Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Med Res Rev ; 44(4): 1375-1403, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38264852

RESUMEN

The growth arrest and DNA damage inducible (GADD)45 family includes three small and ubiquitously distributed proteins (GADD45A, GADD45B, and GADD45G) that regulate numerous cellular processes associated with stress signaling and injury response. Here, we provide a comprehensive review of the current literature investigating GADD45A, the first discovered member of the family. We first depict how its levels are regulated by a myriad of genotoxic and non-genotoxic stressors, and through the combined action of intricate transcriptional, posttranscriptional, and even, posttranslational mechanisms. GADD45A is a recognized tumor suppressor and, for this reason, we next summarize its role in cancer, as well as the different mechanisms by which it regulates cell cycle, DNA repair, and apoptosis. Beyond these most well-known actions, GADD45A may also influence catabolic and anabolic pathways in the liver, adipose tissue and skeletal muscle, among others. Not surprisingly, GADD45A may trigger AMP-activated protein kinase activity, a master regulator of metabolism, and is known to act as a transcriptional coregulator of numerous nuclear receptors. GADD45A has also been reported to display a cytoprotective role by regulating inflammation, fibrosis and oxidative stress in several organs and tissues, and is regarded an important contributor for the development of heart failure. Overall data point to that GADD45A may play an important role in metabolic, neurodegenerative and cardiovascular diseases, and also autoimmune-related disorders. Thus, the potential mechanisms by which dysregulation of GADD45A activity may contribute to the progression of these diseases are also reviewed below.


Asunto(s)
Proteínas de Ciclo Celular , Humanos , Animales , Proteínas de Ciclo Celular/metabolismo , Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Apoptosis , Proteinas GADD45
2.
Cell Commun Signal ; 22(1): 297, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38807218

RESUMEN

BACKGROUND: Endoplasmic reticulum (ER) stress-mediated increases in the hepatic levels of the very low-density lipoprotein (VLDL) receptor (VLDLR) promote hepatic steatosis by increasing the delivery of triglyceride-rich lipoproteins to the liver. Here, we examined whether the NAD(+)-dependent deacetylase sirtuin 1 (SIRT1) regulates hepatic lipid accumulation by modulating VLDLR levels and the subsequent uptake of triglyceride-rich lipoproteins. METHODS: Rats fed with fructose in drinking water, Sirt1-/- mice, mice treated with the ER stressor tunicamycin with or without a SIRT1 activator, and human Huh-7 hepatoma cells transfected with siRNA or exposed to tunicamycin or different inhibitors were used. RESULTS: Hepatic SIRT1 protein levels were reduced, while those of VLDLR were upregulated in the rat model of metabolic dysfunction-associated steatotic liver disease (MASLD) induced by fructose-drinking water. Moreover, Sirt1-/- mice displayed increased hepatic VLDLR levels that were not associated with ER stress, but were accompanied by an increased expression of hypoxia-inducible factor 1α (HIF-1α)-target genes. The pharmacological inhibition or gene knockdown of SIRT1 upregulated VLDLR protein levels in the human Huh-7 hepatoma cell line, with this increase abolished by the pharmacological inhibition of HIF-1α. Finally, SIRT1 activation prevented the increase in hepatic VLDLR protein levels in mice treated with the ER stressor tunicamycin. CONCLUSIONS: Overall, these findings suggest that SIRT1 attenuates fatty liver development by modulating hepatic VLDLR levels.


Asunto(s)
Hígado , Receptores de LDL , Sirtuina 1 , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Humanos , Hígado/metabolismo , Hígado/efectos de los fármacos , Receptores de LDL/metabolismo , Receptores de LDL/genética , Ratones , Masculino , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratas , Línea Celular Tumoral , Ratones Noqueados , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Ratones Endogámicos C57BL , Tunicamicina/farmacología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratas Sprague-Dawley
3.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473843

RESUMEN

Gadd45 genes have been implicated in survival mechanisms, including apoptosis, autophagy, cell cycle arrest, and DNA repair, which are processes related to aging and life span. Here, we analyzed if the deletion of Gadd45a activates pathways involved in neurodegenerative disorders such as Alzheimer's Disease (AD). This study used wild-type (WT) and Gadd45a knockout (Gadd45a-/-) mice to evaluate AD progression. Behavioral tests showed that Gadd45a-/- mice presented lower working and spatial memory, pointing out an apparent cognitive impairment compared with WT animals, accompanied by an increase in Tau hyperphosphorylation and the levels of kinases involved in its phosphorylation in the hippocampus. Moreover, Gadd45a-/- animals significantly increased the brain's pro-inflammatory cytokines and modified autophagy markers. Notably, neurotrophins and the dendritic spine length of the neurons were reduced in Gadd45a-/- mice, which could contribute to the cognitive alterations observed in these animals. Overall, these findings demonstrate that the lack of the Gadd45a gene activates several pathways that exacerbate AD pathology, suggesting that promoting this protein's expression or function might be a promising therapeutic strategy to slow down AD progression.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Animales , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Proteínas tau/metabolismo , Disfunción Cognitiva/metabolismo , Hipocampo/metabolismo , Cognición , Modelos Animales de Enfermedad
4.
Cell Commun Signal ; 21(1): 326, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37957724

RESUMEN

BACKGROUND: The placentas from newborns that are small for gestational age (SGA; birth weight < -2 SD for gestational age) may display multiple pathological characteristics. A key determinant of fetal growth and, therefore, birth weight is placental amino acid transport, which is under the control of the serine/threonine kinase mechanistic target of rapamycin (mTOR). The effects of endoplasmic reticulum (ER) stress on the mTOR pathway and the levels of amino acid transporters are not well established. METHODS: Placentas from SGA and appropriate for gestational age (AGA) newborns and the human placental BeWo cell line exposed to the ER stressor tunicamycin were used. RESULTS: We detected a significant increase in the levels of C/EBP homologous protein (CHOP) in the placentas from SGA newborns compared with those from AGA newborns, while the levels of other ER stress markers were barely affected. In addition, placental mTOR Complex 1 (mTORC1) activity and the levels of the mature form of the amino acid transporter sodium-coupled neutral amino acid transporter 2 (SNAT2) were also reduced in the SGA group. Interestingly, CHOP has been reported to upregulate growth arrest and DNA damage-inducible protein 34 (GADD34), which in turn suppresses mTORC1 activity. The GADD34 inhibitor guanabenz attenuated the increase in CHOP protein levels and the reduction in mTORC1 activity caused by the ER stressor tunicamycin in the human placental cell line BeWo, but it did not recover mature SNAT2 protein levels, which might be reduced as a result of defective glycosylation. CONCLUSIONS: Collectively, these data reveal that GADD34A activity and glycosylation are key factors controlling mTORC1 signaling and mature SNAT2 levels in trophoblasts, respectively, and might contribute to the SGA condition. Video Abstract.


Asunto(s)
Sistema de Transporte de Aminoácidos A , Placenta , Serina-Treonina Quinasas TOR , Factor de Transcripción CHOP , Femenino , Humanos , Recién Nacido , Embarazo , Peso al Nacer , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Edad Gestacional , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Placenta/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Tunicamicina/farmacología , Regulación hacia Arriba , Factor de Transcripción CHOP/genética , Sistema de Transporte de Aminoácidos A/genética
5.
Pharmacol Res ; 187: 106578, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36435271

RESUMEN

BACKGROUND AND AIMS: Metformin, the most prescribed drug for the treatment of type 2 diabetes mellitus, has been recently reported to promote weight loss by upregulating the anorectic cytokine growth differentiation factor 15 (GDF15). Since the antidiabetic effects of metformin are mostly mediated by the activation of AMPK, a key metabolic sensor in energy homeostasis, we examined whether the activation of this kinase by metformin was dependent on GDF15. METHODS: Cultured hepatocytes and myotubes, and wild-type and Gdf15-/- mice were utilized in a series of studies to investigate the involvement of GDF15 in the activation of AMPK by metformin. RESULTS: A low dose of metformin increased GDF15 levels without significantly reducing body weight or food intake, but it ameliorated glucose intolerance and activated AMPK in the liver and skeletal muscle of wild-type mice but not Gdf15-/- mice fed a high-fat diet. Cultured hepatocytes and myotubes treated with metformin showed AMPK-mediated increases in GDF15 levels independently of its central receptor GFRAL, while Gdf15 knockdown blunted the effect of metformin on AMPK activation, suggesting that AMPK is required for the metformin-mediated increase in GDF15, which in turn is needed to sustain the full activation of this kinase independently of the CNS. CONCLUSION: Overall, these findings uncover a novel mechanism through which GDF15 upregulation by metformin is involved in achieving and sustaining full AMPK activation by this drug independently of the CNS.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Tipo 2 , Factor 15 de Diferenciación de Crecimiento , Hipoglucemiantes , Metformina , Animales , Ratones , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Factor 15 de Diferenciación de Crecimiento/genética , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Metformina/farmacología , Metformina/uso terapéutico , Retroalimentación Fisiológica
6.
Molecules ; 28(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37513338

RESUMEN

Targeting growth differentiation factor 15 (GDF15) is a recent strategy for the treatment of obesity and type 2 diabetes mellitus (T2DM). Here, we designed, synthesized, and pharmacologically evaluated in vitro a novel series of AMPK activators to upregulate GDF15 levels. These compounds were structurally based on the (1-dibenzylamino-3-phenoxy)propan-2-ol structure of the orphan ubiquitin E3 ligase subunit protein Fbxo48 inhibitor, BC1618. This molecule showed a better potency than metformin, increasing GDF15 mRNA levels in human Huh-7 hepatic cells. Based on BC1618, structural modifications have been performed to create a collection of diversely substituted new molecules. Of the thirty-five new compounds evaluated, compound 21 showed a higher increase in GDF15 mRNA levels compared with BC1618. Metformin, BC1618, and compound 21 increased phosphorylated AMPK, but only 21 increased GDF15 protein levels. Overall, these findings indicate that 21 has a unique capacity to increase GDF15 protein levels in human hepatic cells compared with metformin and BC1618.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Humanos , Proteínas Quinasas Activadas por AMP , Factor 15 de Diferenciación de Crecimiento/genética , Factor 15 de Diferenciación de Crecimiento/metabolismo , Metformina/farmacología , ARN Mensajero
7.
Cell Commun Signal ; 18(1): 147, 2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912335

RESUMEN

BACKGROUND: Deficiency of mitochondrial sirtuin 3 (SIRT3), a NAD+-dependent protein deacetylase that maintains redox status and lipid homeostasis, contributes to hepatic steatosis. In this study, we investigated additional mechanisms that might play a role in aggravating hepatic steatosis in Sirt3-deficient mice fed a high-fat diet (HFD). METHODS: Studies were conducted in wild-type (WT) and Sirt3-/- mice fed a standard diet or a HFD and in SIRT3-knockdown human Huh-7 hepatoma cells. RESULTS: Sirt3-/- mice fed a HFD presented exacerbated hepatic steatosis that was accompanied by decreased expression and DNA-binding activity of peroxisome proliferator-activated receptor (PPAR) α and of several of its target genes involved in fatty acid oxidation, compared to WT mice fed the HFD. Interestingly, Sirt3 deficiency in liver and its knockdown in Huh-7 cells resulted in upregulation of the nuclear levels of LIPIN1, a PPARα co-activator, and of the protein that controls its levels and localization, hypoxia-inducible factor 1α (HIF-1α). These changes were prevented by lipid exposure through a mechanism that might involve a decrease in succinate levels. Finally, Sirt3-/- mice fed the HFD showed increased levels of some proteins involved in lipid uptake, such as CD36 and the VLDL receptor. The upregulation in CD36 was confirmed in Huh-7 cells treated with a SIRT3 inhibitor or transfected with SIRT3 siRNA and incubated with palmitate, an effect that was prevented by the Nrf2 inhibitor ML385. CONCLUSION: These findings demonstrate new mechanisms by which Sirt3 deficiency contributes to hepatic steatosis. Video abstract.


Asunto(s)
Antígenos CD36/metabolismo , Hígado Graso/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidato Fosfatasa/metabolismo , Sirtuina 3/genética , Animales , Línea Celular , Hígado Graso/metabolismo , Hígado Graso/patología , Eliminación de Gen , Humanos , Lipogénesis , Masculino , Ratones Endogámicos C57BL , Transducción de Señal , Sirtuina 3/metabolismo
8.
Int J Mol Sci ; 19(3)2018 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-29558390

RESUMEN

Research in recent years on peroxisome proliferator-activated receptor (PPAR)ß/δ indicates that it plays a key role in the maintenance of energy homeostasis, both at the cellular level and within the organism as a whole. PPARß/δ activation might help prevent the development of metabolic disorders, including obesity, dyslipidaemia, type 2 diabetes mellitus and non-alcoholic fatty liver disease. This review highlights research findings on the PPARß/δ regulation of energy metabolism and the development of diseases related to altered cellular and body metabolism. It also describes the potential of the pharmacological activation of PPARß/δ as a treatment for human metabolic disorders.


Asunto(s)
Enfermedades Metabólicas/genética , PPAR delta/agonistas , PPAR-beta/agonistas , Animales , Humanos , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Terapia Molecular Dirigida/métodos , PPAR delta/genética , PPAR delta/metabolismo , PPAR-beta/genética , PPAR-beta/metabolismo
9.
Diabetologia ; 60(11): 2262-2273, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28835988

RESUMEN

AIM/HYPOTHESIS: Here, our aim was to examine whether VLDL and apolipoprotein (apo) CIII induce endoplasmic reticulum (ER) stress, inflammation and insulin resistance in skeletal muscle. METHODS: Studies were conducted in mouse C2C12 myotubes, isolated skeletal muscle and skeletal muscle from transgenic mice overexpressing apoCIII. RESULTS: C2C12 myotubes exposed to VLDL showed increased levels of ER stress and inflammatory markers whereas peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and AMP-activated protein kinase (AMPK) levels were reduced and the insulin signalling pathway was attenuated. The effects of VLDL were also observed in isolated skeletal muscle incubated with VLDL. The changes caused by VLDL were dependent on extracellular signal-regulated kinase (ERK) 1/2 since they were prevented by the ERK1/2 inhibitor U0126 or by knockdown of this kinase by siRNA transfection. ApoCIII mimicked the effects of VLDL and its effects were also blocked by ERK1/2 inhibition, suggesting that this apolipoprotein was responsible for the effects of VLDL. Skeletal muscle from transgenic mice overexpressing apoCIII showed increased levels of some ER stress and inflammatory markers and increased phosphorylated ERK1/2 levels, whereas PGC-1α levels were reduced, confirming apoCIII effects in vivo. Finally, incubation of myotubes with a neutralising antibody against Toll-like receptor 2 abolished the effects of apoCIII on ER stress, inflammation and insulin resistance, indicating that the effects of apoCIII were mediated by this receptor. CONCLUSIONS/INTERPRETATION: These results imply that elevated VLDL in diabetic states can contribute to the exacerbation of insulin resistance by activating ERK1/2 through Toll-like receptor 2.


Asunto(s)
Apolipoproteína C-III/farmacología , VLDL-Colesterol/farmacología , Insulina/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Receptor Toll-Like 2/metabolismo , Animales , Línea Celular , Inflamación/tratamiento farmacológico , Ratones , Transducción de Señal/efectos de los fármacos
10.
Biochim Biophys Acta ; 1861(10): 1569-78, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-26825692

RESUMEN

Cardiac lipid metabolism is the focus of attention due to its involvement in the development of cardiac disorders. Both a reduction and an increase in fatty acid utilization make the heart more prone to the development of lipotoxic cardiac dysfunction. The ligand-activated transcription factor peroxisome proliferator-activated receptor (PPAR)ß/δ modulates different aspects of cardiac fatty acid metabolism, and targeting this nuclear receptor can improve heart diseases caused by altered fatty acid metabolism. In addition, PPARß/δ regulates glucose metabolism, the cardiac levels of endogenous antioxidants, mitochondrial biogenesis, cardiomyocyte apoptosis, the insulin signaling pathway and lipid-induced myocardial inflammatory responses. As a result, PPARß/δ ligands can improve cardiac function and ameliorate the pathological progression of cardiac hypertrophy, heart failure, cardiac oxidative damage, ischemia-reperfusion injury, lipotoxic cardiac dysfunction and lipid-induced cardiac inflammation. Most of these findings have been observed in preclinical studies and it remains to be established to what extent these intriguing observations can be translated into clinical practice. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.


Asunto(s)
Metabolismo de los Lípidos , Miocardio/metabolismo , PPAR delta/metabolismo , PPAR-beta/metabolismo , Animales , Humanos , Modelos Biológicos , PPAR delta/química , PPAR-beta/química , Transducción de Señal
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(5): 541-551, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28214558

RESUMEN

Small heterodimer partner (SHP) is an atypical nuclear receptor expressed in heart that has been shown to inhibit the hypertrophic response. Here, we assessed the role of SHP in cardiac metabolism and inflammation. Mice fed a high-fat diet (HFD) displayed glucose intolerance accompanied by increased cardiac mRNA levels of Shp. In HL-1 cardiomyocytes, SHP overexpression inhibited both basal and insulin-stimulated glucose uptake and impaired the insulin signalling pathway (evidenced by reduced AKT and AS160 phosphorylation), similar to insulin resistant cells generated by high palmitate/high insulin treatment (HP/HI; 500µM/100nM). In addition, SHP overexpression increased Socs3 mRNA and reduced IRS-1 protein levels. SHP overexpression also induced Cd36 expression (~6.2 fold; p<0.001) linking to the observed intramyocellular lipid accumulation. SHP overexpressing cells further showed altered expression of genes involved in lipid metabolism, i.e., Acaca, Acadvl or Ucp3, augmented NF-κB DNA-binding activity and induced transcripts of inflammatory genes, i.e., Il6 and Tnf mRNA (~4-fold induction, p<0.01). Alterations in metabolism and inflammation found in SHP overexpressing cells were associated with changes in the mRNA levels of Ppara (79% reduction, p<0.001) and Pparg (~58-fold induction, p<0.001). Finally, co-immunoprecipitation studies showed that SHP overexpression strongly reduced the physical interaction between PPARα and the p65 subunit of NF-κB, suggesting that dissociation of these two proteins is one of the mechanisms by which SHP initiates the inflammatory response in cardiac cells. Overall, our results suggest that SHP upregulation upon high-fat feeding leads to lipid accumulation, insulin resistance and inflammation in cardiomyocytes.


Asunto(s)
Inflamación/metabolismo , Resistencia a la Insulina/genética , Metabolismo de los Lípidos/genética , Miocardio/metabolismo , Receptores Citoplasmáticos y Nucleares/biosíntesis , Animales , Regulación de la Expresión Génica , Glucosa/metabolismo , Humanos , Inflamación/patología , Insulina/metabolismo , Ratones , Miocardio/patología , Miocitos Cardíacos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Transducción de Señal
12.
Biochim Biophys Acta ; 1852(9): 1687-99, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26003667

RESUMEN

Global obesity is a pandemic status, estimated to affect over 2 billion people, that has resulted in an enormous strain on healthcare systems worldwide. The situation is compounded by the fact that apart from the direct costs associated with overweight pathology, obesity presents itself with a number of comorbidities, including an increased risk for the development of neurodegenerative disorders. Alzheimer disease (AD), the main cause of senile dementia, is no exception. Spectacular failure of the pharmaceutical industry to come up with effective AD treatment strategies is forcing the broader scientific community to rethink the underlying molecular mechanisms leading to cognitive decline. To this end, the emphasis is once again placed on the experimental animal models of the disease. In the current study, we have focused on the effects of a high-fat diet (HFD) on hippocampal-dependent memory in C57/Bl6 Wild-type (WT) and APPswe/PS1dE9 (APP/PS1) mice, a well-established mouse model of familial AD. Our results indicate that the continuous HFD administration starting at the time of weaning is sufficient to produce ß-amyloid-independent, hippocampal-dependent memory deficits measured by a 2-object novel-object recognition test (NOR) in mice as early as 6months of age. Furthermore, the resulting metabolic syndrome appears to have direct effects on brain insulin regulation and mitochondrial function. We have observed pathological changes related to both the proximal and distal insulin signaling pathway in the brains of HFD-fed WT and APP/PS1 mice. These changes are accompanied by a significantly reduced OXPHOS metabolism, suggesting that mitochondria play an important role in hippocampus-dependent memory formation and retention in both the HFD-treated and AD-like rodents at a relatively young age.

13.
Biochim Biophys Acta ; 1852(5): 1049-58, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25728706

RESUMEN

We studied whether PPARß/δ deficiency modifies the effects of high fructose intake (30% fructose in drinking water) on glucose tolerance and adipose tissue dysfunction, focusing on the CD36-dependent pathway that enhances adipose tissue inflammation and impairs insulin signaling. Fructose intake for 8 weeks significantly increased body and liver weight, and hepatic triglyceride accumulation in PPARß/δ-deficient mice but not in wild-type mice. Feeding PPARß/δ-deficient mice with fructose exacerbated glucose intolerance and led to macrophage infiltration, inflammation, enhanced mRNA and protein levels of CD36, and activation of the JNK pathway in white adipose tissue compared to those of water-fed PPARß/δ-deficient mice. Cultured adipocytes exposed to fructose also exhibited increased CD36 protein levels and this increase was prevented by the PPARß/δ activator GW501516. Interestingly, the levels of the nuclear factor E2-related factor 2 (Nrf2), a transcription factor reported to up-regulate Cd36 expression and to impair insulin signaling, were increased in fructose-exposed adipocytes whereas co-incubation with GW501516 abolished this increase. In agreement with Nrf2 playing a role in the fructose-induced CD36 protein level increases, the Nrf2 inhibitor trigonelline prevented the increase and the reduction in insulin-stimulated AKT phosphorylation caused by fructose in adipocytes. Protein levels of the well-known Nrf2 target gene NAD(P)H: quinone oxidoreductase 1 (Nqo1) were increased in water-fed PPARß/δ-null mice, suggesting that PPARß/δ deficiency increases Nrf2 activity; and this increase was exacerbated in fructose-fed PPARß/δ-deficient mice. These findings indicate that the combination of high fructose intake and PPARß/δ deficiency increases CD36 protein levels via Nrf2, a process that promotes chronic inflammation and insulin resistance in adipose tissue.


Asunto(s)
Adipocitos/efectos de los fármacos , Fructosa/farmacología , Resistencia a la Insulina , Factor 2 Relacionado con NF-E2/metabolismo , PPAR delta/metabolismo , PPAR-beta/metabolismo , Células 3T3-L1 , Adipocitos/metabolismo , Adipocitos/patología , Alcaloides/farmacología , Animales , Antígenos CD36/genética , Antígenos CD36/metabolismo , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Intolerancia a la Glucosa/genética , Humanos , Immunoblotting , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Lipoproteínas LDL/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , PPAR delta/agonistas , PPAR delta/genética , PPAR-beta/agonistas , PPAR-beta/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/efectos de los fármacos , Tiazoles/farmacología
14.
Biochim Biophys Acta ; 1842(9): 1556-66, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24887203

RESUMEN

The present study had focused on the behavioral phenotype and gene expression profile of molecules related to insulin receptor signaling in the hippocampus of 3 and 6 month-old APPswe/PS1dE9 (APP/PS1) transgenic mouse model of Alzheimer's disease (AD). Elevated levels of the insoluble Aß (1-42) were detected in the brain extracts of the transgenic animals as early as 3 months of age, prior to the Aß plaque formation (pre-plaque stage). By the early plaque stage (6 months) both the soluble and insoluble Aß (1-40) and Aß (1-42) peptides were detectable. We studied the expression of genes related to memory function (Arc, Fos), insulin signaling, including insulin receptor (Insr), Irs1 and Irs2, as well as genes involved in insulin growth factor pathways, such as Igf1, Igf2, Igfr and Igfbp2. We also examined the expression and protein levels of key molecules related to energy metabolism (PGC1-α, and AMPK) and mitochondrial functionality (OXPHOS, TFAM, NRF1 and NRF2). 6 month-old APP/PS1 mice demonstrated impaired cognitive ability, were glucose intolerant and showed a significant reduction in hippocampal Insr and Irs2 transcripts. Further observations also suggest alterations in key cellular energy sensors that regulate the activities of a number of metabolic enzymes through phosphorylation, such as a decrease in the Prkaa2 mRNA levels and in the pAMPK (Thr172)/Total APMK ratio. Moreover, mRNA and protein analysis reveals a significant downregulation of genes essential for mitochondrial replication and respiratory function, including PGC-1α in hippocampal extracts of APP/PS1 mice, compared to age-matched wild-type controls at 3 and 6 months of age. Overall, the findings of this study show early alterations in genes involved in insulin and energy metabolism pathways in an APP/PS1 model of AD. These changes affect the activity of key molecules like NRF1 and PGC-1α, which are involved in mitochondrial biogenesis. Our results reinforce the hypothesis that the impairments in both insulin signaling and energy metabolism precede the development of AD amyloidogenesis.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/fisiología , Modelos Animales de Enfermedad , Metabolismo Energético , Hipocampo/metabolismo , Mitocondrias/metabolismo , Presenilina-1/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Proteínas Amiloidogénicas , Animales , Biomarcadores/metabolismo , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Hipocampo/patología , Técnicas para Inmunoenzimas , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/patología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
Clin Sci (Lond) ; 129(9): 823-37, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26253087

RESUMEN

Fatty acids cause endothelial dysfunction involving increased ROS (reactive oxygen species) and reduced NO (nitric oxide) bioavailability. We show that in MAECs (mouse aortic endothelial cells), the PPARß/δ (peroxisome- proliferator-activated receptor ß/δ) agonist GW0742 prevented the decreased A23187-stimulated NO production, phosphorylation of eNOS (endothelial nitric oxide synthase) at Ser1177 and increased intracellular ROS levels caused by exposure to palmitate in vitro. The impaired endothelium-dependent relaxation to acetylcholine in mouse aorta induced by palmitate was restored by GW0742. In vivo, GW0742 treatment prevented the reduced aortic relaxation, phosphorylation of eNOS at Ser1177, and increased ROS production and NADPH oxidase in mice fed on a high-fat diet. The PPARß/δ antagonist GSK0660 abolished all of these protective effects induced by GW0742. This agonist enhanced the expression of CPT (carnitine palmitoyltransferase)-1. The effects of GW0742 on acetylcholine- induced relaxation in aorta and on NO and ROS production in MAECs exposed to palmitate were abolished by the CPT-1 inhibitor etomoxir or by siRNA targeting CPT-1. GW0742 also inhibited the increase in DAG (diacylglycerol), PKCα/ßII (protein kinase Cα/ßII) activation, and phosphorylation of eNOS at Thr495 induced by palmitate in MAECs, which were abolished by etomoxir. In conclusion, PPARß/δ activation restored the lipid-induced endothelial dysfunction by up-regulation of CPT-1, thus reducing DAG accumulation and the subsequent PKC-mediated ROS production and eNOS inhibition.


Asunto(s)
Carnitina O-Palmitoiltransferasa/metabolismo , Endotelio Vascular/efectos de los fármacos , Lípidos/farmacología , PPAR delta/metabolismo , PPAR-beta/metabolismo , Animales , Aorta/citología , Aorta/efectos de los fármacos , Aorta/fisiología , Western Blotting , Calcimicina/farmacología , Carnitina O-Palmitoiltransferasa/genética , Células Cultivadas , Diglicéridos/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/fisiopatología , Activación Enzimática/efectos de los fármacos , Lípidos/química , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , PPAR delta/agonistas , PPAR delta/antagonistas & inhibidores , PPAR-beta/agonistas , PPAR-beta/antagonistas & inhibidores , Ácidos Palmíticos/química , Ácidos Palmíticos/farmacología , Fosforilación/efectos de los fármacos , Proteína Quinasa C-alfa/metabolismo , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Sulfonas/farmacología , Tiazoles/farmacología , Tiofenos/farmacología , Regulación hacia Arriba
16.
Diabetologia ; 57(10): 2126-35, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25063273

RESUMEN

AIM/HYPOTHESIS: Endoplasmic reticulum (ER) stress, which is involved in the link between inflammation and insulin resistance, contributes to the development of type 2 diabetes mellitus. In this study, we assessed whether peroxisome proliferator-activated receptor (PPAR)ß/δ prevented ER stress-associated inflammation and insulin resistance in skeletal muscle cells. METHODS: Studies were conducted in mouse C2C12 myotubes, in the human myogenic cell line LHCN-M2 and in skeletal muscle from wild-type and PPARß/δ-deficient mice and mice exposed to a high-fat diet. RESULTS: The PPARß/δ agonist GW501516 prevented lipid-induced ER stress in mouse and human myotubes and in skeletal muscle of mice fed a high-fat diet. PPARß/δ activation also prevented thapsigargin- and tunicamycin-induced ER stress in human and murine skeletal muscle cells. In agreement with this, PPARß/δ activation prevented ER stress-associated inflammation and insulin resistance, and glucose-intolerant PPARß/δ-deficient mice showed increased phosphorylated levels of inositol-requiring 1 transmembrane kinase/endonuclease-1α in skeletal muscle. Our findings demonstrate that PPARß/δ activation prevents ER stress through the activation of AMP-activated protein kinase (AMPK), and the subsequent inhibition of extracellular-signal-regulated kinase (ERK)1/2 due to the inhibitory crosstalk between AMPK and ERK1/2, since overexpression of a dominant negative AMPK construct (K45R) reversed the effects attained by PPARß/δ activation. CONCLUSIONS/INTERPRETATION: Overall, these findings indicate that PPARß/δ prevents ER stress, inflammation and insulin resistance in skeletal muscle cells by activating AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Músculo Esquelético/metabolismo , PPAR delta/fisiología , PPAR-beta/fisiología , Animales , Línea Celular , Dieta Alta en Grasa/efectos adversos , Estrés del Retículo Endoplásmico/genética , Humanos , Técnicas In Vitro , Inflamación/etiología , Inflamación/genética , Resistencia a la Insulina/genética , Ratones , Fibras Musculares Esqueléticas/metabolismo , PPAR delta/deficiencia , PPAR delta/genética , PPAR-beta/deficiencia , PPAR-beta/genética
17.
Biochim Biophys Acta ; 1832(8): 1241-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23507144

RESUMEN

The role of peroxisome proliferator activator receptor (PPAR)ß/δ in the pathogenesis of Alzheimer's disease has only recently been explored through the use of PPARß/δ agonists. Here we evaluated the effects of PPARß/δ deficiency on the amyloidogenic pathway and tau hyperphosphorylation. PPARß/δ-null mice showed cognitive impairment in the object recognition task, accompanied by enhanced DNA-binding activity of NF-κB in the cortex and increased expression of IL-6. In addition, two NF-κB-target genes involved in ß-amyloid (Aß) synthesis and deposition, the ß site APP cleaving enzyme 1 (Bace1) and the receptor for advanced glycation endproducts (Rage), respectively, increased in PPARß/δ-null mice compared to wild type animals. The protein levels of glial fibrillary acidic protein (GFAP) increased in the cortex of PPARß/δ-null mice, which would suggest the presence of astrogliosis. Finally, tau hyperphosphorylation at Ser199 and enhanced levels of PHF-tau were associated with increased levels of the tau kinases CDK5 and phospho-ERK1/2 in the cortex of PPARß/δ(-/-) mice. Collectively, our findings indicate that PPARß/δ deficiency results in cognitive impairment associated with enhanced inflammation, astrogliosis and tau hyperphosphorylation in the cortex.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Corteza Cerebral/metabolismo , PPAR-beta/deficiencia , Receptores Inmunológicos/metabolismo , Proteínas tau/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Ácido Aspártico Endopeptidasas/genética , Cognición/fisiología , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Quinasa 5 Dependiente de la Ciclina/genética , Quinasa 5 Dependiente de la Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína Ácida Fibrilar de la Glía , Inflamación , Interleucina-6/genética , Interleucina-6/metabolismo , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , PPAR-beta/genética , PPAR-beta/metabolismo , Fosforilación , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética , Proteínas tau/genética
18.
Artículo en Inglés | MEDLINE | ID: mdl-38816269

RESUMEN

Abnormally increased hepatic gluconeogenesis is a significant contributor to hyperglycemia in the fasting state in patients with type 2 diabetes mellitus (T2DM) due to insulin resistance. Metformin, the most prescribed drug for the treatment of T2DM, is believed to exert its effect mainly by reducing hepatic gluconeogenesis. Here, we discuss how increased hepatic gluconeogenesis contributes to T2DM and we review newly revealed mechanisms underlying the attenuation of gluconeogenesis by metformin. In addition, we analyze the recent findings on new determinants involved in the regulation of gluconeogenesis, which might ultimately lead to the identification of novel and targeted treatment strategies for T2DM.

19.
Biomed Pharmacother ; 179: 117303, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39153437

RESUMEN

The role of peroxisome proliferator-activated receptor (PPAR)ß/δ in hepatic fibrosis remains a subject of debate. Here, we examined the effects of a PPARß/δ agonist on the pathogenesis of liver fibrosis and the activation of hepatic stellate cells (HSCs), the main effector cells in liver fibrosis, in response to the pro-fibrotic stimulus transforming growth factor-ß (TGF-ß). The PPARß/δ agonist GW501516 completely prevented glucose intolerance and peripheral insulin resistance, blocked the accumulation of collagen in the liver, and attenuated the expression of inflammatory and fibrogenic genes in mice fed a choline-deficient high-fat diet (CD-HFD). The antifibrogenic effect of GW501516 observed in the livers CD-HFD-fed mice could occur through an action on HSCs since primary HSCs isolated from Ppard-/- mice showed increased mRNA levels of the profibrotic gene Col1a1. Moreover, PPARß/δ activation abrogated TGF-ß1-mediated cell migration (an indicator of cell activation) in LX-2 cells (immortalized activated human HSCs). Likewise, GW501516 attenuated the phosphorylation of the main downstream intracellular protein target of TGF-ß1, suppressor of mothers against decapentaplegic (SMAD)3, as well as the levels of the SMAD3 co-activator p300 via the activation of AMP-activated protein kinase (AMPK) and the subsequent inhibition of extracellular signal-regulated kinase-1/2 (ERK1/2) in LX-2 cells. Overall, these findings uncover a new mechanism by which the activation of AMPK by a PPARß/δ agonist reduces TGF-ß1-mediated activation of HSCs and fibrosis via the reduction of both SMAD3 phosphorylation and p300 levels.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteína p300 Asociada a E1A , Células Estrelladas Hepáticas , Cirrosis Hepática , Ratones Endogámicos C57BL , PPAR delta , PPAR-beta , Proteína smad3 , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/patología , Animales , Fosforilación/efectos de los fármacos , PPAR-beta/agonistas , PPAR-beta/metabolismo , PPAR-beta/genética , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , PPAR delta/metabolismo , PPAR delta/agonistas , PPAR delta/genética , Proteína smad3/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Masculino , Ratones , Humanos , Tiazoles/farmacología , Dieta Alta en Grasa/efectos adversos , Ratones Noqueados , Resistencia a la Insulina , Línea Celular , Factor de Crecimiento Transformador beta1/metabolismo
20.
Metabolism ; 152: 155772, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38176644

RESUMEN

INTRODUCTION: The levels of the cellular energy sensor AMP-activated protein kinase (AMPK) have been reported to be decreased via unknown mechanisms in the liver of mice deficient in growth differentiation factor 15 (GDF15). This stress response cytokine regulates energy metabolism mainly by reducing food intake through its hindbrain receptor GFRAL. OBJECTIVE: To examine how GDF15 regulates AMPK. METHODS: Wild-type and Gdf15-/- mice, mouse primary hepatocytes and the human hepatic cell line Huh-7 were used. RESULTS: Gdf15-/- mice showed glucose intolerance, reduced hepatic phosphorylated AMPK levels, increased levels of phosphorylated mothers against decapentaplegic homolog 3 (SMAD3; a mediator of the fibrotic response), elevated serum levels of transforming growth factor (TGF)-ß1, as well as upregulated gluconeogenesis and fibrosis. In line with these observations, recombinant (r)GDF15 promoted AMPK activation and reduced the levels of phosphorylated SMAD3 and the markers of gluconeogenesis and fibrosis in the liver of mice and in mouse primary hepatocytes, suggesting that these effects may be independent of GFRAL. Pharmacological inhibition of SMAD3 phosphorylation in Gdf15-/- mice prevented glucose intolerance, the deactivation of AMPK and the increase in the levels of proteins involved in gluconeogenesis and fibrosis, suggesting that overactivation of the TGF-ß1/SMAD3 pathway is responsible for the metabolic alterations in Gdf15-/- mice. CONCLUSIONS: Overall, these findings indicate that GDF15 activates AMPK and inhibits gluconeogenesis and fibrosis by lowering the activity of the TGF-ß1/SMAD3 pathway.


Asunto(s)
Intolerancia a la Glucosa , Factor de Crecimiento Transformador beta1 , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Fibrosis , Gluconeogénesis , Intolerancia a la Glucosa/metabolismo , Factor 15 de Diferenciación de Crecimiento/genética , Hígado/metabolismo , Transducción de Señal , Proteína smad3 , Factor de Crecimiento Transformador beta1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA