Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 57(38): 14351-14362, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37696050

RESUMEN

This study elucidates per- and polyfluoroalkyl substance (PFAS) fingerprints for specific PFAS source types. Ninety-two samples were collected from aqueous film-forming foam impacted groundwater (AFFF-GW), landfill leachate, biosolids leachate, municipal wastewater treatment plant effluent (WWTP), and wastewater effluent from the pulp and paper and power generation industries. High-resolution mass spectrometry operated with electrospray ionization in negative mode was used to quantify up to 50 target PFASs and screen and semi-quantify up to 2,266 suspect PFASs in each sample. Machine learning classifiers were used to identify PFASs that were diagnostic of each source type. Four C5-C7 perfluoroalkyl acids and one suspect PFAS (trihydrogen-substituted fluoroethernonanoic acid) were diagnostic of AFFF-GW. Two target PFASs (5:3 and 6:2 fluorotelomer carboxylic acids) and two suspect PFASs (4:2 fluorotelomer-thia-acetic acid and N-methylperfluoropropane sulfonamido acetic acid) were diagnostic of landfill leachate. Biosolids leachates were best classified along with landfill leachates and N-methyl and N-ethyl perfluorooctane sulfonamido acetic acid assisted in that classification. WWTP, pulp and paper, and power generation samples contained few target PFASs, but fipronil (a fluorinated insecticide) was diagnostic of WWTP samples. Our results provide PFAS fingerprints for known sources and identify target and suspect PFASs that can be used for source allocation.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Biosólidos , Ácido Acético , Aprendizaje Automático
2.
Environ Sci Technol ; 55(1): 73-81, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33300346

RESUMEN

There is increasing interest in diverting the organic fraction of municipal solid waste from landfills to biological treatment processes that result in compost. Due to variations in compost quality and available markets, it is not always possible for compost to be beneficially used on soil. In such cases, compost may be used as alternative daily cover (ADC) in landfills. The objective of this study is to compare the environmental impacts of using compost as a soil amendment, accounting for its beneficial substitutions for fertilizer and peat, to its use as ADC. Monte Carlo simulation and parametric sensitivity analyses were performed to evaluate the effects of uncertainty in input values on the environmental performance. The ADC scenario outperforms the soil amendment scenario in terms of global warming potential, acidification, and eutrophication in ∼63, ∼77, and ∼100% of simulations, respectively, while the soil amendment scenario is better in terms of cumulative energy demand and abiotic resource depletion potential ∼94 and ∼96% of the time, respectively. Therefore, we recommend that using compost as ADC be considered, especially when site-specific factors such as feedstock contamination or a lack of markets make it difficult to find appropriate applications for compost as a soil amendment.


Asunto(s)
Compostaje , Eliminación de Residuos , Fertilizantes , Calentamiento Global , Suelo , Residuos Sólidos
3.
Environ Sci Technol ; 55(20): 13583-13592, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34597038

RESUMEN

Landfills receive over half of all U.S. municipal solid waste (MSW) and are the third largest source of anthropogenic methane emissions. Life-cycle assessment (LCA) of landfills is complicated by the long duration of waste disposal, gas generation and control, and the time over which the engineered infrastructure must perform. The objective of this study is to develop an LCA model for a representative U.S. MSW landfill that is responsive to landfill size, regulatory thresholds for landfill gas (LFG) collection and control, practices for LFG management (i.e., passive venting, flare, combustion for energy recovery), and four alternative schedules for LFG collection well installation. Material production required for construction and operation contributes 68-75% to toxicity impacts, while LFG emissions contribute 50-99% to global warming, ozone depletion, and smog impacts. The current non-methane organic compound regulatory threshold (34 Mg yr-1) reduces methane emissions by <7% relative to the former threshold (50 Mg yr-1). Requiring landfills to continue collecting LFG until the flow rate is <10 m3 min-1 reduces emissions by 20-52%, depending on the waste decay rate. In general, for landfills already required to collect gas, collecting gas longer is more important than collecting gas earlier to reduce methane emissions.


Asunto(s)
Eliminación de Residuos , Residuos Sólidos , Metano , Instalaciones de Eliminación de Residuos
4.
Environ Sci Technol ; 55(8): 5475-5484, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33687209

RESUMEN

Life-cycle assessments (LCAs) of municipal solid waste management (MSWM) systems are time- and data-intensive. Reducing the data requirements for inventory and impact assessments will facilitate the wider use of LCAs during early system planning and design. Therefore, the objective of this study is to develop a systematic framework for streamlining LCAs by identifying the most critical impacts, life-cycle inventory emissions, and inputs based on their contributions to the total impacts and their effect on the rankings of 18 alternative MSWM scenarios. The scenarios are composed of six treatment processes: landfills, waste-to-energy combustion, single-stream recycling, mixed waste recycling, anaerobic digestion, and composting. The full LCA uses 1752 flows of resources and emissions, 10 impact categories, 3 normalization references, and 7 weighting schemes, and these were reduced using the streamlined LCA approach proposed in this study. Human health cancer, ecotoxicity, eutrophication, and fossil fuel depletion contribute 75-83% to the total impacts across all scenarios. It was found that 3.3% of the inventory flows contribute ≥95% of the overall environmental impact. The highest-ranked strategies are consistent between the streamlined and full LCAs. The results provide guidance on which impacts, flows, and inputs to prioritize during early strategy design.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Humanos , Reciclaje , Residuos Sólidos/análisis , Instalaciones de Eliminación de Residuos
5.
Environ Sci Technol ; 54(3): 1304-1313, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31795636

RESUMEN

Landfills are a major contributor of anthropogenic CH4 emissions. Since the greenhouse gas (GHG) emissions associated with landfilling waste can occur over decades to centuries, the standard static approach to estimating global warming impacts may not accurately represent the global warming impacts of landfills. The objective of this study is to assess the implications of using 100 yr and 20 yr static and dynamic global warming potential (GWP) approaches to estimate the global warming impacts from municipal solid waste landfills. A life-cycle model was developed to estimate GHG emissions for three gas treatment cases (passive venting, flare, CH4 conversion to electricity) and four decay rates. For the 100 yr GWP, other model uncertainties (e.g., static GWP values, decay rate, moisture content, or gas collection efficiency) generally had a larger effect on the estimated global warming impact than the choice of static versus dynamic GWP methods. This shows that when comparing single-point GWP values, the choice of static versus dynamic is relatively unimportant for most landfills. While dynamic GWPs consider temporal variance and provide useful estimates for the warming over a set time horizon, for most comparative analyses, static values provide reasonable bounds for the actual 100 yr warming impact.


Asunto(s)
Calentamiento Global , Gases de Efecto Invernadero , Dióxido de Carbono , Efecto Invernadero , Metano , Residuos Sólidos , Instalaciones de Eliminación de Residuos
6.
Environ Sci Technol ; 53(4): 1766-1775, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30633859

RESUMEN

Solid waste management (SWM) is a key function of local government and is critical to protecting human health and the environment. Development of effective SWM strategies should consider comprehensive SWM process choices and policy implications on system-level cost and environmental performance. This analysis evaluated cost and select environmental implications of SWM policies for Wake County, North Carolina using a life-cycle approach. A county-specific data set and scenarios were developed to evaluate alternatives for residential municipal SWM, which included combinations of a mixed waste material recovery facility (MRF), anaerobic digestion, and waste-to-energy combustion in addition to existing SWM infrastructure (composting, landfilling, single stream recycling). Multiple landfill diversion and budget levels were considered for each scenario. At maximum diversion, the greenhouse gas (GHG) mitigation costs ranged from 30 to 900 $/MTCO2e; the lower values were when a mixed waste MRF was used, and the higher values when anaerobic digestion was used. Utilization of the mixed waste MRF was sensitive to the efficiency of material separation and operating cost. Maintaining the current separate collection scheme limited the potential for cost and GHG reductions. Municipalities seeking to cost-effectively increase landfill diversion while reducing GHGs should consider waste-to-energy, mixed waste separation, and changes to collection.


Asunto(s)
Gases de Efecto Invernadero , Eliminación de Residuos , Administración de Residuos , Ciudades , Efecto Invernadero , Humanos , North Carolina , Residuos Sólidos
8.
Appl Microbiol Biotechnol ; 102(13): 5731-5740, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29705953

RESUMEN

The decomposition of landfilled refuse proceeds through distinct phases, each defined by varying environmental factors such as volatile fatty acid concentration, pH, and substrate quality. The succession of microbial communities in response to these changing conditions was monitored in a laboratory-scale simulated landfill to minimize measurement difficulties experienced at field scale. 16S rRNA gene sequences retrieved at separate stages of decomposition showed significant succession in both Bacteria and methanogenic Archaea. A majority of Bacteria sequences in landfilled refuse belong to members of the phylum Firmicutes, while Proteobacteria levels fluctuated and Bacteroidetes levels increased as decomposition proceeded. Roughly 44% of archaeal sequences retrieved under conditions of low pH and high acetate were strictly hydrogenotrophic (Methanomicrobiales, Methanobacteriales). Methanosarcina was present at all stages of decomposition. Correspondence analysis showed bacterial population shifts were attributed to carboxylic acid concentration and solids hydrolysis, while archaeal populations were affected to a higher degree by pH. T-RFLP analysis showed specific taxonomic groups responded differently and exhibited unique responses during decomposition, suggesting that species composition and abundance within Bacteria and Archaea are highly dynamic. This study shows landfill microbial demographics are highly variable across both spatial and temporal transects.


Asunto(s)
Archaea/fisiología , Fenómenos Fisiológicos Bacterianos , Biodiversidad , Microbiología Ambiental , Residuos Sólidos , Archaea/genética , Bacterias/genética , Filogenia , ARN Ribosómico 16S/genética , Instalaciones de Eliminación de Residuos
9.
Environ Eng Sci ; 35(6): 573-587, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29892190

RESUMEN

Flame retardants (FRs) are added to foams and plastics to comply with flammability standards and test requirements in products for household and industrial uses. When these regulations were implemented, potential health and environmental impacts of FR use were not fully recognized or understood. Extensive research in the past decades reveal that exposure to halogenated FRs, such as those used widely in furniture foam, is associated with and/or causally related to numerous health effects in animals and humans. While many of the toxic FRs have been eliminated and replaced by other FRs, existing products containing toxic or potentially toxic chemical FRs will remain in use for decades, and new products containing these and similar chemicals will permeate the environment. When such products reach the end of their useful life, proper disposal methods are needed to avoid health and ecological risks. To minimize continued human and environmental exposures to hazardous FR chemicals from discarded products, waste management technologies and processes must be improved. This review discusses a wide range of issues associated with all aspects of the use and responsible disposal of wastes containing FRs, and identifies basic and applied research needs in the areas of responsible collection, pretreatment, processing, and management of these wastes.

10.
Environ Sci Technol ; 51(21): 12434-12442, 2017 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-28933836

RESUMEN

There have been reports of North American landfills that are experiencing temperatures in excess of 80-100 °C. However, the processes causing elevated temperatures are not well understood. The objectives of this study were to develop a model to describe the generation, consumption and release of heat from landfills, to predict landfill temperatures, and to understand the relative importance of factors that contribute to heat generation and accumulation. Modeled heat sources include energy from aerobic and anaerobic biodegradation, anaerobic metal corrosion, ash hydration and carbonation, and acid-base neutralization. Heat removal processes include landfill gas convection, infiltration, leachate collection, and evaporation. The landfill was treated as a perfectly mixed batch reactor. Model predictions indicate that both anaerobic metal corrosion and ash hydration/carbonation contribute to landfill temperatures above those estimated from biological reactions alone. Exothermic pyrolysis of refuse, which is hypothesized to be initiated due to a local accumulation of heat, was modeled empirically to illustrate its potential impact on heat generation.


Asunto(s)
Biodegradación Ambiental , Eliminación de Residuos , Residuos Sólidos , Calor , Instalaciones de Eliminación de Residuos
11.
Environ Sci Technol ; 51(6): 3119-3127, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28263562

RESUMEN

The development of sustainable solid waste management (SWM) systems requires consideration of both economic and environmental impacts. Societal life-cycle costing (S-LCC) provides a quantitative framework to estimate both economic and environmental impacts, by including "budget costs" and "externality costs". Budget costs include market goods and services (economic impact), whereas externality costs include effects outside the economic system (e.g., environmental impact). This study demonstrates the applicability of S-LCC to SWM life-cycle optimization through a case study based on an average suburban U.S. county of 500 000 people generating 320 000 Mg of waste annually. Estimated externality costs are based on emissions of CO2, CH4, N2O, PM2.5, PM10, NOx, SO2, VOC, CO, NH3, Hg, Pb, Cd, Cr (VI), Ni, As, and dioxins. The results indicate that incorporating S-LCC into optimized SWM strategy development encourages the use of a mixed waste material recovery facility with residues going to incineration, and separated organics to anaerobic digestion. Results are sensitive to waste composition, energy mix and recycling rates. Most of the externality costs stem from SO2, NOx, PM2.5, CH4, fossil CO2, and NH3 emissions. S-LCC proved to be a valuable tool for policy analysis, but additional data on key externality costs such as organic compounds emissions to water would improve future analyses.


Asunto(s)
Residuos Sólidos , Administración de Residuos , Costos y Análisis de Costo , Incineración , Reciclaje , Eliminación de Residuos
12.
Environ Sci Technol ; 51(4): 2197-2205, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28103667

RESUMEN

Landfills are the final stage in the life cycle of many products containing per- and polyfluoroalkyl substances (PFASs) and their presence has been reported in landfill leachate. The concentrations of 70 PFASs in 95 samples of leachate were measured in a survey of U.S. landfills of varying climates and waste ages. National release of PFASs was estimated by coupling measured concentrations for the 19 PFASs where more than 50% of samples had quantifiable concentrations, with climate-specific estimates of annual leachate volumes. For 2013, the total volume of leachate generated in the U.S. was estimated to be 61.1 million m3, with 79% of this volume coming from landfills in wet climates (>75 cm/yr precipitation) that contain 47% of U.S. solid waste. The mass of measured PFASs from U.S. landfill leachate to wastewater treatment plants was estimated to be between 563 and 638 kg for 2013. In the majority of landfill leachate samples, 5:3 fluorotelomer carboxylic acid (FTCA) was dominant and variations in concentrations with waste age affected total estimated mass. There were six PFASs that demonstrated significantly higher concentrations in leachate from younger waste compared to older waste and six PFAS demonstrated significant variation with climate.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Eliminación de Residuos , Residuos Sólidos , Instalaciones de Eliminación de Residuos , Aguas Residuales
13.
Environ Sci Technol ; 50(16): 8444-52, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27387287

RESUMEN

New regulations and targets limiting the disposal of food waste have been recently enacted in numerous jurisdictions. This analysis evaluated selected environmental implications of food waste management policies using life-cycle assessment. Scenarios were developed to evaluate management alternatives applicable to the waste discarded at facilities where food waste is a large component of the waste (e.g., restaurants, grocery stores, and food processors). Options considered include anaerobic digestion (AD), aerobic composting, waste-to-energy combustion (WTE), and landfilling, and multiple performance levels were considered for each option. The global warming impact ranged from approximately -350 to -45 kg CO2e Mg(-1) of waste for scenarios using AD, -190 to 62 kg CO2e Mg(-1) for those using composting, -350 to -28 kg CO2e Mg(-1) when all waste was managed by WTE, and -260 to 260 kg CO2e Mg(-1) when all waste was landfilled. Landfill diversion was found to reduce emissions, and diverting food waste from WTE generally increased emissions. The analysis further found that when a 20 year GWP was used instead of a 100 year GWP, every scenario including WTE was preferable to every scenario including landfill. Jurisdictions seeking to enact food waste disposal regulations should consider regional factors and material properties before duplicating existing statutes.


Asunto(s)
Alimentos , Eliminación de Residuos , Administración de Residuos/métodos , Suelo , Estados Unidos , Instalaciones de Eliminación de Residuos
14.
Environ Sci Technol ; 50(10): 5024-32, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27095439

RESUMEN

Discarded carpet and clothing are potential sources of per- and polyfluoroalkyl substances (PFASs) in landfill leachate, but little is known about their release when disposed in landfills. The concentrations of 70 PFASs in the aqueous phase of anaerobic model landfill reactors filled with carpet or clothing were monitored under biologically active and abiotic conditions. For carpet, total PFAS release was greater in live than abiotic reactors, with an average of 8.5 nmol/L and 0.62 nmol/L after 552 days, respectively. Release in live carpet reactors was primarily due to 5:3 fluorotelomer carboxylic acid (FTCA - 3.9 nmol/L) and perfluorohexanoic carboxylic acid (PFHxA - 2.9 nmol/L). For clothing, release was more dependent on sample heterogeneity than the presence of biological activity, with 0.63, 21.7, 2.6, and 6.3 nmol/L for two live and two abiotic reactors after 519 days, respectively. Release in the clothing reactors was largely due to perfluorooctatonic carboxylic acid (PFOA), with low relative concentrations of measured biotransformation precursors (FTCAs). For carpet and clothing reactors, the majority of PFAS release was not measured until after day 100. Results demonstrate that carpet and clothing are likely sources of PFASs in landfill leachate.


Asunto(s)
Pisos y Cubiertas de Piso , Instalaciones de Eliminación de Residuos , Vestuario , Modelos Teóricos , Contaminantes Químicos del Agua
15.
Environ Sci Technol ; 50(17): 9432-41, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27455372

RESUMEN

Estimates of methane emissions from landfills rely primarily on models due to both technical and economic limitations. While models are easy to implement, there is uncertainty due to the use of parameters that are difficult to validate. The objective of this research was to compare modeled emissions using several greenhouse gas (GHG) emissions reporting protocols including: (1) Intergovernmental Panel on Climate Change (IPCC); (2) U.S. Environmental Protection Agency Greenhouse Gas Reporting Program (EPA GHGRP); (3) California Air Resources Board (CARB); and (4) Solid Waste Industry for Climate Solutions (SWICS), with measured emissions data collected over three calendar years from a young landfill with no gas collection system. By working with whole landfill measurements of fugitive methane emissions and methane oxidation, the collection efficiency could be set to zero, thus eliminating one source of parameter uncertainty. The models consistently overestimated annual methane emissions by a factor ranging from 4-31. Varying input parameters over reasonable ranges reduced this range to 1.3-8. Waste age at the studied landfill was less than four years and the results suggest the need for measurements at additional landfills to evaluate the accuracy of the tested models to young landfills.


Asunto(s)
Cambio Climático , Metano , Contaminantes Atmosféricos , Humanos , Eliminación de Residuos , Residuos Sólidos , Instalaciones de Eliminación de Residuos
16.
Environ Sci Technol ; 49(13): 7648-56, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26055930

RESUMEN

A wide variety of consumer products that are treated with poly- and perfluoroalkyl substances (PFASs) and related formulations are disposed of in landfills. Landfill leachate has significant concentrations of PFASs and acts as secondary point sources to surface water. This study models how PFASs enter leachate using four laboratory-scale anaerobic bioreactors filled with municipal solid waste (MSW) and operated over 273 days. Duplicate reactors were monitored under live and abiotic conditions to evaluate influences attributable to biological activity. The biologically active reactors simulated the methanogenic conditions that develop in all landfills, producing ∼140 mL CH4/dry g refuse. The average total PFAS leaching measured in live reactors (16.7 nmol/kg dry refuse) was greater than the average for abiotic reactors (2.83 nmol/kg dry refuse), indicating biological processes were primarily responsible for leaching. The low-level leaching in the abiotic reactors was primarily due to PFCAs ≤C8 (2.48 nmol/kg dry refuse). Concentrations of known biodegradation intermediates, including methylperfluorobutane sulfonamide acetic acid and the n:2 and n:3 fluorotelomer carboxylates, increased steadily after the onset of methanogenesis, with the 5:3 fluorotelomer carboxylate becoming the single most concentrated PFAS observed in live reactors (9.53 nmol/kg dry refuse).


Asunto(s)
Hidrocarburos Fluorados/análisis , Modelos Teóricos , Eliminación de Residuos/métodos , Contaminantes Químicos del Agua/análisis , Biodegradación Ambiental , Reactores Biológicos , Residuos de Alimentos , Hidrocarburos Fluorados/química , Metano/metabolismo , Eliminación de Residuos/instrumentación , Residuos Sólidos , Instalaciones de Eliminación de Residuos
17.
Environ Sci Technol ; 49(3): 1545-51, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25604252

RESUMEN

Methane is a potent greenhouse gas generated from the anaerobic decomposition of waste in landfills. If captured, methane can be beneficially used to generate electricity. To inventory emissions and assist the landfill industry with energy recovery projects, the U.S. EPA developed the Landfill Gas Emissions Model (LandGEM) that includes two key parameters: the first-order decay rate (k) and methane production potential (L0). By using data from 11 U.S. landfills, Monte Carlo simulations were performed to quantify the effect of uncertainty in gas collection efficiency and municipal solid waste fraction on optimal k values and collectable methane. A dual-phase model and associated parameters were also developed to evaluate its performance relative to a single-phase model (SPM) similar to LandGEM. The SPM is shown to give lower error in estimating methane collection, with site-specific best-fit k values. Most of the optimal k values are notably greater than the U.S. EPA's default of 0.04 yr(-1), which implies that the gas generation decreases more rapidly than predicted at the current default. We translated the uncertainty in collectable methane into uncertainty in engine requirements and potential economic losses to demonstrate the practical significance to landfill operators. The results indicate that landfill operators could overpay for engine capacity by $30,000-780,000 based on overestimates of collectable methane.


Asunto(s)
Contaminantes Atmosféricos/análisis , Metano/análisis , Modelos Teóricos , Electricidad , Método de Montecarlo , Residuos Sólidos , Incertidumbre , Estados Unidos , Instalaciones de Eliminación de Residuos
18.
Environ Sci Technol ; 48(7): 3625-31, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24601652

RESUMEN

Solid waste management (SWM) systems must proactively adapt to changing policy requirements, waste composition, and an evolving energy system to sustainably manage future solid waste. This study represents the first application of an optimizable dynamic life-cycle assessment framework capable of considering these future changes. The framework was used to draw insights by analyzing the SWM system of a hypothetical suburban U.S. city of 100 000 people over 30 years while considering changes to population, waste generation, and energy mix and costs. The SWM system included 3 waste generation sectors, 30 types of waste materials, and 9 processes for waste separation, treatment, and disposal. A business-as-usual scenario (BAU) was compared to three optimization scenarios that (1) minimized cost (Min Cost), (2) maximized diversion (Max Diversion), and (3) minimized greenhouse gas (GHG) emissions (Min GHG) from the system. The Min Cost scenario saved $7.2 million (12%) and reduced GHG emissions (3%) relative to the BAU scenario. Compared to the Max Diversion scenario, the Min GHG scenario cost approximately 27% less and more than doubled the net reduction in GHG emissions. The results illustrate how the timed-deployment of technologies in response to changes in waste composition and the energy system results in more efficient SWM system performance compared to what is possible from static analyses.


Asunto(s)
Ciudades , Residuos Sólidos/análisis , Administración de Residuos/métodos , Contaminantes Atmosféricos/análisis , Costos y Análisis de Costo , Electricidad , Gases/análisis , Efecto Invernadero , Humanos , Modelos Teóricos , Residuos Sólidos/economía , Factores de Tiempo , Incertidumbre , Estados Unidos , Administración de Residuos/economía
19.
Waste Manag ; 186: 77-85, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38865907

RESUMEN

A key question in anaerobic microbial ecology is how microbial communities develop over different stages of waste decomposition and whether these changes are specific to waste types. We destructively sampled over time 26 replicate bioreactors cultivated on fruit/vegetable waste (FVW) and meat waste (MW) based on pre-defined waste components and composition. To characterize community shifts, we examined 16S rRNA genes from both the leachate and solid fractions of the waste. Waste decomposition occurred faster in FVW than MW, as accumulation of ammonia in MW reactors led to inhibition of methanogenesis. We identified population succession during different stages of waste decomposition and linked specific populations to different waste types. Community analyses revealed underrepresentation of methanogens in the leachate fractions, emphasizing the importance of consistent and representative sampling when characterizing microbial communities in solid waste.

20.
Environ Sci Technol ; 47(7): 3251-7, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23469937

RESUMEN

The anaerobic decomposition of solid waste in a landfill produces methane, a potent greenhouse gas, and if recovered, a valuable energy commodity. Methane generation from U.S. landfills is usually estimated using the U.S. EPA's Landfill Gas Emissions Model (LandGEM). Default values for the two key parameters within LandGEM, the first-order decay rate (k) and the methane production potential (L0) are based on data collected in the 1990s. In this study, observed methane collection data from 11 U.S. landfills and estimates of gas collection efficiencies developed from site-specific gas well installation data were included in a reformulated LandGEM equation. Formal search techniques were employed to optimize k for each landfill to find the minimum sum of squared errors (SSE) between the LandGEM prediction and the observed collection data. Across nearly all landfills, the optimal k was found to be higher than the default AP-42 of 0.04 yr(-1) and the weighted average decay for the 11 landfills was 0.09 - 0.12 yr(-1). The results suggest that the default k value assumed in LandGEM is likely too low, which implies that more methane is produced in the early years following waste burial when gas collection efficiencies tend to be lower.


Asunto(s)
Metano/análisis , Estadística como Asunto , Instalaciones de Eliminación de Residuos , Gases/análisis , Cinética , Modelos Químicos , Política Pública , Lluvia , Temperatura , Incertidumbre , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA