RESUMEN
A key challenge for clinical application of induced pluripotent stem cells (iPSC) to accurately model and treat human pathologies depends on developing a method to generate genetically stable cells to reduce long-term risks of cell transplant therapy. Here, we hypothesized that CYCLIN D1 repairs DNA by highly efficient homologous recombination (HR) during reprogramming to iPSC that reduces genetic instability and threat of neoplastic growth. We adopted a synthetic mRNA transfection method using clinically compatible conditions with CYCLIN D1 plus base factors (OCT3/4, SOX2, KLF4, LIN28) and compared with methods that use C-MYC. We demonstrate that CYCLIN D1 made iPSC have (a) lower multitelomeric signal, (b) reduced double-strand DNA breaks, (c) correct nuclear localization of RAD51 protein expression, and (d) reduced single-nucleotide polymorphism (SNP) changes per chromosome, compared with the classical reprogramming method using C-MYC. CYCLIN D1 iPSC have reduced teratoma Ki67 cell growth kinetics and derived neural stem cells successfully engraft in a hostile spinal cord injury (SCI) microenvironment with efficient survival, differentiation. We demonstrate that CYCLIN D1 promotes double-stranded DNA damage repair predominantly through HR during cell reprogramming to efficiently produce iPSC. CYCLIN D1 reduces general cell stress associated with significantly lower SIRT1 gene expression and can rescue Sirt1 null mouse cell reprogramming. In conclusion, we show synthetic mRNA transfection of CYCLIN D1 repairs DNA during reprogramming resulting in significantly improved genetically stable footprint in human iPSC, enabling a new cell reprogramming method for more accurate and reliable generation of human iPSC for disease modeling and future clinical applications.
Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular , Reprogramación Celular/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Reparación del ADN/genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismoRESUMEN
We have previously reported that the major isoform of Flt1/VEGFR-1 expressed in MDA-MB-231 breast cancer cells was a truncated intracellular isoform transcribed from intron 21 (i21 Flt1). This isoform upregulated the active form of Src and increased breast cancer cell invasiveness. Since expression of the transmembrane and soluble Flt1 isoforms of HUVEC is activated by Notch signaling, we wondered whether the expression of the intracellular isoform i21 Flt1 was also dependent on Notch activation. We report here that the expression of i21 Flt1 in HUVEC and MDA-MB-231 cells is downregulated by the γ-secretase inhibitor DAPT. In addition, treatment of MDA-MB-231 cells with siRNA specific for Notch-1 and Notch-3 downregulates the expression of i21 Flt1. In agreement with these findings, HUVEC and MDA-MB-231 breast cancer cells, cultured on dishes coated with recombinant human Dll4 extracellular domain, express higher levels of i21 Flt1. In cancer cells, Flt1 is a target of the micro RNA family miR-200. In MDA-MB-231 breast cancer cells, the truncated intracellular isoform i21 Flt1 is also negatively regulated by miR-200c. Retinoic acid interferes i21 Flt1 expression by downregulating Notch-3 and upregulating miR-200 expression. Treatment of MDA-MB-231 breast cancer cells with both a γ-secretase inhibitor and retinoic acid suppresses the expression of i21 Flt1, providing a new mechanism to explain the effectiveness of this therapeutic approach.
Asunto(s)
Neoplasias de la Mama/genética , Receptores Notch/metabolismo , Tretinoina/farmacología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Proteínas Adaptadoras Transductoras de Señales , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Unión al Calcio , Línea Celular Tumoral , Dipéptidos/farmacología , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , MicroARNs/genética , Isoformas de Proteínas , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch3 , Receptores Notch/genética , Tretinoina/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismoRESUMEN
Gambling Disorder (GD) has a complex etiology that involves biological and environmental aspects. From a genetic perspective, neurotrophic factors (NTFs) polymorphisms have been associated with the risk of developing GD. The aim of this study was to assess the underlying mechanisms implicated in GD severity by considering the direct and mediational relationship between different variables including genetic, psychological, socio-demographic, and clinical factors. To do so, we used genetic variants that were significantly associated with an increased risk for GD and evaluated its relationship with GD severity through pathway analysis. We found that the interaction between these genetic variants and other different biopsychological features predicted a higher severity of GD. On the one hand, the presence of haplotype block 2, interrelated with haplotype block 3, was linked to a more dysfunctional personality profile and a worse psychopathological state, which, in turn, had a direct link with GD severity. On the other hand, having rs3763614 predicted higher general psychopathology and therefore, higher GD severity. The current study described the presence of complex interactions between biopsychosocial variables previously associated with the etiopathogenesis and severity of GD, while also supporting the involvement of genetic variants from the NTF family.
Asunto(s)
Juego de Azar , Humanos , Juego de Azar/genética , Juego de Azar/psicología , Personalidad/genética , Psicopatología , Gravedad del Paciente , Encuestas y CuestionariosRESUMEN
Evidence about the involvement of genetic factors in the development of gambling disorder (GD) has been assessed. Among studies assessing heritability and biological vulnerability for GD, neurotrophin (NTF) genes have emerged as promising targets, since a growing literature showed a possible link between NTF and addiction-related disorders. Thus, we aimed to explore the role of NTF genes and GD with the hypothesis that some NTF gene polymorphisms could constitute biological risk factors. The sample included 166 patients with GD and 191 healthy controls. 36 single nucleotide polymorphisms (SNPs) from NTFs (NGF, NGFR, NTRK1, BDNF, NTRK2, NTF3, NTRK3, NTF4, CNTF and CNTFR) were selected and genotyped. Linkage disequilibrium (LD) and haplotype constructions were analyzed, in relationship with the presence of GD. Finally, regulatory elements overlapping the identified SNPs variants associated with GD were searched. The between groups comparisons of allele frequencies indicated that 6 SNPs were potentially associated with GD. Single and multiple-marker analyses showed a strong association between both NTF3 and NTRK2 genes, and GD. The present study supports the involvement of the NTF family in the aetiopathogenesis of GD. An altered cross-regulation of different NTF members signalling pathways might be considered as a biological vulnerability factor for GD.
Asunto(s)
Juego de Azar , Juego de Azar/genética , Frecuencia de los Genes , Haplotipos , Humanos , Factores de Crecimiento Nervioso/genética , Polimorfismo de Nucleótido SimpleRESUMEN
We report data on the genetic variation of the Tepehua population based on 15 autosomal microsatellites. The Tepehua, whose language belongs to the Totonac family, are settled throughout the Sierra Madre Oriental in Mexico and constitute a group in demographic decline. The results suggest that the Tepehua population remained isolated throughout a large part of its history. Phylogenetic analyses performed with other indigenous and admixed populations of Mesoamerica allow us to address their biological history. The results suggest a genetic affinity between the Tepehua and the Huastecos due to their previous shared history, and a certain degree of differentiation from the Otomões groups and the Choles (who are of Mayan origin). A clear genetic differentiation is also apparent between native and admixed populations within the greater region of Mesoamerica. It is currently accepted that the genetic composition of the American populations fits a trihybrid model of admixture. The genetic structure based on comparison of 34 populations throughout the continent (9 indigenous and 23 admixed) using hierarchical cluster analysis with an explained variance of 61.17% suggests the existence of four large groups distinguished according to the degree of admixture between Amerindians, Europeans, and Africans.
Asunto(s)
Frecuencia de los Genes , Genética de Población , Indígenas Norteamericanos/genética , Repeticiones de Microsatélite , Demografía , Marcadores Genéticos , Variación Genética , Humanos , México , Análisis de Secuencia de ADNRESUMEN
POPULATION: Amerindian populations: Huastecos (n=97), Otomies de la Sierra (n=41), Otomies del Valle (n=40), and Tepehuas (n=13).
Asunto(s)
Cromosomas Humanos Y , Etnicidad/genética , Genética de Población , Haplotipos , Secuencias Repetidas en Tándem , Dermatoglifia del ADN , Frecuencia de los Genes , Humanos , Masculino , México , Reacción en Cadena de la PolimerasaRESUMEN
Reprogramming of somatic cells into induced pluripotent stem (iPS) cells by defined pluripotency and self-renewal factors has taken stem cell technology to the forefront of regenerative medicine. However, a number of challenges remain in the field including efficient protocols and the threat of cancer. Reprogramming of plant somatic cells to plant embryonic stem cells using a combination of two plant hormones was discovered in 1957 and has been a routine university laboratory practical for over 30 years. The plant hormones responsible for cell reprogramming to pluripotency, indole-3-acetic acid (IAA) and isopentenyl adenosine (IPA), are present in human cells, leading to the exciting possibility that plant hormones might reprogram mammalian cells without genetic factors. We found that plant hormones on their own could not reprogram mammalian cells but increase the efficiency of the early formation of iPS cells combined with three defined genetic factors during the first 3 weeks of reprogramming by accelerating the cell cycle and regulating pluripotency genes. Moreover, the cytokinin IPA, a known human anticancer agent, reduced the threat of cancer of iPS cell in vitro by regulating key cancer and stem cell-related genes, most notably c-Myc and Igf-1. In conclusion, the plant hormones, auxin and cytokinin, are new small chemicals useful for enhancing early reprogramming efficiency of mammalian cells and reducing the threat of cancer from iPS cells. These findings suggest a novel role for plant hormones in the biology of mammalian cell plasticity.
Asunto(s)
Reprogramación Celular/genética , Citocininas/farmacología , Células Madre Embrionarias/metabolismo , Ácidos Indolacéticos/farmacología , Células Madre Pluripotentes Inducidas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Animales , Carcinogénesis/efectos de los fármacos , Células Cultivadas , Reprogramación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BLRESUMEN
Like drug addiction, pathological gambling (PG) has been associated with impairments in executive functions and alterations in dopaminergic functioning; however, the role of dopamine (DA) in the executive profile of PG remains unclear. The aim of this study was to identify whether the DRD2/ANKK1 Taq1A-rs1800497 and the DAT1-40 bp VNTR polymorphisms are associated with cognitive flexibility (measured by Wisconsin Card Sorting Test (WCST) and Trail Making Test (TMT)) and inhibition response (measured by Stroop Color and Word Test (SCWT)), in a clinical sample of 69 PG patients. Our results showed an association between DA functioning and cognitive flexibility performance. The Taq1A A1+ (A1A2/A1A1) genotype was associated with poorer TMT performance (p<0.05), while DAT1 9-repeat homozygotes displayed better WCST performance (p<0.05) than either 10-repeat homozygotes or heterozygotes. We did not find any association between the DRD2 or DAT1 polymorphisms and the inhibition response. These results suggested that pathological gamblers with genetic predispositions toward lower availability of DA and D2 receptor density are at a higher risk of cognitive flexibility difficulties. Future studies should aim to shed more light on the genetic mechanisms underlying the executive profile in PG.
Asunto(s)
Cognición , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Juego de Azar/genética , Juego de Azar/psicología , Repeticiones de Minisatélite/genética , Proteínas Serina-Treonina Quinasas/genética , Receptores de Dopamina D2/genética , Adolescente , Adulto , Anciano , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Polimorfismo Genético , Adulto JovenRESUMEN
BACKGROUND AND OBJECTIVES: In line with genetic and pharmacological studies suggesting that neurotransmitter pathways play a role in nicotine dependence, research was conducted in connection with 4 genetic polymorphisms: OPRM1, TPH1, ADRA2A and HTR1B. This study compares the genotype and allele frequencies in 3 groups (non-smokers, former smokers and smokers) of unrelated individuals (n=490) from Catalonia (north east Spain) in order to find any relationship. MATERIAL AND METHODS: All polymorphisms were genotyped in each population group and statistical analysis was performed. RESULTS: Data obtained show that there is a relationship between sex, age and the TPH1 locus, indicating a trend towards a lower frequency of the AA genotype in former smokers for the TPH1 locus. CONCLUSIONS: The results indicate that a role is played by the TPH1 polymorphism as an indicator of therapeutic failure in smoking cessation.