología , Densidad de Población , Sitios de Carácter Cuantitativo , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriales/metabolismo , Conducta Social
10.
Proc Natl Acad Sci U S A ; 114(7): E1263-E1272, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28143932

RESUMEN

A hub-and-spoke circuit of neurons connected by gap junctions controls aggregation behavior and related behavioral responses to oxygen, pheromones, and food in Caenorhabditis elegans The molecular composition of the gap junctions connecting RMG hub neurons with sensory spoke neurons is unknown. We show here that the innexin gene unc-9 is required in RMG hub neurons to drive aggregation and related behaviors, indicating that UNC-9-containing gap junctions mediate RMG signaling. To dissect the circuit in detail, we developed methods to inhibit unc-9-based gap junctions with dominant-negative unc-1 transgenes. unc-1(dn) alters a stomatin-like protein that regulates unc-9 electrical signaling; its disruptive effects can be rescued by a constitutively active UNC-9::GFP protein, demonstrating specificity. Expression of unc-1(dn) in RMG hub neurons, ADL or ASK pheromone-sensing neurons, or URX oxygen-sensing neurons disrupts specific elements of aggregation-related behaviors. In ADL, unc-1(dn) has effects opposite to those of tetanus toxin light chain, separating the roles of ADL electrical and chemical synapses. These results reveal roles of gap junctions in a complex behavior at cellular resolution and provide a tool for similar exploration of other gap junction circuits.


Asunto(s)
Caenorhabditis elegans/metabolismo , Sinapsis Eléctricas/metabolismo , Uniones Comunicantes/metabolismo , Células Receptoras Sensoriales/metabolismo , Conducta Social , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Sinapsis Eléctricas/genética , Uniones Comunicantes/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Actividad Motora/genética , Feromonas/metabolismo , Transducción de Señal/genética
11.
Genes Dev ; 24(16): 1802-15, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20713521

RESUMEN

Differentiated neurons balance the need to maintain a stable identity with their flexible responses to dynamic environmental inputs. Here we characterize these opposing influences on gene expression in Caenorhabditis elegans olfactory neurons. Using transcriptional reporters that are expressed differentially in two olfactory neurons, AWC(ON) and AWC(OFF), we identify mutations that affect the long-term maintenance of appropriate chemoreceptor expression. A newly identified gene from this screen, the conserved transcription factor hmbx-1, stabilizes AWC gene expression in adult animals through dosage-sensitive interactions with its transcriptional targets. The late action of hmbx-1 complements the early role of the transcriptional repressor gene nsy-7: Both repress expression of multiple AWC(OFF) genes in AWC(ON) neurons, but they act at different developmental stages. Environmental signals are superimposed onto this stable cell identity through at least two different transcriptional pathways that regulate individual chemoreceptor genes: a cGMP pathway regulated by sensory activity, and a daf-7 (TGF-beta)/daf-3 (SMAD repressor) pathway regulated by specific components of the density-dependent C. elegans dauer pheromone.


Asunto(s)
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Nervio Olfatorio/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Alelos , Animales , Proteínas Fluorescentes Verdes/genética , Mutación/genética , Transducción de Señal , Supresión Genética/genética , Factor de Crecimiento Transformador beta/metabolismo , Transgenes/genética
12.
Nat Rev Genet ; 12(12): 809-20, 2011 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-22064512

RESUMEN

Recent work on behavioural variation within and between species has furthered our understanding of the genetic architecture of behavioural traits, the identities of relevant genes and the ways in which genetic variants affect neuronal circuits to modify behaviour. Here we review our understanding of the genetics of natural behavioural variation in non-human animals and highlight the implications of these findings for human genetics. We suggest that gene-environment interactions are central to natural genetic variation in behaviour and that genes affecting neuromodulatory pathways and sensory processing are preferred sites of naturally occurring mutations.


Asunto(s)
Interacción Gen-Ambiente , Genética Conductual , Animales , Investigación Conductal , Evolución Biológica , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Ligamiento Genético , Humanos , Fenotipo , Sitios de Carácter Cuantitativo
13.
Nature ; 472(7343): 313-8, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21412235

RESUMEN

Innate behaviours are flexible: they change rapidly in response to transient environmental conditions, and are modified slowly by changes in the genome. A classical flexible behaviour is the exploration-exploitation decision, which describes the time at which foraging animals choose to abandon a depleting food supply. We have used quantitative genetic analysis to examine the decision to leave a food patch in Caenorhabditis elegans. Here we show that patch-leaving is a multigenic trait regulated in part by naturally occurring non-coding polymorphisms in tyra-3 (tyramine receptor 3), which encodes a G-protein-coupled catecholamine receptor related to vertebrate adrenergic receptors. tyra-3 acts in sensory neurons that detect environmental cues, suggesting that the internal catecholamines detected by tyra-3 regulate responses to external conditions. These results indicate that genetic variation and environmental cues converge on common circuits to regulate behaviour, and suggest that catecholamines have an ancient role in regulating behavioural decisions.


Asunto(s)
Conducta Animal/fisiología , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Conducta Alimentaria/fisiología , Polimorfismo Genético/genética , Receptores de Catecolaminas/genética , Alelos , Animales , Caenorhabditis elegans/clasificación , Proteínas de Caenorhabditis elegans/metabolismo , Catecolaminas/metabolismo , Toma de Decisiones/fisiología , Ambiente , Regulación de la Expresión Génica , Herencia Multifactorial/genética , Sitios de Carácter Cuantitativo/genética , Receptores de Catecolaminas/metabolismo , Células Receptoras Sensoriales/metabolismo , Factores de Tiempo , Tiramina/metabolismo
15.
Nature ; 477(7364): 321-5, 2011 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-21849976

RESUMEN

Evolution can follow predictable genetic trajectories, indicating that discrete environmental shifts can select for reproducible genetic changes. Conspecific individuals are an important feature of an animal's environment, and a potential source of selective pressures. Here we show that adaptation of two Caenorhabditis species to growth at high density, a feature common to domestic environments, occurs by reproducible genetic changes to pheromone receptor genes. Chemical communication through pheromones that accumulate during high-density growth causes young nematode larvae to enter the long-lived but non-reproductive dauer stage. Two strains of Caenorhabditis elegans grown at high density have independently acquired multigenic resistance to pheromone-induced dauer formation. In each strain, resistance to the pheromone ascaroside C3 results from a deletion that disrupts the adjacent chemoreceptor genes serpentine receptor class g (srg)-36 and -37. Through misexpression experiments, we show that these genes encode redundant G-protein-coupled receptors for ascaroside C3. Multigenic resistance to dauer formation has also arisen in high-density cultures of a different nematode species, Caenorhabditis briggsae, resulting in part from deletion of an srg gene paralogous to srg-36 and srg-37. These results demonstrate rapid remodelling of the chemoreceptor repertoire as an adaptation to specific environments, and indicate that parallel changes to a common genetic substrate can affect life-history traits across species.


Asunto(s)
Evolución Biológica , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Receptores de Feromonas/genética , Adaptación Fisiológica/genética , Adaptación Fisiológica/fisiología , Animales , Caenorhabditis elegans/clasificación , Caenorhabditis elegans/efectos de los fármacos , Ambiente , Evolución Molecular , Glucolípidos/metabolismo , Glucolípidos/farmacología , Hibernación/genética , Hibernación/fisiología , Larva/crecimiento & desarrollo , Feromonas/metabolismo , Feromonas/farmacología , Densidad de Población , Sitios de Carácter Cuantitativo/genética , Receptores de Feromonas/metabolismo
16.
Proc Natl Acad Sci U S A ; 111(7): 2770-5, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24550306

RESUMEN

Recent progress in neuroscience has been facilitated by tools for neuronal activation and inactivation that are orthogonal to endogenous signaling systems. We describe here a chemical-genetic approach for inducible silencing of Caenorhabditis elegans neurons in intact animals, using the histamine-gated chloride channel HisCl1 from Drosophila and exogenous histamine. Administering histamine to freely moving C. elegans that express HisCl1 transgenes in neurons leads to rapid and potent inhibition of neural activity within minutes, as assessed by behavior, functional calcium imaging, and electrophysiology of neurons expressing HisCl1. C. elegans does not use histamine as an endogenous neurotransmitter, and exogenous histamine has little apparent effect on wild-type C. elegans behavior. HisCl1-histamine silencing of sensory neurons, interneurons, and motor neurons leads to behavioral effects matching their known functions. In addition, the HisCl1-histamine system can be used to titrate the level of neural activity, revealing quantitative relationships between neural activity and behavioral output. We use these methods to dissect escape circuits, define interneurons that regulate locomotion speed (AVA, AIB) and escape-related omega turns (AIB), and demonstrate graded control of reversal length by AVA interneurons and DA/VA motor neurons. The histamine-HisCl1 system is effective, robust, compatible with standard behavioral assays, and easily combined with optogenetic tools, properties that should make it a useful addition to C. elegans neurotechnology.


Asunto(s)
Caenorhabditis elegans/metabolismo , Canales de Cloruro/metabolismo , Proteínas de Drosophila/metabolismo , Histamina/farmacología , Neuronas/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Canales de Cloruro/antagonistas & inhibidores , Drosophila , Proteínas de Drosophila/antagonistas & inhibidores , Técnicas Analíticas Microfluídicas , Modelos Neurológicos , Actividad Motora/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp
17.
Genes Dev ; 23(3): 345-58, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19204119

RESUMEN

At discrete points in development, transient signals are transformed into long-lasting cell fates. For example, the asymmetric identities of two Caenorhabditis elegans olfactory neurons called AWC(ON) and AWC(OFF) are specified by an embryonic signaling pathway, but maintained throughout the life of an animal. Here we show that the DNA-binding protein NSY-7 acts to convert a transient, partially differentiated state into a stable AWC(ON) identity. Expression of an AWC(ON) marker is initiated in nsy-7 loss-of-function mutants, but subsequently lost, so that most adult animals have two AWC(OFF) neurons and no AWC(ON) neurons. nsy-7 encodes a protein with distant similarity to a homeodomain. It is expressed in AWC(ON), and is an early transcriptional target of the embryonic signaling pathway that specifies AWC(ON) and AWC(OFF); its expression anticipates future AWC asymmetry. The NSY-7 protein binds a specific optimal DNA sequence that was identified through a complete biochemical survey of 8-mer DNA sequences. This sequence is present in the promoter of an AWC(OFF) marker and essential for its asymmetric expression. An 11-base-pair (bp) sequence required for AWC(OFF) expression has two activities: One region activates expression in both AWCs, and the overlapping NSY-7-binding site inhibits expression in AWC(ON). Our results suggest that NSY-7 responds to transient embryonic signaling by repressing AWC(OFF) genes in AWC(ON), thus acting as a transcriptional selector for a randomly specified neuronal identity.


Asunto(s)
Tipificación del Cuerpo/genética , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Tipificación del Cuerpo/fisiología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Secuencia de Consenso , GMP Cíclico/metabolismo , ADN de Helmintos/genética , ADN de Helmintos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes de Helminto , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Larva/crecimiento & desarrollo , Larva/metabolismo , Datos de Secuencia Molecular , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Neuronas Receptoras Olfatorias/crecimiento & desarrollo , Neuronas Receptoras Olfatorias/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal
18.
Nat Methods ; 10(6): 483-90, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23866325

RESUMEN

In this Historical Perspective, we ask what information is needed beyond connectivity diagrams to understand the function of nervous systems. Informed by invertebrate circuits whose connectivities are known, we highlight the importance of neuronal dynamics and neuromodulation, and the existence of parallel circuits. The vertebrate retina has these features in common with invertebrate circuits, suggesting that they are general across animals. Comparisons across these systems suggest approaches to study the functional organization of large circuits based on existing knowledge of small circuits.


Asunto(s)
Encéfalo/fisiología , Conectoma , Animales , Braquiuros/fisiología , Caenorhabditis elegans/fisiología , Humanos , Red Nerviosa , Neuronas/fisiología , Retina/fisiología , Sinapsis/fisiología
19.
Nat Methods ; 10(1): 60-3, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23223154

RESUMEN

Conventional acquisition of three-dimensional (3D) microscopy data requires sequential z scanning and is often too slow to capture biological events. We report an aberration-corrected multifocus microscopy method capable of producing an instant focal stack of nine 2D images. Appended to an epifluorescence microscope, the multifocus system enables high-resolution 3D imaging in multiple colors with single-molecule sensitivity, at speeds limited by the camera readout time of a single image.


Asunto(s)
Caenorhabditis elegans/citología , Rastreo Celular , Imagenología Tridimensional/métodos , Microscopía Fluorescente , Neuronas/citología , Saccharomyces cerevisiae/citología , Animales , Neoplasias Óseas/enzimología , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Osteosarcoma/enzimología , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Nat Methods ; 10(2): 162-70, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23314171

RESUMEN

We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus-evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.


Asunto(s)
Proteínas de Escherichia coli , Colorantes Fluorescentes , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Recombinantes de Fusión , Transmisión Sináptica/fisiología , Animales , Astrocitos/metabolismo , Técnicas Biosensibles , Caenorhabditis elegans , Señalización del Calcio/fisiología , Proteínas de Escherichia coli/síntesis química , Potenciales Postsinápticos Excitadores/fisiología , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/síntesis química , Hipocampo/metabolismo , Ratones , Corteza Motora/metabolismo , Neuronas/metabolismo , Estimulación Luminosa , Células Piramidales/metabolismo , Proteínas Recombinantes de Fusión/síntesis química , Retina/fisiología , Relación Señal-Ruido , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA