Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Clin Microbiol ; 61(5): e0158122, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-36883820

RESUMEN

Coccidioidomycosis is a fungal disease associated with soil exposure that frequently goes undiagnosed due at least in part to its nonspecific presentation and the lack of clinical suspicion by health care providers. Currently available diagnostics for coccidioidomycosis offer qualitative results that can suffer from low specificity, while semiquantitative assays are labor-intensive and complex and can require multiple days to complete. Furthermore, significant confusion exists regarding the optimal diagnostic algorithms and appropriate usage of available diagnostic tests. This review aims to inform clinical laboratorians and treating clinicians about the current diagnostic landscape, appropriate diagnostic strategies, and future diagnostic directions for coccidioidomycosis, which is expected to become more prevalent due to increased migration into areas of endemicity and climate changes.


Asunto(s)
Coccidioidomicosis , Humanos , Coccidioidomicosis/diagnóstico , Coccidioides , Anticuerpos Antifúngicos , Bioensayo
2.
Fungal Genet Biol ; 167: 103797, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37100376

RESUMEN

Life-threatening infections caused by fungi in the order Onygenales have been rising over the last few decades. Increasing global temperature due to anthropogenic climate change is one potential abiotic selection pressure that may explain the increase in infections. The generation of genetically novel offspring with novel phenotypes through the process of sexual recombination could allow fungi to adapt to changing climate conditions. The basic structures associated with sexual reproduction have been identified in Histoplasma, Blastomyces, Malbranchea, and Brunneospora. However, for Coccidioides and Paracoccidioides, the actual structural identification of these processes has yet to be identified despite having genetic evidence that suggests sexual recombination is occurring in these organisms. This review highlights the importance of assessing sexual recombination in the order Onygenales as a means of understanding the mechanisms these organisms might employ to enhance fitness in the face of a changing climate and provides details regarding the known reproductive mechanisms in the Onygenales.


Asunto(s)
Amor , Onygenales , Biodiversidad , Cambio Climático , Temperatura , Onygenales/genética , Hongos , Reproducción/genética
3.
J Virol ; 96(1): e0096421, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34668775

RESUMEN

A comprehensive analysis and characterization of a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection model that mimics non-severe and severe coronavirus disease 2019 (COVID-19) in humans is warranted for understating the virus and developing preventive and therapeutic agents. Here, we characterized the K18-hACE2 mouse model expressing human (h)ACE2 in mice, controlled by the human keratin 18 (K18) promoter, in the epithelia, including airway epithelial cells where SARS-CoV-2 infections typically start. We found that intranasal inoculation with higher viral doses (2 × 103 and 2 × 104 PFU) of SARS-CoV-2 caused lethality of all mice and severe damage of various organs, including lung, liver, and kidney, while lower doses (2 × 101 and 2 × 102 PFU) led to less severe tissue damage and some mice recovered from the infection. In this hACE2 mouse model, SARS-CoV-2 infection damaged multiple tissues, with a dose-dependent effect in most tissues. Similar damage was observed in postmortem samples from COVID-19 patients. Finally, the mice that recovered from infection with a low dose of virus survived rechallenge with a high dose of virus. Compared to other existing models, the K18-hACE2 model seems to be the most sensitive COVID-19 model reported to date. Our work expands the information available about this model to include analysis of multiple infectious doses and various tissues with comparison to human postmortem samples from COVID-19 patients. In conclusion, the K18-hACE2 mouse model recapitulates both severe and non-severe COVID-19 in humans being dose-dependent and can provide insight into disease progression and the efficacy of therapeutics for preventing or treating COVID-19. IMPORTANCE The pandemic of coronavirus disease 2019 (COVID-19) has reached nearly 240 million cases, caused nearly 5 million deaths worldwide as of October 2021, and has raised an urgent need for the development of novel drugs and therapeutics to prevent the spread and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To achieve this goal, an animal model that recapitulates the features of human COVID-19 disease progress and pathogenesis is greatly needed. In this study, we have comprehensively characterized a mouse model of SARS-CoV-2 infection using K18-hACE2 transgenic mice. We infected the mice with low and high doses of SARS-CoV-2 to study the pathogenesis and survival in response to different infection patterns. Moreover, we compared the pathogenesis of the K18-hACE2 transgenic mice with that of the COVID-19 patients to show that this model could be a useful tool for the development of antiviral drugs and therapeutics.


Asunto(s)
COVID-19/patología , Modelos Animales de Enfermedad , SARS-CoV-2/patogenicidad , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , COVID-19/inmunología , COVID-19/mortalidad , COVID-19/virología , Humanos , Sueros Inmunes/inmunología , Queratina-18/genética , Ratones , Ratones Transgénicos , Regiones Promotoras Genéticas , Reinfección/inmunología , Reinfección/mortalidad , Reinfección/patología , Reinfección/virología , SARS-CoV-2/inmunología , Proteínas Virales/genética , Proteínas Virales/metabolismo
4.
Fungal Genet Biol ; 163: 103743, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36152775

RESUMEN

Feline-transmitted sporotrichosis has garnered attention due to the recent high incidence and the lack of efficient control in the epicenter of the epidemic, Rio de Janeiro, Brazil. Sporothrix brasiliensis is the major pathogen involved in feline-to-human sporotrichosis in Brazil and displays more virulent genotypes than the closely related species S. schenckii. Over the last two decades, several reports of antifungal-resistant strains have emerged. Sequencing and comparison analysis of the outbreak strains allowed us to observe that the azole non-wild-type S. brasiliensis strain CFP 1054 had significant chromosomal variations compared to wild-type strains. One of these variants includes a region of 231 Kb containing 75 duplicated genes, which were overrepresented for lipid and isoprenoid metabolism. We also identified an additional strain (CFP 1055) that was resistant to itraconazole and amphotericin B, which had a single nucleotide polymorphism in the tac1 gene. The patients infected with these two strains showed protracted clinical course and sequelae. Even though our sample size is modest, these results suggest the possibility of identifying specific point mutations and large chromosomal duplications potentially associated with antifungal resistance and clinical outcomes of sporotrichosis.


Asunto(s)
Sporothrix , Esporotricosis , Animales , Gatos , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Brasil/epidemiología , Variaciones en el Número de Copia de ADN , Polimorfismo de Nucleótido Simple , Sporothrix/genética , Esporotricosis/epidemiología , Esporotricosis/microbiología , Farmacorresistencia Fúngica/genética
5.
Fungal Genet Biol ; 138: 103351, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32028048

RESUMEN

Modern genome analysis and phylogenomic methods have increased the number of fungal species, as well as enhanced appreciation of the degree of diversity within the fungal kingdom. In this context, we describe a new Parengyodontium species, P. americanum, which is phylogenetically related to the opportunistic human fungal pathogen P. album. Five unusual fungal isolates were recovered from five unique and confirmed coccidioidomycosis patients, and these isolates were subsequently submitted to detailed molecular and morphological identification procedures to determine identity. Molecular and morphological diagnostic analyses showed that the isolates belong to the Cordycipitaceae. Subsequently, three representative genomes were sequenced and annotated, and a new species, P. americanum, was identified. Using various genomic analyses, gene family expansions related to novel compounds and potential for ability to grow in diverse habitats are predicted. A general description of the genomic composition of this newly described species and comparison of genome content with Beauveria bassiana, Isaria fumosorosea and Cordyceps militaris shows a shared core genome of 6371 genes, and 148 genes that appear to be specific for P. americanum. This work provides the framework for future investigations of this interesting fungal species.


Asunto(s)
Coccidioidomicosis/microbiología , Hypocreales , Beauveria/genética , Cordyceps/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Humanos , Hypocreales/clasificación , Hypocreales/citología , Hypocreales/genética , Hypocreales/aislamiento & purificación , Infecciones Oportunistas/microbiología , Filogenia , Proteómica
6.
Fungal Genet Biol ; 140: 103395, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32325168

RESUMEN

Paracoccidioidomycosis (PCM) is a life-threatening systemic mycosis widely reported in the Gran Chaco ecosystem. The disease is caused by different species from the genus Paracoccidioides, which are all endemic to South and Central America. Here, we sequenced and analyzed 31 isolates of Paracoccidioides across South America, with particular focus on isolates from Argentina and Paraguay. The de novo sequenced isolates were compared with publicly available genomes. Phylogenetics and population genomics revealed that PCM in Argentina and Paraguay is caused by three distinct Paracoccidioides genotypes, P. brasiliensis (S1a and S1b) and P. restrepiensis (PS3). P. brasiliensis S1a isolates from Argentina are frequently associated with chronic forms of the disease. Our results suggest the existence of extensive molecular polymorphism among Paracoccidioides species, and provide a framework to begin to dissect the connection between genotypic differences in the pathogen and the clinical outcomes of the disease.


Asunto(s)
Variación Genética/genética , Genómica , Paracoccidioides/genética , Paracoccidioidomicosis/genética , Argentina/epidemiología , Ecosistema , Genética de Población , Genoma Fúngico/genética , Genotipo , Humanos , Paracoccidioides/clasificación , Paracoccidioides/patogenicidad , Paracoccidioidomicosis/clasificación , Paracoccidioidomicosis/epidemiología , Paracoccidioidomicosis/microbiología , Paraguay/epidemiología , Filogenia
7.
Mycopathologia ; 185(1): 145-159, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31586286

RESUMEN

The lack of knowledge regarding the ecology of Coccidioides spp. makes both modeling the potential for disease outbreaks and predicting the distribution of the organism in the environment challenging. No single ecological parameter explains the biogeography of the pathogen. Previous investigations suggest an association with desert mammals, but these results should be confirmed with modern molecular techniques. Therefore, we used molecular tools to analyze soils associated with animal activity (i.e., burrows) to better define the ecology and biogeography of Coccidioides spp. in Arizona. Soils were collected from locations predicted to have favorable habitat outside of the established endemic regions to better understand the ecological niche of the organism in this state. Our central hypothesis is that soils taken from within animal burrows will have a higher abundance of Coccidioides spp. when compared to soils not directly associated with animal burrows. Our results show that there is a positive relationship with Coccidioides spp. and animal burrows. The organism was detected in two locations in northern Arizona at sites not known previously to harbor the fungus. Moreover, this fungus is able to grow on keratinized tissues (i.e., horse hair). These results provide additional evidence that there is a relationship between Coccidioides spp. and desert animals, which sheds new light on Coccidioides' ecological niche. These results also provide evidence that the geographic range of the organism may be larger than previously thought, and the concept of endemicity should be reevaluated for Coccidioides.


Asunto(s)
Coccidioides/fisiología , Microbiología del Suelo , Animales , Ecología , Ecosistema , Reacción en Cadena de la Polimerasa
8.
Clin Infect Dis ; 69(6): 1060-1062, 2019 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30715178

RESUMEN

A child developed hydrocephalus. Sixteen months later, it was discovered to be a complication of coccidioidal meningitis. The infection's source was uncertain until genomic analysis of the fungal isolate identified its origin to be a visit to Beeville, Texas. Improved national reporting of cases of coccidioidomycosis might reduce diagnostic delays.


Asunto(s)
Coccidioides/genética , Coccidioidomicosis/diagnóstico , Coccidioidomicosis/microbiología , Genoma Fúngico , Genómica , Meningitis Fúngica/diagnóstico , Meningitis Fúngica/microbiología , Biomarcadores , Coccidioidomicosis/epidemiología , Trazado de Contacto , Genómica/métodos , Humanos , Lactante , Masculino , Meningitis Fúngica/epidemiología , New York/epidemiología , Evaluación de Síntomas , Texas/epidemiología
9.
Med Mycol ; 57(Supplement_1): S16-S20, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30690603

RESUMEN

The prevailing hypothesis concerning the ecology of Coccidioides immitis and C. posadasii is that these human pathogenic fungi are soil fungi endemic to hot, dry, salty regions of the New World and that humans and the local, small-mammal fauna are only accidental hosts. Here we advance an alternative hypothesis that Coccidioides spp. live in small mammals as endozoans, which are kept inactive but alive in host granulomas and which transform into spore-producing hyphae when the mammal dies. The endozoan hypothesis incorporates results from comparative genomic analyses of Coccidioides spp. and related taxa that have shown a reduction in gene families associated with deconstruction of plant cell walls and an increase in those associated with digestion of animal protein, consistent with an evolutionary shift in substrate from plants to animals. If true, the endozoan hypothesis requires that models of the prevalence of human coccidioidomycosis account not only for direct effects of climate and soil parameters on the growth and reproduction of Coccidioides spp. but also consider indirect effects on these fungi that come from the plants that support the growth and reproduction of the small mammals that, in turn, support these endozoic fungi.


Asunto(s)
Coccidioides/crecimiento & desarrollo , Coccidioides/fisiología , Coccidioidomicosis/veterinaria , Reservorios de Enfermedades/microbiología , Mamíferos/microbiología , Animales , Coccidioides/genética , Ecología , Genoma Fúngico , Granuloma/microbiología , Humanos , Hifa/fisiología , Ratones , Filogenia , Esporas Fúngicas
10.
Med Mycol ; 57(Supplement_1): S21-S29, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30690605

RESUMEN

Although the natural history and ecology of Coccidioides spp. have been studied for over 100 years, many fundamental questions about this fungus remain unanswered. Two of the most challenging aspects of the study of Coccidioides have been the undefined ecological niche and the outdated geographic distribution maps dating from midcentury. This review details the history of Coccidioides ecological research, and discusses current strategies and advances in understanding Coccidioides genetics and ecology.


Asunto(s)
Coccidioides/genética , Ecosistema , Genómica , Animales , California/epidemiología , Coccidioidomicosis/epidemiología , Coccidioidomicosis/microbiología , Genética de Población , Geografía , Historia del Siglo XX , Historia del Siglo XXI , Humanos , México/epidemiología , Ratones , Investigación/historia , Microbiología del Suelo , Secuenciación Completa del Genoma
11.
Med Mycol ; 57(4): 478-488, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30053114

RESUMEN

The disease San Joaquin Valley Fever (coccidioidomycosis) is caused by the inhalation of Coccidioides arthroconidia. In vivo, arthroconidia transform into pathogenic structures termed spherules. Exposure to the host milieu triggers spherule development; however, the molecular mechanisms responsible for the morphological shift are not well characterized. This study compared the morphogenesis of five strains of both species of Coccidioides in two media types to improve the in vitro model of dimorphism that can be easily reproduced, and is amenable to tissue culture. We also sought to establish a modern record of the morphological switch among commonly used lab strains through a detailed account of growth under various conditions. Spherules from five strains were grown in standard (Converse) and experimental media (RPMI-sph). Strain behavior was quantified by median spherule size and spherule concentration, beginning 3 days after inoculation and followed for 10 days of growth. There were significant differences observed among Coccidioides immitis and C. posadasii strains, as well as differences between the in vitro systems.


Asunto(s)
Coccidioides/citología , Coccidioides/crecimiento & desarrollo , Animales , Células Cultivadas , Medios de Cultivo/química , Macrófagos/microbiología , Ratones , Microscopía Electrónica de Rastreo , Factores de Tiempo
12.
Artículo en Inglés | MEDLINE | ID: mdl-28096163

RESUMEN

Large-scale testing of Coccidioides isolates has not been performed, and the frequency of clinical isolates with elevated amphotericin B or triazole MICs has not been evaluated. Coccidioides isolates (n = 581) underwent antifungal susceptibility testing. Elevated MIC values were observed for fluconazole (≥16 µg/ml, 37.3% of isolates; ≥32 µg/ml, 7.9% of isolates), itraconazole (≥2 µg/ml, 1.0% of isolates), posaconazole (≥1 µg/ml, 1.0% of isolates), and voriconazole (≥2 µg/ml, 1.2% of isolates). However, mold-active triazoles exhibited low MICs for the majority of isolates tested. Additional correlation with patient outcomes to determine the relevance of elevated MICs in Coccidioides isolates is needed.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Coccidioides/efectos de los fármacos , Equinocandinas/farmacología , Triazoles/farmacología , Caspofungina , Coccidioidomicosis/microbiología , Flucitosina/farmacología , Itraconazol/farmacología , Lipopéptidos/farmacología , Pruebas de Sensibilidad Microbiana , Estados Unidos , Voriconazol/farmacología
13.
PLoS Pathog ; 11(1): e1004625, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25629406

RESUMEN

Aspergillus fumigatus is a mold that causes severe pulmonary infections. Our knowledge of how A. fumigatus growth is controlled in the respiratory tract is developing, but still limited. Alveolar macrophages, lung resident macrophages, and airway epithelial cells constitute the first lines of defense against inhaled A. fumigatus conidia. Subsequently, neutrophils and inflammatory CCR2+ monocytes are recruited to the respiratory tract to prevent fungal growth. However, the mechanism of neutrophil and macrophage recruitment to the respiratory tract after A. fumigatus exposure remains an area of ongoing investigation. Here we show that A. fumigatus pulmonary challenge induces expression of the inflammasome-dependent cytokines IL-1ß and IL-18 within the first 12 hours, while IL-1α expression continually increases over at least the first 48 hours. Strikingly, Il1r1-deficient mice are highly susceptible to pulmonary A. fumigatus challenge exemplified by robust fungal proliferation in the lung parenchyma. Enhanced susceptibility of Il1r1-deficient mice correlated with defects in leukocyte recruitment and anti-fungal activity. Importantly, IL-1α rather than IL-1ß was crucial for optimal leukocyte recruitment. IL-1α signaling enhanced the production of CXCL1. Moreover, CCR2+ monocytes are required for optimal early IL-1α and CXCL1 expression in the lungs, as selective depletion of these cells resulted in their diminished expression, which in turn regulated the early accumulation of neutrophils in the lung after A. fumigatus challenge. Enhancement of pulmonary neutrophil recruitment and anti-fungal activity by CXCL1 treatment could limit fungal growth in the absence of IL-1α signaling. In contrast to the role of IL-1α in neutrophil recruitment, the inflammasome and IL-1ß were only essential for optimal activation of anti-fungal activity of macrophages. As such, Pycard-deficient mice are mildly susceptible to A. fumigatus infection. Taken together, our data reveal central, non-redundant roles for IL-1α and IL-1ß in controlling A. fumigatus infection in the murine lung.


Asunto(s)
Aspergillus fumigatus/inmunología , Quimiotaxis de Leucocito , Interleucina-1alfa/fisiología , Aspergilosis Pulmonar/inmunología , Animales , Pruebas de Provocación Bronquial , Células Cultivadas , Quimiotaxis de Leucocito/genética , Quimiotaxis de Leucocito/inmunología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Aspergilosis Pulmonar/genética , Transducción de Señal/genética , Transducción de Señal/inmunología
14.
PLoS Pathog ; 11(10): e1005187, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26492565

RESUMEN

Of the over 250 Aspergillus species, Aspergillus fumigatus accounts for up to 80% of invasive human infections. A. fumigatus produces galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetyl-galactosamine (GalNAc) that mediates adherence and is required for full virulence. Less pathogenic Aspergillus species were found to produce GAG with a lower GalNAc content than A. fumigatus and expressed minimal amounts of cell wall-bound GAG. Increasing the GalNAc content of GAG of the minimally pathogenic A. nidulans, either through overexpression of the A. nidulans epimerase UgeB or by heterologous expression of the A. fumigatus epimerase Uge3 increased the amount of cell wall bound GAG, augmented adherence in vitro and enhanced virulence in corticosteroid-treated mice to levels similar to A. fumigatus. The enhanced virulence of the overexpression strain of A. nidulans was associated with increased resistance to NADPH oxidase-dependent neutrophil extracellular traps (NETs) in vitro, and was not observed in neutropenic mice or mice deficient in NADPH-oxidase that are unable to form NETs. Collectively, these data suggest that cell wall-bound GAG enhances virulence through mediating resistance to NETs.


Asunto(s)
Aspergillus/patogenicidad , Trampas Extracelulares , Neutrófilos/inmunología , Polisacáridos/fisiología , Animales , Biopelículas , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Virulencia
15.
Emerg Infect Dis ; 22(6): 1022-30, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27191589

RESUMEN

During the past 20 years, a general picture of the genetic diversity and population structure of Coccidioides, the causal agent of coccidioidomycosis (Valley fever), has emerged. The genus consists of 2 genetically diverse species, C. immitis and C. posadasii, each of which contains 1 or more distinct populations with limited gene flow. Genotypic data indicate that C. immitis is divided into 2 subpopulations (central and southern California populations) and C. posadasii is divided into 3 subpopulations (Arizona, Mexico, and Texas/South America populations). However, admixture within and among these populations and the current paucity of environmental isolates limit our understanding of the population genetics of Coccidioides. We assessed population structure of Coccidioides in Arizona by analyzing 495 clinical and environmental isolates. Our findings confirm the population structure as previously described and indicate a finer scale population structure in Arizona. Environmental isolates appear to have higher genetic diversity than isolates from human patients.


Asunto(s)
Coccidioides/clasificación , Coccidioides/genética , Coccidioidomicosis/epidemiología , Coccidioidomicosis/microbiología , Evolución Molecular , Variación Genética , Genética de Población , Animales , Coccidioides/aislamiento & purificación , ADN de Hongos , Geografía Médica , Humanos , Repeticiones de Microsatélite , Tipificación de Secuencias Multilocus , América del Sur/epidemiología , Estados Unidos/epidemiología
16.
PLoS Pathog ; 10(11): e1004487, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25375670

RESUMEN

The Aspergillus fumigatus sterol regulatory element binding protein (SREBP) SrbA belongs to the basic Helix-Loop-Helix (bHLH) family of transcription factors and is crucial for antifungal drug resistance and virulence. The latter phenotype is especially striking, as loss of SrbA results in complete loss of virulence in murine models of invasive pulmonary aspergillosis (IPA). How fungal SREBPs mediate fungal virulence is unknown, though it has been suggested that lack of growth in hypoxic conditions accounts for the attenuated virulence. To further understand the role of SrbA in fungal infection site pathobiology, chromatin immunoprecipitation followed by massively parallel DNA sequencing (ChIP-seq) was used to identify genes under direct SrbA transcriptional regulation in hypoxia. These results confirmed the direct regulation of ergosterol biosynthesis and iron uptake by SrbA in hypoxia and revealed new roles for SrbA in nitrate assimilation and heme biosynthesis. Moreover, functional characterization of an SrbA target gene with sequence similarity to SrbA identified a new transcriptional regulator of the fungal hypoxia response and virulence, SrbB. SrbB co-regulates genes involved in heme biosynthesis and demethylation of C4-sterols with SrbA in hypoxic conditions. However, SrbB also has regulatory functions independent of SrbA including regulation of carbohydrate metabolism. Loss of SrbB markedly attenuates A. fumigatus virulence, and loss of both SREBPs further reduces in vivo fungal growth. These data suggest that both A. fumigatus SREBPs are critical for hypoxia adaptation and virulence and reveal new insights into SREBPs' complex role in infection site adaptation and fungal virulence.


Asunto(s)
Aspergillus fumigatus , Proteínas Fúngicas , Proteínas de Unión a los Elementos Reguladores de Esteroles , Transcriptoma , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Unión a los Elementos Reguladores de Esteroles/biosíntesis , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética
17.
Med Mycol ; 54(6): 584-92, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27143633

RESUMEN

Environmental surveillance of the soil-dwelling fungus Coccidioides is essential for the prevention of Valley fever, a disease primarily caused by inhalation of the arthroconidia. Methods for collecting and detecting Coccidioides in soil samples are currently in use by several laboratories; however, a method utilizing current air sampling technologies has not been formally demonstrated for the capture of airborne arthroconidia. In this study, we collected air/dust samples at two sites (Site A and Site B) in the endemic region of Tucson, Arizona, and tested a variety of air samplers and membrane matrices. We then employed a single-tube nested qPCR assay for molecular detection. At both sites, numerous soil samples (n = 10 at Site A and n = 24 at Site B) were collected and Coccidioides was detected in two samples (20%) at Site A and in eight samples (33%) at Site B. Of the 25 air/dust samples collected at both sites using five different air sampling methods, we detected Coccidioides in three samples from site B. All three samples were collected using a high-volume sampler with glass-fiber filters. In this report, we describe these methods and propose the use of these air sampling and molecular detection strategies for environmental surveillance of Coccidioides.


Asunto(s)
Microbiología del Aire , Coccidioides/aislamiento & purificación , Técnicas Microbiológicas/métodos , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Arizona , Coccidioides/clasificación , Coccidioides/genética , Microbiología del Suelo
18.
Eukaryot Cell ; 14(10): 1043-53, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26275879

RESUMEN

Coccidioides immitis and Coccidioides posadasii are soil-dwelling fungi and the causative agents of coccidioidomycosis, a mycosis endemic to certain semiarid regions in the Americas. The most common route of infection is by inhalation of airborne Coccidioides arthroconidia. Once a susceptible host inhales the conidia, a transition to mature endosporulated spherules can occur within the first 5 days of infection. For this study, we examined the host response in a murine model of coccidioidomycosis during a time period of infection that has not been well characterized. We collected lung tissue and bronchoalveolar lavage fluid (BALF) from BALB/c mice that were infected with a C. immitis pure strain, a C. immitis hybrid strain, or a C. posadasii strain as well as uninfected mice. We compared the host responses to the Coccidioides strains used in this study by assessing the level of transcription of selected cytokine genes in lung tissues and characterized host and fungal proteins present in BALF. Host response varied depending on the Coccidioides strain that was used and did not appear to be overly robust. This study provides a foundation to begin to dissect the host immune response early in infection, to detect abundant Coccidioides proteins, and to develop diagnostics that target these early time points of infection.


Asunto(s)
Coccidioides/inmunología , Coccidioides/aislamiento & purificación , Coccidioidomicosis/inmunología , Citocinas/genética , Inmunidad Innata/inmunología , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Líquido del Lavado Bronquioalveolar/microbiología , Coccidioides/genética , Coccidioidomicosis/microbiología , Femenino , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Ratones , Ratones Endogámicos BALB C , ARN Mensajero/genética , Esporas Fúngicas/inmunología
20.
Antimicrob Agents Chemother ; 59(12): 7249-54, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26369964

RESUMEN

Coccidioidomycosis, or valley fever, is a growing health concern endemic to the southwestern United States. Safer, more effective, and more easily administered drugs are needed especially for severe, chronic, or unresponsive infections. The novel fungal CYP51 inhibitor VT-1161 demonstrated in vitro antifungal activity, with MIC50 and MIC90 values of 1 and 2 µg/ml, respectively, against 52 Coccidioides clinical isolates. In the initial animal study, oral doses of 10 and 50 mg/kg VT-1161 significantly reduced fungal burdens and increased survival time in a lethal respiratory model in comparison with treatment with a placebo (P < 0.001). Oral doses of 25 and 50 mg/kg VT-1161 were similarly efficacious in the murine central nervous system (CNS) model compared to placebo treatment (P < 0.001). All comparisons with the positive-control drug, fluconazole at 50 mg/kg per day, demonstrated either statistical equivalence or superiority of VT-1161. VT-1161 treatment also prevented dissemination of infection from the original inoculation site to a greater extent than fluconazole. Many of these in vivo results can be explained by the long half-life of VT-1161 leading to sustained high plasma levels. Thus, the efficacy and pharmacokinetics of VT-1161 are attractive characteristics for long-term treatment of this serious fungal infection.


Asunto(s)
Inhibidores de 14 alfa Desmetilasa/farmacología , Antifúngicos/farmacología , Coccidioides/efectos de los fármacos , Coccidioidomicosis/tratamiento farmacológico , Fluconazol/farmacología , Fungemia/prevención & control , Piridinas/farmacología , Tetrazoles/farmacología , Inhibidores de 14 alfa Desmetilasa/sangre , Inhibidores de 14 alfa Desmetilasa/farmacocinética , Animales , Antifúngicos/sangre , Antifúngicos/farmacocinética , Coccidioides/enzimología , Coccidioides/crecimiento & desarrollo , Coccidioidomicosis/microbiología , Coccidioidomicosis/mortalidad , Coccidioidomicosis/patología , Modelos Animales de Enfermedad , Femenino , Fluconazol/sangre , Fluconazol/farmacocinética , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fungemia/microbiología , Fungemia/mortalidad , Fungemia/patología , Semivida , Humanos , Ratones , Pruebas de Sensibilidad Microbiana , Piridinas/sangre , Piridinas/farmacocinética , Esterol 14-Desmetilasa/genética , Esterol 14-Desmetilasa/metabolismo , Análisis de Supervivencia , Tetrazoles/sangre , Tetrazoles/farmacocinética , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA