Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
PLoS Pathog ; 17(9): e1009884, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34506615

RESUMEN

Vulvovaginal candidiasis (VVC), caused primarily by the human fungal pathogen Candida albicans, results in significant quality-of-life issues for women worldwide. Candidalysin, a toxin derived from a polypeptide (Ece1p) encoded by the ECE1 gene, plays a crucial role in driving immunopathology at the vaginal mucosa. This study aimed to determine if expression and/or processing of Ece1p differs across C. albicans isolates and whether this partly underlies differential pathogenicity observed clinically. Using a targeted sequencing approach, we determined that isolate 529L harbors a similarly expressed, yet distinct Ece1p isoform variant that encodes for a predicted functional candidalysin; this isoform was conserved amongst a collection of clinical isolates. Expression of the ECE1 open reading frame (ORF) from 529L in an SC5314-derived ece1Δ/Δ strain resulted in significantly reduced vaginopathogenicity as compared to an isogenic control expressing a wild-type (WT) ECE1 allele. However, in vitro challenge of vaginal epithelial cells with synthetic candidalysin demonstrated similar toxigenic activity amongst SC5314 and 529L isoforms. Creation of an isogenic panel of chimeric strains harboring swapped Ece1p peptides or HiBiT tags revealed reduced secretion with the ORF from 529L that was associated with reduced virulence. A genetic survey of 78 clinical isolates demonstrated a conserved pattern between Ece1p P2 and P3 sequences, suggesting that substrate specificity around Kex2p-mediated KR cleavage sites involved in protein processing may contribute to differential pathogenicity amongst clinical isolates. Therefore, we present a new mechanism for attenuation of C. albicans virulence at the ECE1 locus.


Asunto(s)
Candida albicans/genética , Candidiasis Vulvovaginal/microbiología , Proteínas Fúngicas/genética , Alelos , Animales , Candida albicans/patogenicidad , Femenino , Variación Genética , Humanos , Ratones , Virulencia
2.
J Infect Dis ; 221(9): 1554-1563, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-31805183

RESUMEN

Candida albicans, a ubiquitous commensal fungus that colonizes human mucosal tissues and skin, can become pathogenic, clinically manifesting most commonly as oropharyngeal candidiasis and vulvovaginal candidiasis (VVC). Studies in mice and humans convincingly show that T-helper 17 (Th17)/interleukin 17 (IL-17)-driven immunity is essential to control oral and dermal candidiasis. However, the role of the IL-17 pathway during VVC remains controversial, with conflicting reports from human data and mouse models. Like others, we observed induction of a strong IL-17-related gene signature in the vagina during estrogen-dependent murine VVC. As estrogen increases susceptibility to vaginal colonization and resulting immunopathology, we asked whether estrogen use in the standard VVC model masks a role for the Th17/IL-17 axis. We demonstrate that mice lacking IL-17RA, Act1, or interleukin 22 showed no evidence for altered VVC susceptibility or immunopathology, regardless of estrogen administration. Hence, these data support the emerging consensus that Th17/IL-17 axis signaling is dispensable for the immunopathogenesis of VVC.


Asunto(s)
Candidiasis Vulvovaginal/inmunología , Estrógenos/administración & dosificación , Interleucina-17/inmunología , Receptores de Interleucina-17/inmunología , Receptores de Interleucina/inmunología , Animales , Candida albicans , Candidiasis Bucal/inmunología , Candidiasis Bucal/patología , Candidiasis Vulvovaginal/patología , Modelos Animales de Enfermedad , Estrógenos/metabolismo , Femenino , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/patología , Transducción de Señal/inmunología , Vagina/microbiología
3.
Artículo en Inglés | MEDLINE | ID: mdl-30718246

RESUMEN

Candida auris has rapidly emerged as a health care-associated and multidrug-resistant pathogen of global concern. In this work, we examined the relative expression of the four C. auris genes with the highest degree of homology to Candida albicansCDR1 and MDR1 among three triazole-resistant clinical isolates as compared to the triazole-susceptible genome reference clinical isolate. We subsequently utilized a novel Cas9-mediated system for genetic manipulations to delete C. aurisCDR1 and MDR1 in both a triazole-resistant clinical isolate and a susceptible reference strain and observed that MICs for all clinically available triazoles decreased as much as 128-fold in the CDR1 deletion strains. The findings of this work reveal for the first time that C. aurisCDR1 and MDR1 are more highly expressed among triazole-resistant clinical isolates of C. auris and that the overexpression of CDR1 is a significant contributor to clinical triazole resistance.


Asunto(s)
Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/genética , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Proteína 9 Asociada a CRISPR/genética , Candida/aislamiento & purificación , Candidiasis/microbiología , Farmacorresistencia Fúngica/efectos de los fármacos , Fluconazol/farmacología , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Humanos , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Microbiana , Microorganismos Modificados Genéticamente , Triazoles/farmacología
4.
Infect Immun ; 86(12)2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30249743

RESUMEN

The human fungal pathogen Candida albicans is the major etiological agent of vulvovaginal candidiasis (VVC). Despite this fact, other non-albicans Candida (NAC) species have frequently been reported, as well. Despite their presence in the vaginal environment, little is known about their capacities to elicit immune responses classically associated with C. albicans-mediated immunopathology, including neutrophil recruitment and proinflammatory cytokine signaling. Therefore, using a combination of in vitro and in vivo approaches, we undertook a comparative analysis to determine whether a representative panel of NAC species could colonize, induce immunopathological markers, or cause damage at the vaginal mucosa. Using a murine model of VVC, C. albicans was found to induce robust immunopathology (neutrophils and interleukin 1ß [IL-1ß]) and elicit mucosal damage. However, all the NAC species tested (including C. dubliniensis, C. tropicalis, C. parapsilosis, C. krusei, C. glabrata, and C. auris) induced significantly less damage and neutrophil recruitment than C. albicans, despite achieving similar early colonization levels. These results largely correlated with a notable lack of ability by the NAC species (including C. dubliniensis and C. tropicalis) to form hyphae both in vitro and in vivo Furthermore, both C. dubliniensis and C. tropicalis induced significantly less expression of the ECE1 gene encoding candidalysin, a key fungal virulence determinant driving VVC immunopathology. In order to determine the relative capacities of these species to elicit inflammasome-dependent IL-1ß release, both wild-type and NLRP3-/- THP-1 cells were challenged in vitro While most species tested elicited only modest amounts of IL-1ß, challenge with C. albicans led to significantly elevated levels that were largely NLRP3 dependent. Collectively, our findings demonstrate that although NAC species are increasingly reported as causative agents of VVC, C. albicans appears to be exceedingly vaginopathogenic, exhibiting robust immunopathology, hypha formation, and candidalysin expression. Thus, this study provides mechanistic insight into why C. albicans is overwhelmingly the major pathogen reported during VVC.


Asunto(s)
Candida/patogenicidad , Candidiasis Vulvovaginal/microbiología , Vagina/inmunología , Vagina/patología , Animales , Candida glabrata/patogenicidad , Candida tropicalis/patogenicidad , Candidiasis Vulvovaginal/inmunología , Candidiasis Vulvovaginal/patología , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Proteínas Fúngicas/genética , Inflamasomas , Interleucina-1beta/inmunología , Ratones , Ratones Endogámicos C57BL , Membrana Mucosa/inmunología , Membrana Mucosa/microbiología , Membrana Mucosa/patología , Infiltración Neutrófila , Transducción de Señal/inmunología , Vagina/microbiología , Factores de Virulencia
5.
Infect Immun ; 86(2)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29109176

RESUMEN

Unlike other forms of candidiasis, vulvovaginal candidiasis, caused primarily by the fungal pathogen Candida albicans, is a disease of immunocompetent and otherwise healthy women. Despite its prevalence, the fungal factors responsible for initiating symptomatic infection remain poorly understood. One of the hallmarks of vaginal candidiasis is the robust recruitment of neutrophils to the site of infection, which seemingly do not clear the fungus, but rather exacerbate disease symptomatology. Candidalysin, a newly discovered peptide toxin secreted by C. albicans hyphae during invasion, drives epithelial damage, immune activation, and phagocyte attraction. Therefore, we hypothesized that Candidalysin is crucial for vulvovaginal candidiasis immunopathology. Anti-Candida immune responses are anatomical-site specific, as effective gastrointestinal, oral, and vaginal immunities are uniquely compartmentalized. Thus, we aimed to identify the immunopathologic role of Candidalysin and downstream signaling events at the vaginal mucosa. Microarray analysis of C. albicans-infected human vaginal epithelium in vitro revealed signaling pathways involved in epithelial damage responses, barrier repair, and leukocyte activation. Moreover, treatment of A431 vaginal epithelial cells with Candidalysin induced dose-dependent proinflammatory cytokine responses (including interleukin 1α [IL-1α], IL-1ß, and IL-8), damage, and activation of c-Fos and mitogen-activated protein kinase (MAPK) signaling, consistent with fungal challenge. Mice intravaginally challenged with C. albicans strains deficient in Candidalysin exhibited no differences in colonization compared to isogenic controls. However, significant decreases in neutrophil recruitment, damage, and proinflammatory cytokine expression were observed with these strains. Our findings demonstrate that Candidalysin is a key hypha-associated virulence determinant responsible for the immunopathogenesis of C. albicans vaginitis.


Asunto(s)
Candida albicans/patogenicidad , Células Epiteliales/microbiología , Proteínas Fúngicas/metabolismo , Membrana Mucosa/microbiología , Animales , Candidiasis Vulvovaginal/inmunología , Candidiasis Vulvovaginal/metabolismo , Citocinas/metabolismo , Células Epiteliales/metabolismo , Femenino , Proteínas Fúngicas/farmacología , Humanos , Ratones , Membrana Mucosa/patología , Infiltración Neutrófila/inmunología , Transducción de Señal , Vagina/inmunología , Vagina/metabolismo , Vagina/microbiología , Factores de Virulencia
6.
Infect Immun ; 85(10)2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28760935

RESUMEN

The secreted aspartyl proteinases of Candida albicans have long been implicated in virulence at the mucosal surface, including contributions to colonization and immunopathogenesis during vulvovaginal candidiasis. In an effort to disentangle hypha-associated virulence factor regulation from morphological transition, the purpose of this study was to determine if overexpression of SAP2 or SAP5 in an efg1Δ/Δ cph1Δ/Δ mutant could restore the capacity to cause immunopathology during murine vaginitis to this avirulent hypofilamentous strain. Two similar yet distinct genetic approaches were used to construct expression vectors to achieve SAP overexpression, and both genetic and functional assays confirmed elevated SAP activity in transformed strains. Similar to previous findings, intravaginal challenge of C57BL/6 mice with hypha-defective strains attained high levels of mucosal colonization but failed to induce robust vaginal immunopathology (neutrophil recruitment, interleukin-1ß [IL-1ß] secretion, and lactate dehydrogenase release) compared to that with the hypha-competent control. Moreover, constitutive expression of SAP2 or SAP5 in two distinct sets of such strains did not elicit immunopathological markers at levels above those observed during challenge with isogenic empty vector controls. Therefore, these results suggest that the physiological contributions of SAPs to vaginal immunopathology require hypha formation, other hypha-associated factors, or genetic interaction with EFG1 and/or CPH1 to cause symptomatic infection. Additionally, the outlined expression strategy and strain sets will be useful for decoupling other downstream morphogenetic factors from hyphal growth.

7.
Artículo en Inglés | MEDLINE | ID: mdl-28630186

RESUMEN

Among emerging non-albicans Candida species, Candida parapsilosis is of particular concern as a cause of nosocomial bloodstream infections in neonatal and intensive care unit patients. While fluconazole and echinocandins are considered effective treatments for such infections, recent reports of fluconazole and echinocandin resistance in C. parapsilosis indicate a growing problem. The present study describes a novel mechanism of antifungal resistance in this organism affecting susceptibility to azole and echinocandin antifungals in a clinical isolate obtained from a patient with prosthetic valve endocarditis. Transcriptome analysis indicated differential expression of several genes in the resistant isolate, including upregulation of ergosterol biosynthesis pathway genes ERG2, ERG5, ERG6, ERG11, ERG24, ERG25, and UPC2 Whole-genome sequencing revealed that the resistant isolate possessed an ERG3 mutation resulting in a G111R amino acid substitution. Sterol profiles indicated a reduction in sterol desaturase activity as a result of this mutation. Replacement of both mutant alleles in the resistant isolate with the susceptible isolate's allele restored wild-type susceptibility to all azoles and echinocandins tested. Disruption of ERG3 in the susceptible and resistant isolates resulted in a loss of sterol desaturase activity, high-level azole resistance, and an echinocandin-intermediate to -resistant phenotype. While disruption of ERG3 in C. albicans resulted in azole resistance, echinocandin MICs, while elevated, remained within the susceptible range. This work demonstrates that the G111R substitution in Erg3 is wholly responsible for the altered azole and echinocandin susceptibilities observed in this C. parapsilosis isolate and is the first report of an ERG3 mutation influencing susceptibility to the echinocandins.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida parapsilosis/efectos de los fármacos , Candida parapsilosis/genética , Equinocandinas/farmacología , Oxidorreductasas/genética , Azoles/metabolismo , Candida parapsilosis/aislamiento & purificación , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/microbiología , Infección Hospitalaria/prevención & control , Farmacorresistencia Fúngica Múltiple/genética , Equinocandinas/metabolismo , Ergosterol/biosíntesis , Ergosterol/genética , Fungemia/tratamiento farmacológico , Fungemia/microbiología , Fungemia/prevención & control , Dosificación de Gen/genética , Genoma Fúngico/genética , Humanos , Pruebas de Sensibilidad Microbiana , Polimorfismo de Nucleótido Simple/genética
8.
Antimicrob Agents Chemother ; 60(10): 6060-6, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27480868

RESUMEN

The RTA3 gene, coding for a member of the Rta1p-like lipid-translocating exporter family, is coordinately upregulated with the ATP-binding cassette transporter genes CDR1 and CDR2 in azole-resistant clinical isolates of Candida albicans that carry activating mutations in the transcription factor Tac1p. We show here that deleting RTA3 in an azole-resistant clinical isolate carrying a Tac1p-activating mutation lowered fluconazole resistance by 2-fold, while overexpressing RTA3 in an azole-susceptible clinical isolate resulted in enhanced fluconazole tolerance associated with trailing growth in a liquid microtiter plate assay. We also demonstrate that an Rta3p-green fluorescent protein (GFP) fusion protein localizes predominantly to the plasma membrane, consistent with a putative function for Rta3p as a lipid translocase.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Transferencia de Fosfolípidos/genética , Candida albicans/genética , Candida albicans/crecimiento & desarrollo , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Proteínas de Transferencia de Fosfolípidos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transformación Bacteriana
9.
Antimicrob Agents Chemother ; 59(10): 5942-50, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26169412

RESUMEN

While much is known concerning azole resistance in Candida albicans, considerably less is understood about Candida parapsilosis, an emerging species of Candida with clinical relevance. We conducted a comprehensive analysis of azole resistance in a collection of resistant C. parapsilosis clinical isolates in order to determine which genes might play a role in this process within this species. We examined the relative expression of the putative drug transporter genes CDR1 and MDR1 and that of ERG11. In isolates overexpressing these genes, we sequenced the genes encoding their presumed transcriptional regulators, TAC1, MRR1, and UPC2, respectively. We also sequenced the sterol biosynthesis genes ERG3 and ERG11 in these isolates to find mutations that might contribute to this phenotype in this Candida species. Our findings demonstrate that the putative drug transporters Cdr1 and Mdr1 contribute directly to azole resistance and suggest that their overexpression is due to activating mutations in the genes encoding their transcriptional regulators. We also observed that the Y132F substitution in ERG11 is the only substitution occurring exclusively among azole-resistant isolates, and we correlated this with specific changes in sterol biosynthesis. Finally, sterol analysis of these isolates suggests that other changes in sterol biosynthesis may contribute to azole resistance in C. parapsilosis.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/genética , Candida/genética , Farmacorresistencia Fúngica/genética , Regulación Fúngica de la Expresión Génica , Esteroles/biosíntesis , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Antifúngicos/farmacología , Candida/efectos de los fármacos , Candida/aislamiento & purificación , Candida/metabolismo , Candidiasis/microbiología , Fluconazol/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Fenotipo , Análisis de Secuencia de ADN , Esterol 14-Desmetilasa/genética , Esterol 14-Desmetilasa/metabolismo , Esteroles/agonistas , Transactivadores/genética , Transactivadores/metabolismo , Transcripción Genética
10.
Eukaryot Cell ; 13(7): 933-46, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24659578

RESUMEN

In Candida albicans, the transcription factor Upc2 is central to the regulation of ergosterol biosynthesis. UPC2-activating mutations contribute to azole resistance, whereas disruption increases azole susceptibility. In the present study, we investigated the relationship of UPC2 to fluconazole susceptibility, particularly in azole-resistant strains. In addition to the reduced fluconazole MIC previously observed with UPC2 disruption, we observed a lower minimum fungicidal concentration (MFC) for a upc2Δ/Δ mutant than for its azole-susceptible parent, SC5314. Moreover, the upc2Δ/Δ mutant was unable to grow on a solid medium containing 10 µg/ml fluconazole and exhibited increased susceptibility and a clear zone of inhibition by Etest. Time-kill analysis showed higher fungistatic activity against the upc2Δ/Δ mutant than against SC5314. UPC2 disruption in strains carrying specific resistance mutations also resulted in reduced MICs and MFCs. UPC2 disruption in a highly azole resistant clinical isolate containing multiple resistance mechanisms likewise resulted in a reduced MIC and MFC. This mutant was unable to grow on a solid medium containing 10 µg/ml fluconazole and exhibited increased susceptibility and a clear zone of inhibition by Etest. Time-kill analysis showed increased fungistatic activity against the upc2Δ/Δ mutant in the resistant background. Microarray analysis showed attenuated induction by fluconazole of genes involved in sterol biosynthesis, iron transport, or iron homeostasis in the absence of UPC2. Taken together, these data demonstrate that the UPC2 transcriptional network is universally essential for azole resistance in C. albicans and represents an attractive target for enhancing azole antifungal activity.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/metabolismo , Farmacorresistencia Fúngica/genética , Fluconazol/farmacología , Proteínas Fúngicas/metabolismo , Factores de Transcripción/metabolismo , Candida albicans/efectos de los fármacos , Proteínas Fúngicas/genética , Factores de Transcripción/genética
11.
Antimicrob Agents Chemother ; 58(11): 6807-18, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25182640

RESUMEN

Azole antifungal agents such as fluconazole exhibit fungistatic activity against Candida albicans. Strategies to enhance azole antifungal activity would be therapeutically appealing. In an effort to identify transcriptional pathways that influence the killing activity of fluconazole, we sought to identify transcription factors (TFs) involved in this process. From a collection of C. albicans strains disrupted for genes encoding TFs (O. R. Homann, J. Dea, S. M. Noble, and A. D. Johnson, PLoS Genet. 5:e1000783, 2009, http://dx.doi.org/10.1371/journal.pgen.1000783), four strains exhibited marked reductions in minimum fungicidal concentration (MFCs) in both RPMI and yeast extract-peptone-dextrose (YPD) media. One of these genes, UPC2, was previously characterized with regard to its role in azole susceptibility. Of mutants representing the three remaining TF genes of interest, one (CAS5) was unable to recover from fluconazole exposure at concentrations as low as 2 µg/ml after 72 h in YPD medium. This mutant also showed reduced susceptibility and a clear zone of inhibition by Etest, was unable to grow on solid medium containing 10 µg/ml fluconazole, and exhibited increased susceptibility by time-kill analysis. CAS5 disruption in highly azole-resistant clinical isolates exhibiting multiple resistance mechanisms did not alter susceptibility. However, CAS5 disruption in strains with specific resistance mutations resulted in moderate reductions in MICs and MFCs. Genome-wide transcriptional analysis was performed in the presence of fluconazole and was consistent with the suggested role of CAS5 in cell wall organization while also suggesting a role in iron transport and homeostasis. These findings suggest that Cas5 regulates a transcriptional network that influences the response of C. albicans to fluconazole. Further delineation of this transcriptional network may identify targets for potential cotherapeutic strategies to enhance the activity of the azole class of antifungals.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Fluconazol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Factores de Transcripción/metabolismo , Candidiasis/tratamiento farmacológico , Candidiasis/microbiología , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Pared Celular/genética , Pared Celular/metabolismo , Sistema Enzimático del Citocromo P-450/biosíntesis , Sistema Enzimático del Citocromo P-450/genética , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes/genética , Pruebas de Sensibilidad Microbiana , Datos de Secuencia Molecular , Factores de Transcripción/genética
12.
Antimicrob Agents Chemother ; 58(8): 4543-54, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24867980

RESUMEN

Candida glabrata, the second most common cause of Candida infections, is associated with high rates of mortality and often exhibits resistance to the azole class of antifungal agents. Upc2 and Ecm22 in Saccharomyces cerevisiae and Upc2 in Candida albicans are the transcriptional regulators of ERG11, the gene encoding the target of azoles in the ergosterol biosynthesis pathway. Recently two homologs for these transcription factors, UPC2A and UPC2B, were identified in C. glabrata. One of these, UPC2A, was shown to influence azole susceptibility. We hypothesized that due to the global role for Upc2 in sterol biosynthesis in S. cerevisiae and C. albicans, disruption of UPC2A would enhance the activity of fluconazole in both azole-susceptible dose-dependent (SDD) and -resistant C. glabrata clinical isolates. To test this hypothesis, we constructed mutants with disruptions in UPC2A and UPC2B alone and in combination in a matched pair of clinical azole-SDD and -resistant isolates. Disruption of UPC2A in both the SDD and resistant isolates resulted in increased susceptibility to sterol biosynthesis inhibitors, including a reduction in fluconazole MIC and minimum fungicidal concentration, enhanced azole activity by time-kill analysis, a decrease in ergosterol content, and downregulation of baseline and inducible expression of several sterol biosynthesis genes. Our results indicate that Upc2A is a key regulator of ergosterol biosynthesis and is essential for resistance to sterol biosynthesis inhibitors in C. glabrata. Therefore, the UPC2A pathway may represent a potential cotherapeutic target for enhancing azole activity against this organism.


Asunto(s)
Antifúngicos/farmacología , Azoles/farmacología , Candida glabrata/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Regulación Fúngica de la Expresión Génica , Proteínas de Saccharomyces cerevisiae/genética , Transactivadores/genética , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/metabolismo , Candida glabrata/genética , Candida glabrata/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Ergosterol/biosíntesis , Fluconazol/farmacología , Pruebas de Sensibilidad Microbiana , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Transactivadores/deficiencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
13.
Eukaryot Cell ; 12(6): 913-22, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23584995

RESUMEN

Two-component signal transduction pathways are one of the primary means by which microorganisms respond to environmental signals. These signaling cascades originated in prokaryotes and were inherited by eukaryotes via endosymbiotic lateral gene transfer from ancestral cyanobacteria. We report here that the nuclear genome of the pathogenic fungus Candida albicans contains elements of a two-component signaling pathway that seem to be targeted to the mitochondria. The C. albicans two-component response regulator protein Srr1 (stress response regulator 1) contains a mitochondrial targeting sequence at the N terminus, and fluorescence microscopy reveals mitochondrial localization of green fluorescent protein-tagged Srr1. Moreover, phylogenetic analysis indicates that C. albicans Srr1 is more closely related to histidine kinases and response regulators found in marine bacteria than are other two-component proteins present in the fungi. These data suggest conservation of this protein during the evolutionary transition from endosymbiont to a subcellular organelle. We used microarray analysis to determine whether the phenotypes observed with a srr1Δ/Δ mutant could be correlated with gene transcriptional changes. The expression of mitochondrial genes was altered in the srr1Δ/Δ null mutant in comparison to their expression in the wild type. Furthermore, apoptosis increased significantly in the srr1Δ/Δ mutant strain compared to the level of apoptosis in the wild type, suggesting the activation of a mitochondrion-dependent apoptotic cell death pathway in the srr1Δ/Δ mutant. Collectively, this study shows for the first time that a lower eukaryote like C. albicans possesses a two-component response regulator protein that has survived in mitochondria and regulates a subset of genes whose functions are associated with the oxidative stress response and programmed cell death (apoptosis).


Asunto(s)
Proteínas Bacterianas/genética , Candida albicans/genética , Proteínas Fúngicas/genética , Proteínas de Choque Térmico/genética , Mitocondrias/metabolismo , Proteínas Quinasas/genética , Transducción de Señal , Secuencia de Aminoácidos , Apoptosis , Proteínas Bacterianas/metabolismo , Evolución Biológica , Candida albicans/metabolismo , Candida albicans/ultraestructura , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Proteínas de Choque Térmico/deficiencia , Histidina Quinasa , Mitocondrias/ultraestructura , Datos de Secuencia Molecular , Filogenia , Proteínas Quinasas/deficiencia , Transporte de Proteínas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido
14.
mSphere ; 9(7): e0027024, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38860767

RESUMEN

Zinc cluster transcription factors (ZCFs) are a family of transcription regulators that are almost exclusively found in the fungal kingdom. Activating mutations in the ZCFs Mrr1, Tac1, and Upc2 frequently cause acquired resistance to the widely used antifungal drug fluconazole in the pathogenic yeast Candida albicans. Similar to a hyperactive Tac1, a constitutively active form of the ZCF Znc1 causes increased fluconazole resistance by upregulating the multidrug efflux pump-encoding gene CDR1. Hyperactive forms of both Tac1 and Znc1 also cause overexpression of RTA3, which encodes a seven-transmembrane receptor protein involved in the regulation of asymmetric lipid distribution in the plasma membrane. RTA3 expression is also upregulated by miltefosine, an antiparasitic drug that is active against fungal pathogens and considered for treatment of invasive candidiasis, and rta3Δ mutants are hypersensitive to miltefosine. We found that activated forms of both Tac1 and Znc1 confer increased miltefosine resistance, which was dependent on RTA3 whereas CDR1 was dispensable. Intriguingly, the induction of RTA3 expression by miltefosine depended on Znc1, but not Tac1, in contrast to the known Tac1-dependent RTA3 upregulation by fluphenazine. In line with this observation, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. Forced expression of RTA3 reverted the hypersensitivity of znc1Δ mutants, demonstrating that the hypersensitivity was caused by the inability of the mutants to upregulate RTA3 in response to the drug. These findings establish Znc1 as a key regulator of miltefosine-induced RTA3 expression that is important for wild-type miltefosine tolerance. IMPORTANCE: Transcription factors are central regulators of gene expression, and knowledge about which transcription factor regulates specific genes in response to a certain signal is important to understand the behavior of organisms. In the pathogenic yeast Candida albicans, the RTA3 gene is required for wild-type tolerance of miltefosine, an antiparasitic drug that is considered for treatment of invasive candidiasis. Activated forms of the transcription factors Tac1 and Znc1 cause constitutive overexpression of RTA3 and thereby increased miltefosine resistance, but only Tac1 mediates upregulation of RTA3 in response to the known inducer fluphenazine. RTA3 expression is also induced by miltefosine, and we found that this response depends on Znc1, whereas Tac1 is dispensable. Consequently, znc1Δ mutants were hypersensitive to miltefosine, whereas tac1Δ mutants showed wild-type tolerance. These findings demonstrate that Znc1 is the key regulator of RTA3 expression in response to miltefosine that is important for wild-type miltefosine tolerance.


Asunto(s)
Antifúngicos , Candida albicans , Farmacorresistencia Fúngica , Proteínas Fúngicas , Regulación Fúngica de la Expresión Génica , Fosforilcolina , Factores de Transcripción , Candida albicans/efectos de los fármacos , Candida albicans/genética , Farmacorresistencia Fúngica/genética , Antifúngicos/farmacología , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
mSphere ; 9(7): e0038824, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38940507

RESUMEN

The adaptation of gene deletion methods based on the CRISPR-Cas9 system has facilitated the genetic manipulation of the pathogenic yeast Candida albicans, because homozygous mutants of this diploid fungus can now be generated in a single step, allowing the rapid screening of candidate genes for their involvement in a phenotype of interest. However, the Cas9-mediated double-strand breaks at the target site may result in an undesired loss of heterozygosity (LOH) on the affected chromosome and cause phenotypic alterations that are not related to the function of the investigated gene. In our present study, we harnessed Cas9-facilitated gene deletion to probe a set of genes that are constitutively overexpressed in strains containing hyperactive forms of the transcription factor Mrr1 for a possible contribution to the fluconazole resistance of such strains. To this aim, we used gene deletion cassettes containing two different dominant selection markers, caSAT1 and HygB, which confer resistance to nourseothricin and hygromycin, respectively, for simultaneous genomic integration in a single step, hypothesizing that this would minimize undesired LOH events at the target locus. We found that selection for resistance to both nourseothricin and hygromycin strongly increased the proportion of homozygous deletion mutants among the transformants compared with selection on media containing only one of the antibiotics, but it did not avoid undesired LOH events. Our results demonstrate that LOH on the target chromosome is a significant problem when using Cas9 for the generation of C. albicans gene deletion mutants, which demands a thorough examination of recombination events at the target site. IMPORTANCE: Candida albicans is one of the medically most important fungi and a model organism to study fungal pathogenicity. Investigating gene function in this diploid yeast has been facilitated by the adaptation of gene deletion methods based on the bacterial CRISPR-Cas9 system, because they enable the generation of homozygous mutants in a single step. We found that, in addition to increasing the efficiency of gene replacement by selection markers, the Cas9-mediated double-strand breaks also result in frequent loss of heterozygosity on the same chromosome, even when two different selection markers were independently integrated into the two alleles of the target gene. Since loss of heterozygosity for other genes can result in phenotypic alterations that are not caused by the absence of the target gene, these findings show that it is important to thoroughly analyze recombination events at the target locus when using Cas9 to generate gene deletion mutants in C. albicans.


Asunto(s)
Sistemas CRISPR-Cas , Candida albicans , Pérdida de Heterocigocidad , Recombinación Genética , Candida albicans/genética , Candida albicans/efectos de los fármacos , Eliminación de Gen , Farmacorresistencia Fúngica/genética , Antifúngicos/farmacología , Fluconazol/farmacología , Higromicina B/farmacología , Proteína 9 Asociada a CRISPR/genética , Edición Génica/métodos , Estreptotricinas/farmacología , Marcadores Genéticos
16.
Mol Microbiol ; 84(4): 778-94, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22463761

RESUMEN

To explore cell cycle regulation in the dimorphic fungus Candida albicans, we identified and characterized CaNrm1, a C. albicans homologue of the Saccharomyces cerevisiae Whi5 and Nrm1 transcription inhibitors that, analogous to mammalian Rb, regulate the cell cycle transcription programme during the G1 phase. CaNRM1 is able to complement the phenotypes of both whi5 and nrm1 mutants in S. cerevisiae. In C. albicans, global transcription analysis of the CaNRM1 deletion mutant reveals a preferential induction of G1- and G1/S-specific genes. CaNrm1 interacts genetically with the C. albicans MBF functional homologue, and physically with its subunit CaSwi4. Similar to S. cerevisiae Whi5, CaNrm1 subcellular localization oscillates with the cell cycle between the nucleus and the cytoplasm. Deletion of CaNRM1 further results in increased resistance to hydroxyurea, an inhibitor of DNA replication; analysis of the expression of ribonucleotide reductase, the target of hydroxyurea, suggests that its transcriptional induction in response to hydroxyurea is regulated via CaNrm1, and biochemical analysis shows that hydroxyurea causes disruption of the interaction of CaNrm1 with CaSwi4. Furthermore, induction of the hyphal-specific genes is dampened under certain conditions in the Canrm1(-/-) mutant, suggesting that the cell cycle transcription programme can influence the morphogenetic transcription programme of C. albicans.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Candida albicans/genética , Ciclo Celular , Replicación del ADN , Proteínas Fúngicas/metabolismo , Regulación de la Expresión Génica , Genes cdc , Secuencia de Aminoácidos , Núcleo Celular/química , Citoplasma/química , Eliminación de Gen , Perfilación de la Expresión Génica , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mapeo de Interacción de Proteínas , Proteínas Represoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido
17.
Eukaryot Cell ; 11(10): 1289-99, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22923048

RESUMEN

In Candida albicans, Upc2 is a zinc-cluster transcription factor that targets genes, including those of the ergosterol biosynthesis pathway. To date, three documented UPC2 gain-of-function (GOF) mutations have been recovered from fluconazole-resistant clinical isolates that contribute to an increase in ERG11 expression and decreased fluconazole susceptibility. In a group of 63 isolates with reduced susceptibility to fluconazole, we found that 47 overexpressed ERG11 by at least 2-fold over the average expression levels in 3 unrelated fluconazole-susceptible strains. Of those 47 isolates, 29 contained a mutation in UPC2, whereas the remaining 18 isolates did not. Among the isolates containing mutations in UPC2, we recovered eight distinct mutations resulting in putative single amino acid substitutions: G648D, G648S, A643T, A643V, Y642F, G304R, A646V, and W478C. Seven of these resulted in increased ERG11 expression, increased cellular ergosterol, and decreased susceptibility to fluconazole compared to the results for the wild-type strain. Genome-wide transcriptional analysis was performed for the four strongest Upc2 amino acid substitutions (A643V, G648D, G648S, and Y642F). Genes commonly upregulated by all four mutations included those involved in ergosterol biosynthesis, in oxidoreductase activity, the major facilitator efflux pump encoded by the MDR1 gene, and the uncharacterized ATP binding cassette transporter CDR11. These findings demonstrate that gain-of-function mutations in UPC2 are more prevalent among clinical isolates than previously thought and make a significant contribution to azole antifungal resistance, but the findings do not account for ERG11 overexpression in all such isolates of C. albicans.


Asunto(s)
Candida albicans/genética , Sistema Enzimático del Citocromo P-450/genética , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Mutación Missense , Factores de Transcripción/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Antifúngicos/toxicidad , Candida albicans/aislamiento & purificación , Candida albicans/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ergosterol/metabolismo , Fluconazol/toxicidad , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Regulación hacia Arriba/genética
18.
Clin Microbiol Infect ; 29(12): 1602.e1-1602.e7, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37666448

RESUMEN

OBJECTIVES: The aim of this study was to determine how mutations in CpERG11 and CpTAC1 contribute to fluconazole resistance in a collection of clinical isolates. METHODS: Sequences of CpERG11 and CpTAC1 were determined for 35 resistant Candida parapsilosis clinical isolates. A plasmid-based CRISPR-Cas9 system was used to introduce mutations leading to amino acid substitution in CpTac1 and CpErg11. Triazole susceptibility was determined by broth microdilution and E-test. Differential expression of genes mediated by CpTAC1 mutation was determined by RNA sequencing, and relative expression of individual transporter genes was assessed with RT-qPCR. RESULTS: Six isolates carried a mutation in CpTAC1 in combination with the CpERG11 mutation, leading to the CpErg11Y132F substitution. When introduced into susceptible isolates, this CpERG11 mutation led to a 4- to 8-fold increase in fluconazole minimum inhibitory concentrations (MIC; 0.125 µg/mL vs. 0.5 µg/mL, 0.125 µg/mL vs. 0.5 µg/mL, and 0.5 µg/mL vs. 4 µg/mL). When introduced into a susceptible isolate, the CpTAC1 mutation leading to the G650E substitution resulted in an 8-fold increase in fluconazole MIC (0.25 µg/mL vs. 2 µg/mL), whereas correction of this mutation in resistant isolates led to a 16-fold reduction in MIC (32 µg/mL vs. 2 µg/mL). CpCDR1, CpCDR1B, and CpCDR1C were overexpressed in the presence CpTac1G650E. Disruption of these genes in combination resulted in a 4-fold reduction in fluconazole MIC (32 µg/mL vs. 8 µg/mL). DISCUSSION: These results define the specific contribution made by the Y132F substitution in CpERG11 and demonstrate a role for activating mutations in CpTAC1 in triazole resistance in C. parapsilosis.


Asunto(s)
Antifúngicos , Fluconazol , Humanos , Antifúngicos/farmacología , Fluconazol/farmacología , Candida parapsilosis/genética , Triazoles/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mutación , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana
19.
Eukaryot Cell ; 10(3): 373-83, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21193550

RESUMEN

The ABC transporters Candida glabrata Cdr1 (CgCdr1), CgPdh1, and CgSnq2 are known to mediate azole resistance in the pathogenic fungus C. glabrata. Activating mutations in CgPDR1, a zinc cluster transcription factor, result in constitutive upregulation of these ABC transporter genes but to various degrees. We examined the genomewide gene expression profiles of two matched azole-susceptible and -resistant C. glabrata clinical isolate pairs. Of the differentially expressed genes identified in the gene expression profiles for these two matched pairs, there were 28 genes commonly upregulated with CgCDR1 in both isolate sets including YOR1, LCB5, RTA1, POG1, HFD1, and several members of the FLO gene family of flocculation genes. We then sequenced CgPDR1 from each susceptible and resistant isolate and found two novel activating mutations that conferred increased resistance when they were expressed in a common background strain in which CgPDR1 had been disrupted. Microarray analysis comparing these reengineered strains to their respective parent strains identified a set of commonly differentially expressed genes, including CgCDR1, YOR1, and YIM1, as well as genes uniquely regulated by specific mutations. Our results demonstrate that while CgPdr1 activates a broad repertoire of genes, specific activating mutations result in the activation of discrete subsets of this repertoire.


Asunto(s)
Candida glabrata/genética , Proteínas Fúngicas/genética , Regulación Fúngica de la Expresión Génica , Regulón , Factores de Transcripción/genética , Azoles/farmacología , Candida glabrata/efectos de los fármacos , Candida glabrata/metabolismo , Candidiasis/microbiología , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Genoma Fúngico , Humanos , Factores de Transcripción/metabolismo
20.
Clin Microbiol Infect ; 28(6): 838-843, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34915074

RESUMEN

OBJECTIVE: Candida auris has emerged as a health-care-associated and multidrug-resistant fungal pathogen of great clinical concern. As many as 50% of C. auris clinical isolates are reported to be resistant to amphotericin B, but no mechanisms contributing to this resistance have been identified. Here we describe a clinical case in which high-level amphotericin B resistance was acquired in vivo during therapy and undertake molecular and genetic studies to identify and characterize the genetic determinant of resistance. METHODS: Whole-genome sequencing was performed on four C. auris isolates obtained from a single patient case. Cas9-mediated genetic manipulations were then used to generate mutant strains harbouring mutations of interest, and these strains were subsequently subjected to amphotericin B susceptibility testing and comprehensive sterol profiling. RESULTS: A novel mutation in the C. auris sterol-methyltransferase gene ERG6 was found to be associated with amphotericin B resistance, and this mutation alone conferred a >32-fold increase in amphotericin B resistance. Comprehensive sterol profiling revealed an abrogation of ergosterol biosynthesis and a corresponding accumulation of cholesta-type sterols in isolates and strains harbouring the clinically derived ERG6 mutation. CONCLUSIONS: Together these findings definitively demonstrate mutations in C. auris ERG6 as the first identified mechanism of clinical amphotericin B resistance in C. auris and represent a significant step forward in the understanding of antifungal resistance in this emerging public health threat.


Asunto(s)
Anfotericina B , Candida auris , Anfotericina B/farmacología , Anfotericina B/uso terapéutico , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Esteroles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA