Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Mol Cell ; 81(11): 2460-2476.e11, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33974913

RESUMEN

Selective protein degradation by the ubiquitin-proteasome system (UPS) is involved in all cellular processes. However, the substrates and specificity of most UPS components are not well understood. Here we systematically characterized the UPS in Saccharomyces cerevisiae. Using fluorescent timers, we determined how loss of individual UPS components affects yeast proteome turnover, detecting phenotypes for 76% of E2, E3, and deubiquitinating enzymes. We exploit this dataset to gain insights into N-degron pathways, which target proteins carrying N-terminal degradation signals. We implicate Ubr1, an E3 of the Arg/N-degron pathway, in targeting mitochondrial proteins processed by the mitochondrial inner membrane protease. Moreover, we identify Ylr149c/Gid11 as a substrate receptor of the glucose-induced degradation-deficient (GID) complex, an E3 of the Pro/N-degron pathway. Our results suggest that Gid11 recognizes proteins with N-terminal threonines, expanding the specificity of the GID complex. This resource of potential substrates and relationships between UPS components enables exploring functions of selective protein degradation.


Asunto(s)
Proteínas Mitocondriales/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Mitocondriales/clasificación , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Proteolisis , Proteómica/métodos , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Treonina/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/clasificación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteína Fluorescente Roja
2.
Nucleic Acids Res ; 50(12): 6656-6670, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35736224

RESUMEN

Preclinical mechanistic studies have pointed towards RNA interference-mediated off-target effects as a major driver of hepatotoxicity for GalNAc-siRNA conjugates. Here, we demonstrate that a single glycol nucleic acid or 2'-5'-RNA modification can substantially reduce small interfering RNA (siRNA) seed-mediated binding to off-target transcripts while maintaining on-target activity. In siRNAs with established hepatotoxicity driven by off-target effects, these novel designs with seed-pairing destabilization, termed enhanced stabilization chemistry plus (ESC+), demonstrated a substantially improved therapeutic window in rats. In contrast, siRNAs thermally destabilized to a similar extent by the incorporation of multiple DNA nucleotides in the seed region showed little to no improvement in rat safety suggesting that factors in addition to global thermodynamics play a role in off-target mitigation. We utilized the ESC+ strategy to improve the safety of ALN-HBV, which exhibited dose-dependent, transient and asymptomatic alanine aminotransferase elevations in healthy volunteers. The redesigned ALN-HBV02 (VIR-2218) showed improved specificity with comparable on-target activity and the program was reintroduced into clinical development.


Asunto(s)
ARN Interferente Pequeño , Animales , Ratas , ARN Interferente Pequeño/genética
3.
Nucleic Acids Res ; 49(19): 10851-10867, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34648028

RESUMEN

We recently reported that RNAi-mediated off-target effects are important drivers of the hepatotoxicity observed for a subset of GalNAc-siRNA conjugates in rodents, and that these findings could be mitigated by seed-pairing destabilization using a single GNA nucleotide placed within the seed region of the guide strand. Here, we report further investigation of the unique and poorly understood GNA/RNA cross-pairing behavior to better inform GNA-containing siRNA design. A reexamination of published GNA homoduplex crystal structures, along with a novel structure containing a single (S)-GNA-A residue in duplex RNA, indicated that GNA nucleotides universally adopt a rotated nucleobase orientation within all duplex contexts. Such an orientation strongly affects GNA-C and GNA-G but not GNA-A or GNA-T pairing in GNA/RNA heteroduplexes. Transposition of the hydrogen-bond donor/acceptor pairs using the novel (S)-GNA-isocytidine and -isoguanosine nucleotides could rescue productive base-pairing with the complementary G or C ribonucleotides, respectively. GalNAc-siRNAs containing these GNA isonucleotides showed an improved in vitro activity, a similar improvement in off-target profile, and maintained in vivo activity and guide strand liver levels more consistent with the parent siRNAs than those modified with isomeric GNA-C or -G, thereby expanding our toolbox for the design of siRNAs with minimized off-target activity.


Asunto(s)
Adenosina/química , Citidina/química , Glicoles/química , Guanosina/química , Oligorribonucleótidos/química , ARN Bicatenario/química , ARN Interferente Pequeño/química , Acetilgalactosamina , Oxidorreductasas de Alcohol/antagonistas & inhibidores , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Animales , Emparejamiento Base , Células COS , Chlorocebus aethiops , Dimetilformamida/análogos & derivados , Dimetilformamida/química , Etilaminas/química , Femenino , Hepatocitos/citología , Hepatocitos/metabolismo , Enlace de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Oligorribonucleótidos/genética , Oligorribonucleótidos/metabolismo , Compuestos Organofosforados/química , Prealbúmina/antagonistas & inhibidores , Prealbúmina/genética , Prealbúmina/metabolismo , Cultivo Primario de Células , Estabilidad del ARN , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
4.
EMBO J ; 35(1): 77-88, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26598531

RESUMEN

Morphogenesis is driven by small cell shape changes that modulate tissue organization. Apical surfaces of proliferating epithelial sheets have been particularly well studied. Currently, it is accepted that a stereotyped distribution of cellular polygons is conserved in proliferating tissues among metazoans. In this work, we challenge these previous findings showing that diverse natural packed tissues have very different polygon distributions. We use Voronoi tessellations as a mathematical framework that predicts this diversity. We demonstrate that Voronoi tessellations and the very different tissues analysed share an overriding restriction: the frequency of polygon types correlates with the distribution of cell areas. By altering the balance of tensions and pressures within the packed tissues using disease, genetic or computer model perturbations, we show that as long as packed cells present a balance of forces within tissue, they will be under a physical constraint that limits its organization. Our discoveries establish a new framework to understand tissue architecture in development and disease.


Asunto(s)
Fenómenos Químicos , Células Epiteliales/fisiología , Morfogénesis , Animales , Forma de la Célula , Células Cultivadas , Pollos , Drosophila , Humanos , Presión Hidrostática , Modelos Biológicos , Modelos Teóricos
5.
Nat Methods ; 14(9): 849-863, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28858338

RESUMEN

Image-based cell profiling is a high-throughput strategy for the quantification of phenotypic differences among a variety of cell populations. It paves the way to studying biological systems on a large scale by using chemical and genetic perturbations. The general workflow for this technology involves image acquisition with high-throughput microscopy systems and subsequent image processing and analysis. Here, we introduce the steps required to create high-quality image-based (i.e., morphological) profiles from a collection of microscopy images. We recommend techniques that have proven useful in each stage of the data analysis process, on the basis of the experience of 20 laboratories worldwide that are refining their image-based cell-profiling methodologies in pursuit of biological discovery. The recommended techniques cover alternatives that may suit various biological goals, experimental designs, and laboratories' preferences.


Asunto(s)
Rastreo Celular/métodos , Ensayos Analíticos de Alto Rendimiento/métodos , Interpretación de Imagen Asistida por Computador/métodos , Microscopía/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Análisis de Matrices Tisulares/métodos , Algoritmos , Animales , Interpretación Estadística de Datos , Humanos , Aprendizaje Automático
6.
Nature ; 516(7531): 410-3, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25519137

RESUMEN

The nuclear envelope is a double membrane that separates the nucleus from the cytoplasm. The inner nuclear membrane (INM) functions in essential nuclear processes including chromatin organization and regulation of gene expression. The outer nuclear membrane is continuous with the endoplasmic reticulum and is the site of membrane protein synthesis. Protein homeostasis in this compartment is ensured by endoplasmic-reticulum-associated protein degradation (ERAD) pathways that in yeast involve the integral membrane E3 ubiquitin ligases Hrd1 and Doa10 operating with the E2 ubiquitin-conjugating enzymes Ubc6 and Ubc7 (refs 2, 3). However, little is known about protein quality control at the INM. Here we describe a protein degradation pathway at the INM in yeast (Saccharomyces cerevisiae) mediated by the Asi complex consisting of the RING domain proteins Asi1 and Asi3 (ref. 4). We report that the Asi complex functions together with the ubiquitin-conjugating enzymes Ubc6 and Ubc7 to degrade soluble and integral membrane proteins. Genetic evidence suggests that the Asi ubiquitin ligase defines a pathway distinct from, but complementary to, ERAD. Using unbiased screening with a novel genome-wide yeast library based on a tandem fluorescent protein timer, we identify more than 50 substrates of the Asi, Hrd1 and Doa10 E3 ubiquitin ligases. We show that the Asi ubiquitin ligase is involved in degradation of mislocalized integral membrane proteins, thus acting to maintain and safeguard the identity of the INM.


Asunto(s)
Membrana Nuclear/enzimología , Saccharomyces cerevisiae/enzimología , Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Transporte de Proteínas/fisiología , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
7.
Development ; 143(1): 174-9, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26603383

RESUMEN

Studies on signalling dynamics in living embryos have been limited by a scarcity of in vivo reporters. Tandem fluorescent protein timers provide a generic method for detecting changes in protein population age and thus provide readouts for signalling events that lead to changes in protein stability or location. When imaged with quantitative dual-colour fluorescence microscopy, tandem timers offer detailed 'snapshot' readouts of signalling activity from subcellular to organismal scales, and therefore have the potential to revolutionise studies in developing embryos. Here we use computer modelling and embryo experiments to explore the behaviour of tandem timers in developing systems. We present a mathematical model of timer kinetics and provide software tools that will allow experimentalists to select the most appropriate timer designs for their biological question, and guide interpretation of the obtained readouts. Through the generation of a series of novel zebrafish reporter lines, we confirm experimentally that our quantitative model can accurately predict different timer responses in developing embryos and explain some less expected findings. For example, increasing the FRET efficiency of a tandem timer actually increases the ability of the timer to detect differences in protein half-life. Finally, while previous studies have used timers to monitor changes in protein turnover, our model shows that timers can also be used to facilitate the monitoring of gene expression kinetics in vivo.


Asunto(s)
Simulación por Computador , Modelos Teóricos , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente/métodos , Estabilidad Proteica , Transducción de Señal/fisiología
8.
Nature ; 503(7475): 285-9, 2013 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-24067609

RESUMEN

The directed migration of cell collectives is a driving force of embryogenesis. The predominant view in the field is that cells in embryos navigate along pre-patterned chemoattractant gradients. One hypothetical way to free migrating collectives from the requirement of long-range gradients would be through the self-generation of local gradients that travel with them, a strategy that potentially allows self-determined directionality. However, a lack of tools for the visualization of endogenous guidance cues has prevented the demonstration of such self-generated gradients in vivo. Here we define the in vivo dynamics of one key guidance molecule, the chemokine Cxcl12a, by applying a fluorescent timer approach to measure ligand-triggered receptor turnover in living animals. Using the zebrafish lateral line primordium as a model, we show that migrating cell collectives can self-generate gradients of chemokine activity across their length via polarized receptor-mediated internalization. Finally, by engineering an external source of the atypical receptor Cxcr7 that moves with the primordium, we show that a self-generated gradient mechanism is sufficient to direct robust collective migration. This study thus provides, to our knowledge, the first in vivo proof for self-directed tissue migration through local shaping of an extracellular cue and provides a framework for investigating self-directed migration in many other contexts including cancer invasion.


Asunto(s)
Movimiento Celular/fisiología , Factores Quimiotácticos/metabolismo , Pez Cebra/fisiología , Animales , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Factores Quimiotácticos/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Receptores CXCR/genética , Receptores CXCR/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Nucleic Acids Res ; 45(19): 11144-11158, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28977638

RESUMEN

Pervasive transcription of genomes generates multiple classes of non-coding RNAs. One of these classes are stable long non-coding RNAs which overlap coding genes in antisense direction (asRNAs). The function of such asRNAs is not fully understood but several cases of antisense-dependent gene expression regulation affecting the overlapping genes have been demonstrated. Using high-throughput yeast genetics and a limited set of four growth conditions we previously reported a regulatory function for ∼25% of asRNAs, most of which repress the expression of the sense gene. To further explore the roles of asRNAs we tested more conditions and identified 15 conditionally antisense-regulated genes, 6 of which exhibited antisense-dependent enhancement of gene expression. We focused on the sporulation-specific gene SPS100, which becomes upregulated upon entry into starvation or sporulation as a function of the antisense transcript SUT169. We demonstrate that the antisense effect is mediated by its 3' intergenic region (3'-IGR) and that this regulation can be transferred to other genes. Genetic analysis revealed that SUT169 functions by changing the relative expression of SPS100 mRNA isoforms from a short and unstable transcript to a long and stable species. These results suggest a novel mechanism of antisense-dependent gene regulation via mRNA isoform switching.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Isoformas de ARN/genética , ARN sin Sentido/genética , Proteínas de Saccharomyces cerevisiae/genética , Regulación hacia Arriba , Immunoblotting , Microscopía Fluorescente , Estabilidad del ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Imagen de Lapso de Tiempo/métodos
10.
Development ; 140(18): 3858-68, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23946443

RESUMEN

Morphogenesis is dependent on the orchestration of multiple developmental processes to generate mature functional organs. However, the signalling pathways that coordinate morphogenesis and the mechanisms that translate these signals into tissue shape changes are not well understood. Here, we demonstrate that changes in intercellular adhesion mediated by the transmembrane protein Fasciclin III (FasIII) represent a key mediator of morphogenesis. Using the embryonic Drosophila hindgut as an in vivo model for organogenesis, we show that the tightening of hindgut curvature that normally occurs between embryonic stage 12 and 15 to generate the characteristic shepherd's crook shape is dependent on localised JAK/STAT pathway activation. This localised pathway activity drives the expression of FasIII leading to its subcellular lateralisation at a stage before formation of septate junctions. Additionally, we show that JAK/STAT- and FasIII-dependent morphogenesis also regulates folds within the third instar wing imaginal disc. We show that FasIII forms homophilic intercellular interactions that promote intercellular adhesion in vivo and in cultured cells. To explore these findings, we have developed a mathematical model of the developing hindgut, based on the differential interfacial tension hypothesis (DITH) linking intercellular adhesion and localised surface tension. Our model suggests that increased intercellular adhesion provided by FasIII can be sufficient to drive the tightening of tube curvature observed. Taken together, these results identify a conserved molecular mechanism that directly links JAK/STAT pathway signalling to intercellular adhesion and that sculpts both tubular and planar epithelial shape.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/citología , Tracto Gastrointestinal/anatomía & histología , Tracto Gastrointestinal/citología , Animales , Adhesión Celular , Drosophila melanogaster/embriología , Drosophila melanogaster/enzimología , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/metabolismo , Quinasas Janus/metabolismo , Modelos Biológicos , Transporte de Proteínas , Factores de Transcripción STAT/metabolismo , Transducción de Señal , Fracciones Subcelulares/metabolismo , Alas de Animales/anatomía & histología , Alas de Animales/metabolismo
11.
Nat Commun ; 14(1): 1970, 2023 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-37031257

RESUMEN

Adeno-associated virus (AAV)-based gene therapy could be facilitated by the development of molecular switches to control the magnitude and timing of expression of therapeutic transgenes. RNA interference (RNAi)-based approaches hold unique potential as a clinically proven modality to pharmacologically regulate AAV gene dosage in a sequence-specific manner. We present a generalizable RNAi-based rheostat wherein hepatocyte-directed AAV transgene expression is silenced using the clinically validated modality of chemically modified small interfering RNA (siRNA) conjugates or vectorized co-expression of short hairpin RNA (shRNA). For transgene induction, we employ REVERSIR technology, a synthetic high-affinity oligonucleotide complementary to the siRNA or shRNA guide strand to reverse RNAi activity and rapidly recover transgene expression. For potential clinical development, we report potent and specific siRNA sequences that may allow selective regulation of transgenes while minimizing unintended off-target effects. Our results establish a conceptual framework for RNAi-based regulatory switches with potential for infrequent dosing in clinical settings to dynamically modulate expression of virally-delivered gene therapies.


Asunto(s)
Dependovirus , Terapia Genética , Interferencia de ARN , Dependovirus/genética , Dependovirus/metabolismo , ARN Interferente Pequeño/metabolismo , Transgenes , ARN Bicatenario , Vectores Genéticos/genética
12.
iScience ; 5: 80-89, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30240647

RESUMEN

Genotype-to-phenotype association studies typically use macroscopic physiological measurements or molecular readouts as quantitative traits. There are comparatively few suitable quantitative traits available between cell and tissue length scales, a limitation that hinders our ability to identify variants affecting phenotype at many clinically informative levels. Here we show that quantitative image features, automatically extracted from histopathological imaging data, can be used for image quantitative trait loci (iQTLs) mapping and variant discovery. Using thyroid pathology images, clinical metadata, and genomics data from the Genotype-Tissue Expression (GTEx) project, we establish and validate a quantitative imaging biomarker for immune cell infiltration. A total of 100,215 variants were selected for iQTL profiling and tested for genotype-phenotype associations with our quantitative imaging biomarker. Significant associations were found in HDAC9 and TXNDC5. We validated the TXNDC5 association using GTEx cis-expression QTL data and an independent hypothyroidism dataset from the Electronic Medical Records and Genomics network.

13.
Clin Cancer Res ; 24(15): 3492-3499, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29581134

RESUMEN

Radiographic imaging continues to be one of the most effective and clinically useful tools within oncology. Sophistication of artificial intelligence has allowed for detailed quantification of radiographic characteristics of tissues using predefined engineered algorithms or deep learning methods. Precedents in radiology as well as a wealth of research studies hint at the clinical relevance of these characteristics. However, critical challenges are associated with the analysis of medical imaging data. Although some of these challenges are specific to the imaging field, many others like reproducibility and batch effects are generic and have already been addressed in other quantitative fields such as genomics. Here, we identify these pitfalls and provide recommendations for analysis strategies of medical imaging data, including data normalization, development of robust models, and rigorous statistical analyses. Adhering to these recommendations will not only improve analysis quality but also enhance precision medicine by allowing better integration of imaging data with other biomedical data sources. Clin Cancer Res; 24(15); 3492-9. ©2018 AACR.


Asunto(s)
Análisis de Datos , Diagnóstico por Imagen/tendencias , Aprendizaje Automático/tendencias , Oncología Médica/tendencias , Algoritmos , Inteligencia Artificial , Humanos , Medicina de Precisión
14.
Dev Cell ; 35(5): 646-660, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26777292

RESUMEN

Morphogenesis of multicellular organisms is driven by localized cell shape changes. How, and to what extent, changes in behavior in single cells or groups of cells influence neighboring cells and large-scale tissue remodeling remains an open question. Indeed, our understanding of multicellular dynamics is limited by the lack of methods allowing the modulation of cell behavior with high spatiotemporal precision. Here, we developed an optogenetic approach to achieve local modulation of cell contractility and used it to control morphogenetic movements during Drosophila embryogenesis. We show that local inhibition of apical constriction is sufficient to cause a global arrest of mesoderm invagination. By varying the spatial pattern of inhibition during invagination, we further demonstrate that coordinated contractile behavior responds to local tissue geometrical constraints. Together, these results show the efficacy of this optogenetic approach to dissect the interplay between cell-cell interaction, force transmission, and tissue geometry during complex morphogenetic processes.


Asunto(s)
Comunicación Celular , Morfogénesis , Optogenética , Actinas/metabolismo , Animales , Anisotropía , Membrana Celular/metabolismo , Forma de la Célula , Clonación Molecular , Drosophila , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Luz , Microscopía Confocal , Fosfatidilinositol 4,5-Difosfato/química , Fotones
15.
Nat Biotechnol ; 30(7): 708-14, 2012 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-22729030

RESUMEN

The functional state of a cell is largely determined by the spatiotemporal organization of its proteome. Technologies exist for measuring particular aspects of protein turnover and localization, but comprehensive analysis of protein dynamics across different scales is possible only by combining several methods. Here we describe tandem fluorescent protein timers (tFTs), fusions of two single-color fluorescent proteins that mature with different kinetics, which we use to analyze protein turnover and mobility in living cells. We fuse tFTs to proteins in yeast to study the longevity, segregation and inheritance of cellular components and the mobility of proteins between subcellular compartments; to measure protein degradation kinetics without the need for time-course measurements; and to conduct high-throughput screens for regulators of protein turnover. Our experiments reveal the stable nature and asymmetric inheritance of nuclear pore complexes and identify regulators of N-end rule­mediated protein degradation.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Ensayos Analíticos de Alto Rendimiento , Proteínas/metabolismo , Fracciones Subcelulares , Cinética , Poro Nuclear/metabolismo , Poro Nuclear/ultraestructura , Estabilidad Proteica , Proteolisis , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/ultraestructura
16.
J Phys Condens Matter ; 22(19): 193101, 2010 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21386428

RESUMEN

We review some recent advances in the rheology of two-dimensional liquid foams, which should have implications for three-dimensional foams, as well as other mechanical systems that have a yield stress. We focus primarily on shear localization under steady shear, an effect first highlighted in an experiment by Debrégeas et al. A continuum theory which incorporates wall drag has reproduced the effect. Its further refinements are successful in matching results of more extensive observations and making interesting predictions regarding experiments for low strain rates and non-steady shear. Despite these successes, puzzles remain, particularly in relation to quasistatic simulations. The continuum model is semi-empirical: the meaning of its parameters may be sought in comparison with more detailed simulations and other experiments. The question of the origin of the Herschel-Bulkley relation is particularly interesting.


Asunto(s)
Gases/química , Modelos Químicos , Reología/métodos , Resistencia al Corte , Simulación por Computador , Módulo de Elasticidad , Viscosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA