Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Circ Res ; 109(11): 1259-68, 2011 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-21980127

RESUMEN

RATIONALE: Nitric oxide, the classic endothelium-derived relaxing factor (EDRF), acts through cyclic GMP and calcium without notably affecting membrane potential. A major component of EDRF activity derives from hyperpolarization and is termed endothelium-derived hyperpolarizing factor (EDHF). Hydrogen sulfide (H(2)S) is a prominent EDRF, since mice lacking its biosynthetic enzyme, cystathionine γ-lyase (CSE), display pronounced hypertension with deficient vasorelaxant responses to acetylcholine. OBJECTIVE: The purpose of this study was to determine if H(2)S is a major physiological EDHF. METHODS AND RESULTS: We now show that H(2)S is a major EDHF because in blood vessels of CSE-deleted mice, hyperpolarization is virtually abolished. H(2)S acts by covalently modifying (sulfhydrating) the ATP-sensitive potassium channel, as mutating the site of sulfhydration prevents H(2)S-elicited hyperpolarization. The endothelial intermediate conductance (IK(Ca)) and small conductance (SK(Ca)) potassium channels mediate in part the effects of H(2)S, as selective IK(Ca) and SK(Ca) channel inhibitors, charybdotoxin and apamin, inhibit glibenclamide-insensitive, H(2)S-induced vasorelaxation. CONCLUSIONS: H(2)S is a major EDHF that causes vascular endothelial and smooth muscle cell hyperpolarization and vasorelaxation by activating the ATP-sensitive, intermediate conductance and small conductance potassium channels through cysteine S-sulfhydration. Because EDHF activity is a principal determinant of vasorelaxation in numerous vascular beds, drugs influencing H(2)S biosynthesis offer therapeutic potential.


Asunto(s)
Endotelio Vascular/metabolismo , Sulfuro de Hidrógeno/metabolismo , Canales KATP/metabolismo , Vasodilatación/fisiología , Acetilcolina/farmacología , Animales , Aorta/citología , Aorta/metabolismo , Células Cultivadas/efectos de los fármacos , Células Cultivadas/metabolismo , Caribdotoxina/farmacología , Cistationina gamma-Liasa/deficiencia , Cistationina gamma-Liasa/genética , Factores Relajantes Endotelio-Dependientes/metabolismo , Femenino , Gliburida/farmacología , Hipertensión/metabolismo , Masculino , Potenciales de la Membrana/efectos de los fármacos , Arterias Mesentéricas/lesiones , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/patología , Ratones , Ratones Endogámicos C57BL , Fenilefrina/farmacología , Cloruro de Potasio/farmacología , Ratas , Ratas Wistar , Vasodilatación/efectos de los fármacos
2.
Proc Natl Acad Sci U S A ; 106(8): 2921-6, 2009 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-19193859

RESUMEN

D-serine is a physiologic coagonist with glutamate at NMDA-subtype glutamate receptors. As D-serine is localized in glia, synaptically released glutamate presumably stimulates the glia to form and release D-serine, enabling glutamate/D-serine cotransmission. We show that serine racemase (SR), which generates D-serine from L-serine, is physiologically inhibited by phosphatidylinositol (4,5)-bisphosphate (PIP2) presence in membranes where SR is localized. Activation of metabotropic glutamate receptors (mGluR5) on glia leads to phospholipase C-mediated degradation of PIP2, relieving SR inhibition. Thus mutants of SR that cannot bind PIP2 lose their membrane localizations and display a 4-fold enhancement of catalytic activity. Moreover, mGluR5 activation of SR activity is abolished by inhibiting phospholipase C.


Asunto(s)
Ácido Glutámico/metabolismo , Fosfatidilinositol 4,5-Difosfato/antagonistas & inhibidores , Fosfatidilinositol 4,5-Difosfato/metabolismo , Racemasas y Epimerasas/metabolismo , Adenosina Trifosfato/metabolismo , Unión Competitiva , Línea Celular , Polarización de Fluorescencia , Humanos , Inmunohistoquímica , Unión Proteica , Receptor del Glutamato Metabotropico 5 , Receptores de Glutamato Metabotrópico/metabolismo
3.
J Neurosci ; 30(4): 1413-6, 2010 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-20107067

RESUMEN

D-Serine, formed from L-serine by serine racemase (SR), is a physiologic coagonist at NMDA receptors. Using mice with targeted deletion of SR, we demonstrate a role for D-serine in NMDA receptor-mediated neurotoxicity and stroke. Brain cultures of SR-deleted mice display markedly diminished nitric oxide (NO) formation and neurotoxicity. In intact SR knock-out mice, NO formation and nitrosylation of NO targets are substantially reduced. Infarct volume following middle cerebral artery occlusion is dramatically diminished in several regions of the brains of SR mutant mice despite evidence of increased NMDA receptor number and sensitivity.


Asunto(s)
Isquemia Encefálica/enzimología , Isquemia Encefálica/genética , Citoprotección/genética , Neurotoxinas/metabolismo , Racemasas y Epimerasas/genética , Serina/metabolismo , Animales , Encéfalo/irrigación sanguínea , Encéfalo/enzimología , Encéfalo/fisiopatología , Infarto Encefálico/enzimología , Infarto Encefálico/genética , Infarto Encefálico/terapia , Isquemia Encefálica/terapia , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica/genética , Terapia Genética/métodos , Infarto de la Arteria Cerebral Media/enzimología , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/terapia , Isomerismo , Masculino , Ratones , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Nitrocompuestos/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo
4.
J Biol Chem ; 285(27): 20428-32, 2010 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-20424159

RESUMEN

We recently reported that the small G-protein Rhes has the properties of a SUMO-E3 ligase and mediates mutant huntingtin (mHtt) cytotoxicity. We now demonstrate that Rhes is a physiologic regulator of sumoylation, which is markedly reduced in the corpus striatum of Rhes-deleted mice. Sumoylation involves activation and transfer of small ubiquitin-like modifier (SUMO) from the thioester of E1 to the thioester of Ubc9 (E2) and final transfer to lysines on target proteins, which is enhanced by E3s. We show that E1 transfers SUMO from its thioester directly to lysine residues on Ubc9, forming isopeptide linkages. Conversely, sumoylation on E1 requires transfer of SUMO from the thioester of Ubc9. Thus, the process regarded as "autosumoylation" reflects intermolecular transfer between E1 and Ubc9, which we designate "cross-sumoylation." Rhes binds directly to both E1 and Ubc9, enhancing cross-sumoylation as well as thioester transfer from E1 to Ubc9.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitina-Proteína Ligasas/genética , Animales , Cuerpo Estriado/metabolismo , Cisteína/metabolismo , Proteínas de Unión al GTP/deficiencia , Glutamina/metabolismo , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Lisina/genética , Ratones , Ratones Noqueados , Mutación , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Enzimas Ubiquitina-Conjugadoras/química , Ubiquitina-Proteína Ligasas/metabolismo
5.
Nature ; 434(7029): 99-104, 2005 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-15744307

RESUMEN

Many ion channels are regulated by lipids, but prominent motifs for lipid binding have not been identified in most ion channels. Recently, we reported that phospholipase Cgamma1 (PLC-gamma1) binds to and regulates TRPC3 channels, components of agonist-induced Ca2+ entry into cells. This interaction requires a domain in PLC-gamma1 that includes a partial pleckstrin homology (PH) domain-a consensus lipid-binding and protein-binding sequence. We have developed a gestalt algorithm to detect hitherto 'invisible' PH and PH-like domains, and now report that the partial PH domain of PLC-gamma1 interacts with a complementary partial PH-like domain in TRPC3 to elicit lipid binding and cell-surface expression of TRPC3. Our findings imply a far greater abundance of PH domains than previously appreciated, and suggest that intermolecular PH-like domains represent a widespread signalling mode.


Asunto(s)
Membrana Celular/metabolismo , Regulación de la Expresión Génica , Canales Iónicos/química , Canales Iónicos/metabolismo , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/metabolismo , Algoritmos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Calcio/metabolismo , Dominio Catalítico , Línea Celular , Biología Computacional , Bases de Datos de Proteínas , Prueba de Complementación Genética , Humanos , Canales Iónicos/genética , Metabolismo de los Lípidos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fosfolipasa C gamma , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Transducción de Señal , Canales Catiónicos TRPC , Técnicas del Sistema de Dos Híbridos , Fosfolipasas de Tipo C/genética
6.
Sci Signal ; 2(96): ra72, 2009 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-19903941

RESUMEN

Hydrogen sulfide (H2S), a messenger molecule generated by cystathionine gamma-lyase, acts as a physiologic vasorelaxant. Mechanisms whereby H2S signals have been elusive. We now show that H2S physiologically modifies cysteines in a large number of proteins by S-sulfhydration. About 10 to 25% of many liver proteins, including actin, tubulin, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), are sulfhydrated under physiological conditions. Sulfhydration augments GAPDH activity and enhances actin polymerization. Sulfhydration thus appears to be a physiologic posttranslational modification for proteins.


Asunto(s)
Sulfuro de Hidrógeno/metabolismo , Transducción de Señal , Compuestos de Sulfhidrilo/metabolismo , Actinas/metabolismo , Animales , Biopolímeros/metabolismo , Cromatografía Líquida de Alta Presión , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Ratones , Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem , Tubulina (Proteína)/metabolismo
7.
J Biol Chem ; 283(49): 34384-92, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-19043047

RESUMEN

We recently modeled transient receptor potential (TRP) channels using the Gestalt Domain Detection Algorithm-Basic Local Alignment Tool (GDDA-BLAST), which derives structural, functional, and evolutionary information from primary amino acid sequences using phylogenetic profiles ( Ko, K. D., Hong, Y., Chang, G. S., Bhardwaj, G., van Rossum, D. B., and Patterson, R. L. (2008) Physics Arch. Quant. Methods arXiv: 0806.2394v1 ). Herein we test our functional predictions for the TRP_2 domain of TRPC3; a domain of unknown function that is conserved in all TRPC channels. Our functional models of this domain identify both lipid binding and trafficking activities. In this study, we reveal: (i) a novel structural determinant of ion channel sensitivity to lipids, (ii) a molecular mechanism for the difference between diacylglycerol (DAG)-sensitive and DAG-insensitive TRPC subfamilies, and (iii) evidence that TRPC3 can comprise part of the vesicle fusion machinery. Indeed, the TRPC3 TRP_2 domain mediates channel trafficking to the plasma membrane and binds to plasma membrane lipids. Further, mutations in TRP_2, which alter lipid binding, also disrupt the DAG-mediated fusion of TRPC3-containing vesicles with the plasma membrane without disrupting SNARE interactions. Importantly, these data agree with the known role of DAG in membrane destabilization, which facilitates SNARE-dependent synaptic vesicle fusion ( Villar, A. V., Goni, F. M., and Alonso, A. (2001) FEBS Lett. 494, 117-120 and Goni, F. M., and Alonso, A. (1999) Prog. Lipid Res. 38, 1-48 ). Taken together, functional models generated by GDDA-BLAST provide a computational platform for deriving domain functionality, which can have in vivo and mechanistic relevance.


Asunto(s)
Diglicéridos/química , Lípidos/química , Canales Catiónicos TRPC/química , Canales Catiónicos TRPC/fisiología , Secuencia de Aminoácidos , Biotinilación , Calcio/metabolismo , Células HeLa , Humanos , Liposomas/química , Microscopía Confocal , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
8.
Biol Psychiatry ; 63(10): 997-1000, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18191108

RESUMEN

BACKGROUND: D-serine is an endogenous coagonist of the N-methyl-D-aspartate subtype glutamate receptor. Genetic association studies have implicated genes coding for enzymes associated with D-serine metabolism in schizophrenia and bipolar disorder. METHODS: Protein expression of serine racemase (SR) and its binding partner, protein interacting with C-kinase (PICK1), were examined by Western blotting in brains from wildtype and PICK1 knockout mice. Levels of D-serine in wildtype and PICK1 mice were also examined by an established high-pressure liquid chromatography protocol. RESULTS: Expression of SR and PICK1 proteins was developmentally regulated. Although no change was observed in the level of SR protein, levels of D-serine were selectively decreased in the forebrain of neonatal PICK1 knockout mice, compared with those in wildtype mice. CONCLUSIONS: PICK1 may be involved in the regulation of brain D-serine levels and SR in a spatially and temporally specific manner.


Asunto(s)
Encéfalo/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Nucleares/deficiencia , Serina/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Proteínas Portadoras , Proteínas de Ciclo Celular , Línea Celular Transformada , Cromatografía Líquida de Alta Presión/métodos , Embrión de Mamíferos , Humanos , Ratones , Ratones Noqueados , Racemasas y Epimerasas/metabolismo , Transfección/métodos
9.
PLoS One ; 2(2): e204, 2007 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-17301879

RESUMEN

Developmental proteins play a pivotal role in the origin of animal complexity and diversity. We report here the identification of a highly divergent developmental protein superfamily (DANGER), which originated before the emergence of animals (approximately 850 million years ago) and experienced major expansion-contraction events during metazoan evolution. Sequence analysis demonstrates that DANGER proteins diverged via multiple mechanisms, including amino acid substitution, intron gain and/or loss, and recombination. Divergence for DANGER proteins is substantially greater than for the prototypic member of the superfamily (Mab-21 family) and other developmental protein families (e.g., WNT proteins). DANGER proteins are widely expressed and display species-dependent tissue expression patterns, with many members having roles in development. DANGER1A, which regulates the inositol trisphosphate receptor, promotes the differentiation and outgrowth of neuronal processes. Regulation of development may be a universal function of DANGER family members. This family provides a model system to investigate how rapid protein divergence contributes to morphological complexity.


Asunto(s)
Evolución Molecular , Genes del Desarrollo , Proteínas de la Membrana/genética , Familia de Multigenes , Algoritmos , Animales , Diferenciación Celular/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes del Desarrollo/genética , Proteínas de Homeodominio/química , Proteínas de Homeodominio/clasificación , Proteínas de Homeodominio/genética , Invertebrados/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/fisiología , Modelos Genéticos , Factor de Crecimiento Nervioso/farmacología , Células PC12/efectos de los fármacos , Filogenia , Estructura Terciaria de Proteína , Ratas , Vertebrados/genética
10.
Proc Natl Acad Sci U S A ; 104(8): 2950-5, 2007 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-17293453

RESUMEN

Serine racemase (SR) generates D-serine, a coagonist with glutamate at NMDA receptors. We show that SR is physiologically S-nitrosylated leading to marked inhibition of enzyme activity. Inhibition involves interactions with the cofactor ATP reflecting juxtaposition of the ATP-binding site and cysteine-113 (C113), the site for physiological S-nitrosylation. NMDA receptor physiologically enhances SR S-nitrosylation by activating neuronal nitric-oxide synthase (nNOS). These findings support a model whereby postsynaptic stimulation of nitric-oxide (NO) formation feeds back to presynaptic cells to S-nitrosylate SR and decrease D-serine availability to postsynaptic NMDA receptors.


Asunto(s)
Retroalimentación Fisiológica/efectos de los fármacos , Óxido Nítrico/farmacología , Racemasas y Epimerasas/metabolismo , S-Nitrosoglutatión/farmacología , Serina/biosíntesis , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Coenzimas/metabolismo , Cisteína/metabolismo , Activación Enzimática/efectos de los fármacos , Humanos , Ratones , Modelos Moleculares , Modelos Neurológicos , Datos de Secuencia Molecular , Óxido Nítrico Sintasa de Tipo I/metabolismo , Racemasas y Epimerasas/química , Receptores de N-Metil-D-Aspartato/metabolismo
11.
J Biol Chem ; 281(48): 37111-6, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-16990268

RESUMEN

We report the cloning and characterization of DANGER, a novel protein which physiologically binds to inositol 1,4,5-trisphosphate receptors (IP(3)R). DANGER is a membrane-associated protein predicted to contain a partial MAB-21 domain. It is expressed in a wide variety of neuronal cell lineages where it localizes to membranes in the cell periphery together with IP(3)R. DANGER interacts with IP(3)R in vitro and co-immunoprecipitates with IP(3)R from cellular preparations. DANGER robustly enhances Ca(2+)-mediated inhibition of IP(3) RCa(2+) release without affecting IP(3) binding in microsomal assays and inhibits gating in single-channel recordings of IP(3)R. DANGER appears to allosterically modulate the sensitivity of IP(3) RtoCa(2+) inhibition, which likely alters IP(3)R-mediated Ca(2+) dynamics in cells where DANGER and IP(3)R are co-expressed.


Asunto(s)
Regulación de la Expresión Génica , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de la Membrana/fisiología , Neuronas/metabolismo , Sitio Alostérico , Animales , Calcio/metabolismo , Clonación Molecular , Electrofisiología , Humanos , Insectos , Proteínas de la Membrana/química , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Tripsina/farmacología , Técnicas del Sistema de Dos Híbridos
12.
Proc Natl Acad Sci U S A ; 102(5): 1357-9, 2005 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-15677321

RESUMEN

NADH regulates the release of calcium from the endoplasmic reticulum by modulation of inositol 1,4,5-trisphosphate receptors (IP3R), accounting for the augmented calcium release of hypoxic cells. We report selective binding of IP3R to GAPDH, whose activity leads to the local generation of NADH to regulate intracellular calcium signaling. This interaction requires cysteines 992 and 995 of IP3R and C150 of GAPDH. Addition of native GAPDH and NAD+ to WT IP3R stimulates calcium release, whereas no stimulation occurs with C992S/995S IP3R that cannot bind GAPDH. Thus, the IP3R/GAPDH interaction likely enables cellular energy dynamics to impact calcium signaling.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/metabolismo , NAD/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Células COS , Canales de Calcio/química , Canales de Calcio/genética , Línea Celular , Chlorocebus aethiops , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/química , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Humanos , Receptores de Inositol 1,4,5-Trifosfato , Mutagénesis Sitio-Dirigida , Células PC12 , Fragmentos de Péptidos/química , Ratas , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Recombinantes/metabolismo
13.
Proc Natl Acad Sci U S A ; 102(6): 2105-10, 2005 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-15684087

RESUMEN

Serine racemase (SR), localized to astrocytic glia that ensheathe synapses, converts L-serine to D-serine, an endogenous ligand of the NMDA receptor. We report the activation of SR by glutamate neurotransmission involving alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors via glutamate receptor interacting protein (GRIP) and the physiologic regulation of cerebellar granule cell migration by SR. GRIP physiologically binds SR, augmenting SR activity and D-serine release. GRIP infection of neonatal mouse cerebellum in vivo enhances granule cell migration. Selective degradation of D-serine by D-amino acid oxidase and pharmacologic inhibition of SR impede migration, whereas D-serine activates the process. Thus, in neuronal migration, glutamate stimulates Bergmann glia to form and release D-serine, which, together with glutamate, activates NMDA receptors on granule neurons, chemokinetically enhancing migration.


Asunto(s)
Proteínas Portadoras/metabolismo , Movimiento Celular/fisiología , Ácido Glutámico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Racemasas y Epimerasas/metabolismo , Transmisión Sináptica/fisiología , Animales , Encéfalo/citología , Encéfalo/metabolismo , Calcio/metabolismo , Células Cultivadas , Activación Enzimática , Humanos , Ratones , Neuroglía/citología , Neuroglía/metabolismo , Neuronas/citología , Racemasas y Epimerasas/antagonistas & inhibidores , Racemasas y Epimerasas/genética , Ratas , Receptores AMPA/metabolismo , Serina/metabolismo , Técnicas del Sistema de Dos Híbridos
14.
Proc Natl Acad Sci U S A ; 101(8): 2328-32, 2004 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-14983009

RESUMEN

RACK1 is not a G protein but closely resembles the heterotrimeric Gbeta-subunit. RACK1 serves as a scaffold, linking protein kinase C to its substrates. We demonstrate that RACK1 physiologically binds inositol 1,4,5-trisphosphate receptors and regulates Ca2+ release by enhancing inositol 1,4,5-trisphosphate receptor binding affinity for inositol 1,4,5-trisphosphate. Overexpression of RACK1 or depletion of RACK1 by interference RNA markedly augments or diminishes Ca2+ release, respectively, without affecting Ca2+ entry. These findings establish RACK1 as a physiologic mediator of agonist-induced Ca2+ release.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/fisiología , Proteínas de Neoplasias/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Sustitución de Aminoácidos , Animales , Canales de Calcio/química , Señalización del Calcio , Línea Celular , Proteínas de Unión al GTP , Humanos , Receptores de Inositol 1,4,5-Trifosfato , Riñón , Cinética , Mutagénesis Sitio-Dirigida , Proteínas de Neoplasias/química , Proteínas de Neoplasias/deficiencia , Células PC12 , Unión Proteica , ARN Interferente Pequeño/genética , Ratas , Receptores de Cinasa C Activada , Receptores de Superficie Celular , Receptores Citoplasmáticos y Nucleares/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
15.
Proc Natl Acad Sci U S A ; 101(8): 2323-7, 2004 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-14983008

RESUMEN

It has been considered that Ca2+ release is the causal trigger for Ca2+ entry after receptor activation. In DT40 B cells devoid of inositol 1,4,5-trisphosphate receptors (IP3R), the lack of Ca2+ entry in response to receptor activation is attributed to the absence of Ca2+ release. We reveal in this article that IP3R recognition of IP3 determines agonist-induced Ca2+ entry (ACE), independent of its Ca2+ release activity. In DT40 IP3R(-/-) cells, endogenous ACE can be rescued with type 1 IP3R mutants (both a DeltaC-terminal truncation mutant and a D2550A pore mutant), which are defective in Ca2+ release channel activity. Thus, in response to B cell receptor activation, ACE is restored in an IP3R-dependent manner without Ca2+ store release. Conversely, ACE cannot be rescued with mutant IP3Rs lacking IP3 binding (both the Delta90-110 and R265Q IP3-binding site mutants). We conclude that an IP3-dependent conformational change in the IP3R, not endoplasmic reticulum Ca2+ pool release, triggers ACE.


Asunto(s)
Canales de Calcio/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Inositol 1,4,5-Trifosfato/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Sustitución de Aminoácidos , Animales , Transporte Biológico , Canales de Calcio/química , Canales de Calcio/deficiencia , Canales de Calcio/genética , Retículo Endoplásmico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato , Cinética , Mutagénesis Sitio-Dirigida , Células PC12 , Ratas , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/deficiencia , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Recombinantes/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA