Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Chem Technol Biotechnol ; 89(6): 934-940, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25821332

RESUMEN

BACKGROUND: A column sorption study was carried out using calcium alginate gel beads as adsorbent for the removal of boron from aqueous solutions. The breakthrough curve was obtained as a function of pH, initial concentration of boron, feed flow rate, adsorbent mass and column diameter. The breakthrough capacity values and adsorption percentage of calcium alginate gel for boron were calculated. Column data obtained at different conditions were described using the Adams-Bohart model and bed-depth service time (BDST), derived from the Adams-Bohart equation to predict breakthrough curves and to determine the characteristic column parameters required for process design. RESULTS: The maximum adsorption percentage of boron on calcium alginate gel beads using an initial concentration of boron of 50 mg L-1 at pH 11 and room temperature (20±1°C) was calculated to be 55.14%. CONCLUSION: The results indicated that calcium alginate can be used in a continuous packed-bed column for boron adsorption. The optimal conditions for boron adsorption were obtained at high pH, higher initial boron concentration, increased column depth and lower flow velocity. © 2014 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

2.
Bioinorg Chem Appl ; 2019: 2814047, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30719034

RESUMEN

Leucaena leucocephala is a potential source of polyphenols widely available in southern Mexico. This work highlights the extraction of polyphenols from Leucaena leucocephala leaves waste (LLEPs) and the evaluation of their efficiency to remove the single and multicomponent Pb(II) and Cd(II) metal ions from aqueous solutions. Batch test conditions were carried out to examine the effects of contact time, initial metal ion concentration, and adsorbent dosage on the biosorption process. The surface textures and the composition of the LLEP biosorbent was characterized using pH of point of zero charge (pHPZC), attenuated total reflectance Fourier transform infrared (ATR-FTIR), and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry, respectively. Further analysis using ATR-FTIR after adsorption contact of biosorbent was also investigated. The highest Langmuir saturation monolayer adsorption capacity, q m, for the removal of Pb(II) by LLEPs was obtained as 25.51 and 21.55 mg/g in mono- and bimetal solutions, respectively. The pseudo-second-order model provided the best fit for the kinetic data obtained for the removal of Pb(II), Cd(II), and their mixture, and the k2 values depend on the adsorbent mass. This implied that the chemisorption process might be the mechanism of the solute ions-LLEPs interaction in this study. Furthermore, nearly 100% removal of lead and cadmium individually and 95% of their mixture was found using 0.9 g of LLEPs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA