Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33509925

RESUMEN

Plant cell walls are complex structures subject to dynamic remodeling in response to developmental and environmental cues and play essential functions in disease resistance responses. We tested the specific contribution of plant cell walls to immunity by determining the susceptibility of a set of Arabidopsis cell wall mutants (cwm) to pathogens with different parasitic styles: a vascular bacterium, a necrotrophic fungus, and a biotrophic oomycete. Remarkably, most cwm mutants tested (29/34; 85.3%) showed alterations in their resistance responses to at least one of these pathogens in comparison to wild-type plants, illustrating the relevance of wall composition in determining disease-resistance phenotypes. We found that the enhanced resistance of cwm plants to the necrotrophic and vascular pathogens negatively impacted cwm fitness traits, such as biomass and seed yield. Enhanced resistance of cwm plants is not only mediated by canonical immune pathways, like those modulated by phytohormones or microbe-associated molecular patterns, which are not deregulated in the cwm tested. Pectin-enriched wall fractions isolated from cwm plants triggered immune responses in wild-type plants, suggesting that wall-mediated defensive pathways might contribute to cwm resistance. Cell walls of cwm plants show a high diversity of composition alterations as revealed by glycome profiling that detect specific wall carbohydrate moieties. Mathematical analysis of glycome profiling data identified correlations between the amounts of specific wall carbohydrate moieties and disease resistance phenotypes of cwm plants. These data support the relevant and specific function of plant wall composition in plant immune response modulation and in balancing disease resistance/development trade-offs.


Asunto(s)
Arabidopsis/citología , Arabidopsis/inmunología , Pared Celular/metabolismo , Resistencia a la Enfermedad , Enfermedades de las Plantas/inmunología , Arabidopsis/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Fenotipo , Enfermedades de las Plantas/genética , Espectroscopía Infrarroja por Transformada de Fourier
2.
Mol Biol Evol ; 38(5): 1792-1808, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33306125

RESUMEN

The evolutionary and adaptive potential of a pathogen is a key determinant for successful host colonization and proliferation but remains poorly known for most of the pathogens. Here, we used experimental evolution combined with phenotyping, genomics, and transcriptomics to estimate the adaptive potential of the bacterial plant pathogen Ralstonia solanacearum to overcome the quantitative resistance of the tomato cultivar Hawaii 7996. After serial passaging over 300 generations, we observed pathogen adaptation to within-plant environment of the resistant cultivar but no plant resistance breakdown. Genomic sequence analysis of the adapted clones revealed few genetic alterations, but we provide evidence that all but one were gain of function mutations. Transcriptomic analyses revealed that even if different adaptive events occurred in independently evolved clones, there is convergence toward a global rewiring of the virulence regulatory network as evidenced by largely overlapping gene expression profiles. A subset of four transcription regulators, including HrpB, the activator of the type 3 secretion system regulon and EfpR, a global regulator of virulence and metabolic functions, emerged as key nodes of this regulatory network that are frequently targeted to redirect the pathogen's physiology and improve its fitness in adverse conditions. Significant transcriptomic variations were also detected in evolved clones showing no genomic polymorphism, suggesting that epigenetic modifications regulate expression of some of the virulence network components and play a major role in adaptation as well.


Asunto(s)
Adaptación Biológica/genética , Ralstonia solanacearum/genética , Regulón , Evolución Biológica , Mutación con Ganancia de Función , Aptitud Genética , Solanum lycopersicum/microbiología , Ralstonia solanacearum/patogenicidad , Transcriptoma
3.
Environ Microbiol ; 21(8): 3140-3152, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31209989

RESUMEN

An evolution experiment with the bacterial plant pathogen Ralstonia solanacearum revealed that several adaptive mutations conferring enhanced fitness in plants arose in the efpR gene encoding a regulator of virulence and metabolic functions. In this study, we found that an efpR mutant systematically displays colonies with two morphotypes: the type S ('smooth', similar to the wild type) and the type EV ('efpR variant'). We demonstrated that the efpH gene, a homologue of efpR, plays a key role in the control of phenotypic heterogeneity, the ΔefpR-ΔefpH double mutant being stably locked into the EV type. Using mixed infection assays, we demonstrated that the type EV is metabolically more proficient than the type S and displays fitness gain in specific environments, whereas the type S has a better fitness into the plant environment. We provide evidence that this efpR-dependent phenotypic heterogeneity is a general feature of strains of the R. solanacearum species complex and could occur in natural conditions. This study highlights the potential role of phenotypic heterogeneity in this plant pathogen as an adaptive trait to changing environments.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas Bacterianas/metabolismo , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/genética , Proteínas Bacterianas/genética , Evolución Molecular Dirigida , Genes Reguladores , Solanum lycopersicum/microbiología , Mutación , Fenotipo , Ralstonia solanacearum/patogenicidad , Virulencia/genética , Factores de Virulencia/genética
4.
PLoS Pathog ; 12(12): e1006044, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27911943

RESUMEN

Experimental evolution of the plant pathogen Ralstonia solanacearum, where bacteria were maintained on plant lineages for more than 300 generations, revealed that several independent single mutations in the efpR gene from populations propagated on beans were associated with fitness gain on bean. In the present work, novel allelic efpR variants were isolated from populations propagated on other plant species, thus suggesting that mutations in efpR were not solely associated to a fitness gain on bean, but also on additional hosts. A transcriptomic profiling and phenotypic characterization of the efpR deleted mutant showed that EfpR acts as a global catabolic repressor, directly or indirectly down-regulating the expression of multiple metabolic pathways. EfpR also controls virulence traits such as exopolysaccharide production, swimming and twitching motilities and deletion of efpR leads to reduced virulence on tomato plants after soil drenching inoculation. We studied the impact of the single mutations that occurred in efpR during experimental evolution and found that these allelic mutants displayed phenotypic characteristics similar to the deletion mutant, although not behaving as complete loss-of-function mutants. These adaptive mutations therefore strongly affected the function of efpR, leading to an expanded metabolic versatility that should benefit to the evolved clones. Altogether, these results indicated that EfpR is a novel central player of the R. solanacearum virulence regulatory network. Independent mutations therefore appeared during experimental evolution in the evolved clones, on a crucial node of this network, to favor adaptation to host vascular tissues through regulatory and metabolic rewiring.


Asunto(s)
Genes de Plantas/genética , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/genética , Ralstonia solanacearum/metabolismo , Ralstonia solanacearum/patogenicidad , Virulencia/genética , Perfilación de la Expresión Génica , Mutación , Reacción en Cadena de la Polimerasa , Factores de Virulencia/metabolismo
5.
Microb Pathog ; 116: 273-278, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29408557

RESUMEN

The global regulator PhcA controls numerous traits associated to virulence and bacterial proliferation in strains of the plant pathogen Ralstonia solanacearum species complex. Here, we conducted a genome-wide RNA sequencing study of the GMI1000 wild-type strain and a derived phcA mutant grown in complete medium. The PhcA regulon we identified is the largest regulon described to date in the R. solanacearum species complex with 1581 regulated genes, representing about 30% of the bacterial genome. Among these genes, 166 transcription regulators were identified including known regulators controlling major cellular functions such as the Type 3 secretion system and 27 novel regulators that were not identified in previous transcriptomic studies. This study highlights that PhcA controls other functions beside pathogenicity stricto sensu which participate to the global cell homeostasis (metabolism, energy storage). We then compared the PhcA regulon identified in complete medium to the recently published PhcA regulon obtained in planta. This comparison of the set of GMI1000 genes subjected to PhcA regulation in both conditions revealed 383 common genes. Among them, 326 (85%) had a similar PhcA dependent regulation pattern in complete medium and in planta, and 57 (15%) displayed an opposite regulation pattern. A large majority of the genes repressed by PhcA in complete medium but activated in planta belong to the HrpG-HrpB regulon, which represents a set of key genes required for R. solanacearum pathogenesis. This latter class of genes appears to be specifically induced by PhcA in the plant environment whereas PhcA represses their expression in complete medium. The large set of direct and indirect targets identified in this study will contribute to enrich our knowledge of the intricate regulatory network coordinating the expression of virulence and metabolic functions in the model plant pathogen R. solanacearum.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Ralstonia solanacearum/genética , Factores de Transcripción/metabolismo , Factores de Virulencia/biosíntesis , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Regulón , Análisis de Secuencia de ARN , Factores de Transcripción/genética , Factores de Virulencia/genética
6.
New Phytol ; 211(2): 502-15, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26990325

RESUMEN

Bacterial wilt caused by Ralstonia solanacearum is one of the most destructive bacterial plant diseases. Although many molecular determinants involved in R. solanacearum adaptation to hosts and pathogenesis have been described, host components required for disease establishment remain poorly characterized. Phenotypical analysis of Arabidopsis mutants for leucine-rich repeat (LRR)-receptor-like proteins revealed that mutations in the CLAVATA1 (CLV1) and CLAVATA2 (CLV2) genes confer enhanced disease resistance to bacterial wilt. We further investigated the underlying mechanisms using genetic, transcriptomic and molecular approaches. The enhanced resistance of both clv1 and clv2 mutants to the bacteria did not require the well characterized CLV signalling modules involved in shoot meristem homeostasis, and was conditioned by neither salicylic acid nor ethylene defence-related hormones. Gene expression microarray analysis performed on clv1 and clv2 revealed deregulation of genes encoding nuclear transcription factor Y subunit alpha (NF-YA) transcription factors whose post-transcriptional regulation is known to involve microRNAs from the miR169 family. Both clv mutants showed a defect in miR169 accumulation. Conversely, overexpression of miR169 abrogated the resistance phenotype of clv mutants. We propose that CLV1 and CLV2, two receptors involved in CLV3 perception during plant development, contribute to bacterial wilt through a signalling pathway involving the miR169/NF-YA module.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de la Membrana/metabolismo , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ralstonia solanacearum/patogenicidad , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Resistencia a la Enfermedad , Etilenos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de la Membrana/genética , MicroARNs/genética , Mutación/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas Serina-Treonina Quinasas/genética , Ácido Salicílico/metabolismo , Transducción de Señal , Virulencia
7.
Plant Cell Environ ; 39(7): 1396-407, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26290138

RESUMEN

Secreted peptides and their specific receptors frequently orchestrate cell-to-cell communication in plants. Phytosulfokines (PSKs) are secreted tyrosine-sulphated peptide hormones, which trigger cellular dedifferentiation and redifferentiation upon binding to their membrane receptor. Biotrophic plant pathogens frequently trigger the differentiation of host cells into specialized feeding structures, which are essential for successful infection. We found that oomycete and nematode infections were characterized by the tissue-specific transcriptional regulation of genes encoding Arabidopsis PSKs and the PSK receptor 1 (PSKR1). Subcellular analysis of PSKR1 distribution showed that the plasma membrane-bound receptor internalizes after binding of PSK-α. Arabidopsis pskr1 knockout mutants were impaired in their susceptibility to downy mildew infection. Impaired disease susceptibility depends on functional salicylic acid (SA) signalling, but not on the massive up-regulation of SA-associated defence-related genes. Knockout pskr1 mutants also displayed a major impairment of root-knot nematode reproduction. In the absence of functional PSKR1, giant cells arrested their development and failed to fully differentiate. Our findings indicate that the observed restriction of PSK signalling to cells surrounding giant cells contributes to the isotropic growth and maturation of nematode feeding sites. Taken together, our data suggest that PSK signalling in Arabidopsis promotes the differentiation of host cells into specialized feeding cells.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiología , Interacciones Huésped-Patógeno , Oomicetos/fisiología , Receptores de Superficie Celular/metabolismo , Tylenchoidea/fisiología , Animales , Arabidopsis/metabolismo , Endocitosis , Hormonas Peptídicas/metabolismo , Enfermedades de las Plantas , Proteínas de Plantas/metabolismo , Raíces de Plantas/fisiología , Ralstonia solanacearum/fisiología , Ácido Salicílico/metabolismo , Transducción de Señal
8.
Plant Physiol ; 166(3): 1506-18, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25274985

RESUMEN

In plants, membrane-bound receptor kinases are essential for developmental processes, immune responses to pathogens and the establishment of symbiosis. We previously identified the Arabidopsis (Arabidopsis thaliana) receptor kinase IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as required for successful infection with the downy mildew pathogen Hyaloperonospora arabidopsidis. We report here that IOS1 is also required for full susceptibility of Arabidopsis to unrelated (hemi)biotrophic filamentous oomycete and fungal pathogens. Impaired susceptibility in the absence of IOS1 appeared to be independent of plant defense mechanism. Instead, we found that ios1-1 plants were hypersensitive to the plant hormone abscisic acid (ABA), displaying enhanced ABA-mediated inhibition of seed germination, root elongation, and stomatal opening. These findings suggest that IOS1 negatively regulates ABA signaling in Arabidopsis. The expression of ABA-sensitive COLD REGULATED and RESISTANCE TO DESICCATION genes was diminished in Arabidopsis during infection. This effect on ABA signaling was alleviated in the ios1-1 mutant background. Accordingly, ABA-insensitive and ABA-hypersensitive mutants were more susceptible and resistant to oomycete infection, respectively, showing that the intensity of ABA signaling affects the outcome of downy mildew disease. Taken together, our findings suggest that filamentous (hemi)biotrophs attenuate ABA signaling in Arabidopsis during the infection process and that IOS1 participates in this pathogen-mediated reprogramming of the host.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Interacciones Huésped-Patógeno , Proteínas Quinasas/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Mutación , Oomicetos/patogenicidad , Peronospora/patogenicidad , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Transducción de Señal
9.
Plant J ; 73(2): 225-39, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22978675

RESUMEN

Inactivation of Arabidopsis WAT1 (Walls Are Thin1), a gene required for secondary cell-wall deposition, conferred broad-spectrum resistance to vascular pathogens, including the bacteria Ralstonia solanacearum and Xanthomonas campestris pv. campestris, and the fungi Verticillium dahliae and Verticillium albo-atrum. Introduction of NahG, the bacterial salicylic acid (SA)-degrading salicylate hydroxylase gene, into the wat1 mutant restored full susceptibility to both R. solanacearum and X. campestris pv. campestris. Moreover, SA content was constitutively higher in wat1 roots, further supporting a role for SA in wat1-mediated resistance to vascular pathogens. By combining transcriptomic and metabolomic data, we demonstrated a general repression of indole metabolism in wat1-1 roots as shown by constitutive down-regulation of several genes encoding proteins of the indole glucosinolate biosynthetic pathway and reduced amounts of tryptophan (Trp), indole-3-acetic acid and neoglucobrassicin, the major form of indole glucosinolate in roots. Furthermore, the susceptibility of the wat1 mutant to R. solanacearum was partially restored when crossed with either the trp5 mutant, an over-accumulator of Trp, or Pro35S:AFB1-myc, in which indole-3-acetic acid signaling is constitutively activated. Our original hypothesis placed cell-wall modifications at the heart of the wat1 resistance phenotype. However, the results presented here suggest a mechanism involving root-localized metabolic channeling away from indole metabolites to SA as a central feature of wat1 resistance to R. solanacearum.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Transporte de Membrana/metabolismo , Ralstonia solanacearum , Ácido Salicílico/metabolismo , Triptófano/metabolismo , Proteínas de Arabidopsis/genética , Hongos/fisiología , Regulación de la Expresión Génica de las Plantas/inmunología , Proteínas de Transporte de Membrana/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Raíces de Plantas , Pseudomonas syringae , Factores de Tiempo , Xanthomonas campestris
10.
New Phytol ; 194(4): 1035-1045, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22432714

RESUMEN

Means to control bacterial wilt caused by the phytopathogenic root bacteria Ralstonia solanacearum are limited. Mutants in a large cluster of genes (hrp) involved in the pathogenicity of R. solanacearum were successfully used in a previous study as endophytic biocontrol agents in challenge inoculation experiments on tomato. However, the molecular mechanisms controlling this resistance remained unknown. We developed a protection assay using Arabidopsis thaliana as a model plant and analyzed the events underlying the biological control by genetic, transcriptomic and molecular approaches. High protection rates associated with a significant decrease in the multiplication of R. solanacearum were observed in plants pre-inoculated with a ΔhrpB mutant strain. Neither salicylic acid, nor jasmonic acid/ethylene played a role in the establishment of this resistance. Microarray analysis showed that 26% of the up-regulated genes in protected plants are involved in the biosynthesis and signalling of abscissic acid (ABA). In addition 21% of these genes are constitutively expressed in the irregular xylem cellulose synthase mutants (irx), which present a high level of resistance to R. solanacearum. We propose that inoculation with the ΔhrpB mutant strain generates a hostile environment for subsequent plant colonization by a virulent strain of R. solanacearum.


Asunto(s)
Ácido Abscísico/biosíntesis , Arabidopsis/microbiología , Interacciones Huésped-Patógeno/genética , Enfermedades de las Plantas/prevención & control , Ralstonia solanacearum/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Fosfoproteínas Fosfatasas/genética , Pseudomonas syringae/fisiología , Transducción de Señal
11.
Nucleic Acids Res ; 33(6): e56, 2005 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-15800207

RESUMEN

While it is universally accepted that intact RNA constitutes the best representation of the steady-state of transcription, there is no gold standard to define RNA quality prior to gene expression analysis. In this report, we evaluated the reliability of conventional methods for RNA quality assessment including UV spectroscopy and 28S:18S area ratios, and demonstrated their inconsistency. We then used two new freely available classifiers, the Degradometer and RIN systems, to produce user-independent RNA quality metrics, based on analysis of microcapillary electrophoresis traces. Both provided highly informative and valuable data and the results were found highly correlated, while the RIN system gave more reliable data. The relevance of the RNA quality metrics for assessment of gene expression differences was tested by Q-PCR, revealing a significant decline of the relative expression of genes in RNA samples of disparate quality, while samples of similar, even poor integrity were found highly comparable. We discuss the consequences of these observations to minimize artifactual detection of false positive and negative differential expression due to RNA integrity differences, and propose a scheme for the development of a standard operational procedure, with optional registration of RNA integrity metrics in public repositories of gene expression data.


Asunto(s)
Electroforesis Capilar/métodos , Perfilación de la Expresión Génica/normas , ARN/análisis , Línea Celular , Humanos , Reacción en Cadena de la Polimerasa , Control de Calidad , ARN/aislamiento & purificación , ARN/metabolismo , Reproducibilidad de los Resultados , Programas Informáticos
13.
PLoS One ; 3(7): e2589, 2008 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-18596930

RESUMEN

Bacterial wilt is a common disease that causes severe yield and quality losses in many plants. In the present study, we used the model Ralstonia solanacearum-Arabidopsis thaliana pathosystem to study transcriptional changes associated with wilt disease development. Susceptible Col-5 plants and RRS1-R-containing resistant Nd-1 plants were root-inoculated with R. solanacearum strains harbouring or lacking the matching PopP2 avirulence gene. Gene expression was marginally affected in leaves during the early stages of infection. Major changes in transcript levels took place between 4 and 5 days after pathogen inoculation, at the onset of appearance of wilt symptoms. Up-regulated genes in diseased plants included ABA-, senescence- and basal resistance-associated genes. The influence of the plant genetic background on disease-associated gene expression is weak although some genes appeared to be specifically up-regulated in Nd-1 plants. Inactivation of some disease-associated genes led to alterations in the plant responses to a virulent strain of the pathogen. In contrast to other pathosystems, very little overlap in gene expression was detected between the early phases of the resistance response and the late stages of disease development. This observation may be explained by the fact that above-ground tissues were sampled for profiling whereas the bacteria were applied to root tissues. This exhaustive analysis of Arabidopsis genes whose expression is modulated during bacterial wilt development paves the way for dissecting plant networks activated by recognition of R. solanacearum effectors in susceptible plants.


Asunto(s)
Arabidopsis/genética , Arabidopsis/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Ralstonia solanacearum/patogenicidad , Transcripción Genética , Envejecimiento/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Suelo
14.
Plant Cell ; 19(3): 890-903, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17351116

RESUMEN

Cellulose is synthesized by cellulose synthases (CESAs) contained in plasma membrane-localized complexes. In Arabidopsis thaliana, three types of CESA subunits (CESA4/IRREGULAR XYLEM5 [IRX5], CESA7/IRX3, and CESA8/IRX1) are required for secondary cell wall formation. We report that mutations in these proteins conferred enhanced resistance to the soil-borne bacterium Ralstonia solanacearum and the necrotrophic fungus Plectosphaerella cucumerina. By contrast, susceptibility to these pathogens was not altered in cell wall mutants of primary wall CESA subunits (CESA1, CESA3/ISOXABEN RESISTANT1 [IXR1], and CESA6/IXR2) or POWDERY MILDEW-RESISTANT5 (PMR5) and PMR6 genes. Double mutants indicated that irx-mediated resistance was independent of salicylic acid, ethylene, and jasmonate signaling. Comparative transcriptomic analyses identified a set of common irx upregulated genes, including a number of abscisic acid (ABA)-responsive, defense-related genes encoding antibiotic peptides and enzymes involved in the synthesis and activation of antimicrobial secondary metabolites. These data as well as the increased susceptibility of ABA mutants (abi1-1, abi2-1, and aba1-6) to R. solanacearum support a direct role of ABA in resistance to this pathogen. Our results also indicate that alteration of secondary cell wall integrity by inhibiting cellulose synthesis leads to specific activation of novel defense pathways that contribute to the generation of an antimicrobial-enriched environment hostile to pathogens.


Asunto(s)
Arabidopsis/enzimología , Arabidopsis/inmunología , Pared Celular/metabolismo , Glucosiltransferasas/metabolismo , Inmunidad Innata , Enfermedades de las Plantas/inmunología , Ácido Abscísico/farmacología , Arabidopsis/genética , Arabidopsis/microbiología , Factores Biológicos , Pared Celular/efectos de los fármacos , Ciclopentanos/farmacología , Etilenos/farmacología , Hongos/fisiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Inmunidad Innata/efectos de los fármacos , Modelos Biológicos , Mutación/genética , Oxilipinas , Ácido Salicílico/farmacología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
15.
Genome Biol ; 7(3): R19, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16542501

RESUMEN

BACKGROUND: The molecular mechanisms underlying innate tumor drug resistance, a major obstacle to successful cancer therapy, remain poorly understood. In colorectal cancer (CRC), molecular studies have focused on drug-selected tumor cell lines or individual candidate genes using samples derived from patients already treated with drugs, so that very little data are available prior to drug treatment. RESULTS: Transcriptional profiles of clinical samples collected from CRC patients prior to their exposure to a combined chemotherapy of folinic acid, 5-fluorouracil and irinotecan were established using microarrays. Vigilant experimental design, power simulations and robust statistics were used to restrain the rates of false negative and false positive hybridizations, allowing successful discrimination between drug resistance and sensitivity states with restricted sampling. A list of 679 genes was established that intrinsically differentiates, for the first time prior to drug exposure, subsequently diagnosed chemo-sensitive and resistant patients. Independent biological validation performed through quantitative PCR confirmed the expression pattern on two additional patients. Careful annotation of interconnected functional networks provided a unique representation of the cellular states underlying drug responses. CONCLUSION: Molecular interaction networks are described that provide a solid foundation on which to anchor working hypotheses about mechanisms underlying in vivo innate tumor drug responses. These broad-spectrum cellular signatures represent a starting point from which by-pass chemotherapy schemes, targeting simultaneously several of the molecular mechanisms involved, may be developed for critical therapeutic intervention in CRC patients. The demonstrated power of this research strategy makes it generally applicable to other physiological and pathological situations.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias Colorrectales/genética , Biopsia , Ensayos Clínicos Fase II como Asunto , Neoplasias del Colon/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Estadificación de Neoplasias , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA