Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Hyperthermia ; 41(1): 2321980, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38616245

RESUMEN

BACKGROUND: A method for periprocedural contrast agent-free visualization of uterine fibroid perfusion could potentially shorten magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) treatment times and improve outcomes. Our goal was to test feasibility of perfusion fraction mapping by intravoxel incoherent motion (IVIM) modeling using diffusion-weighted MRI as method for visual evaluation of MR-HIFU treatment progression. METHODS: Conventional and T2-corrected IVIM-derived perfusion fraction maps were retrospectively calculated by applying two fitting methods to diffusion-weighted MRI data (b = 0, 50, 100, 200, 400, 600 and 800 s/mm2 at 1.5 T) from forty-four premenopausal women who underwent MR-HIFU ablation treatment of uterine fibroids. Contrast in perfusion fraction maps between areas with low perfusion fraction and surrounding tissue in the target uterine fibroid immediately following MR-HIFU treatment was evaluated. Additionally, the Dice similarity coefficient (DSC) was calculated between delineated areas with low IVIM-derived perfusion fraction and hypoperfusion based on CE-T1w. RESULTS: Average perfusion fraction ranged between 0.068 and 0.083 in areas with low perfusion fraction based on visual assessment, and between 0.256 and 0.335 in surrounding tissues (all p < 0.001). DSCs ranged from 0.714 to 0.734 between areas with low perfusion fraction and the CE-T1w derived non-perfused areas, with excellent intraobserver reliability of the delineated areas (ICC 0.97). CONCLUSION: The MR-HIFU treatment effect in uterine fibroids can be visualized using IVIM perfusion fraction mapping, in moderate concordance with contrast enhanced MRI. IVIM perfusion fraction mapping has therefore the potential to serve as a contrast agent-free imaging method to visualize the MR-HIFU treatment progression in uterine fibroids.


Asunto(s)
Leiomioma , Imagen por Resonancia Magnética , Femenino , Humanos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Perfusión , Leiomioma/diagnóstico por imagen , Leiomioma/cirugía
2.
Acta Neurochir (Wien) ; 166(1): 92, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376564

RESUMEN

PURPOSE: This study evaluates the nnU-Net for segmenting brain, skin, tumors, and ventricles in contrast-enhanced T1 (T1CE) images, benchmarking it against an established mesh growing algorithm (MGA). METHODS: We used 67 retrospectively collected annotated single-center T1CE brain scans for training models for brain, skin, tumor, and ventricle segmentation. An additional 32 scans from two centers were used test performance compared to that of the MGA. The performance was measured using the Dice-Sørensen coefficient (DSC), intersection over union (IoU), 95th percentile Hausdorff distance (HD95), and average symmetric surface distance (ASSD) metrics, with time to segment also compared. RESULTS: The nnU-Net models significantly outperformed the MGA (p < 0.0125) with a median brain segmentation DSC of 0.971 [95CI: 0.945-0.979], skin: 0.997 [95CI: 0.984-0.999], tumor: 0.926 [95CI: 0.508-0.968], and ventricles: 0.910 [95CI: 0.812-0.968]. Compared to the MGA's median DSC for brain: 0.936 [95CI: 0.890, 0.958], skin: 0.991 [95CI: 0.964, 0.996], tumor: 0.723 [95CI: 0.000-0.926], and ventricles: 0.856 [95CI: 0.216-0.916]. NnU-Net performance between centers did not significantly differ except for the skin segmentations Additionally, the nnU-Net models were faster (mean: 1139 s [95CI: 685.0-1616]) than the MGA (mean: 2851 s [95CI: 1482-6246]). CONCLUSIONS: The nnU-Net is a fast, reliable tool for creating automatic deep learning-based segmentation pipelines, reducing the need for extensive manual tuning and iteration. The models are able to achieve this performance despite a modestly sized training set. The ability to create high-quality segmentations in a short timespan can prove invaluable in neurosurgical settings.


Asunto(s)
Neoplasias , Mallas Quirúrgicas , Humanos , Estudios Retrospectivos , Imagen por Resonancia Magnética , Algoritmos
3.
Eur Radiol ; 33(6): 4178-4188, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36472702

RESUMEN

OBJECTIVES: No method is available to determine the non-perfused volume (NPV) repeatedly during magnetic resonance-guided high-intensity focused ultrasound (MR-HIFU) ablations of uterine fibroids, as repeated acquisition of contrast-enhanced T1-weighted (CE-T1w) scans is inhibited by safety concerns. The objective of this study was to develop and test a deep learning-based method for translation of diffusion-weighted imaging (DWI) into synthetic CE-T1w scans, for monitoring MR-HIFU treatment progression. METHODS: The algorithm was retrospectively trained and validated on data from 33 and 20 patients respectively who underwent an MR-HIFU treatment of uterine fibroids between June 2017 and January 2019. Postablation synthetic CE-T1w images were generated by a deep learning network trained on paired DWI and reference CE-T1w scans acquired during the treatment procedure. Quantitative analysis included calculation of the Dice coefficient of NPVs delineated on synthetic and reference CE-T1w scans. Four MR-HIFU radiologists assessed the outcome of MR-HIFU treatments and NPV ratio based on the synthetic and reference CE-T1w scans. RESULTS: Dice coefficient of NPVs was 71% (± 22%). The mean difference in NPV ratio was 1.4% (± 22%) and not statistically significant (p = 0.79). Absolute agreement of the radiologists on technical treatment success on synthetic and reference CE-T1w scans was 83%. NPV ratio estimations on synthetic and reference CE-T1w scans were not significantly different (p = 0.27). CONCLUSIONS: Deep learning-based synthetic CE-T1w scans derived from intraprocedural DWI allow gadolinium-free visualization of the predicted NPV, and can potentially be used for repeated gadolinium-free monitoring of treatment progression during MR-HIFU therapy for uterine fibroids. KEY POINTS: • Synthetic CE-T1w scans can be derived from diffusion-weighted imaging using deep learning. • Synthetic CE-T1w scans may be used for visualization of the NPV without using a contrast agent directly after MR-HIFU ablations of uterine fibroids.


Asunto(s)
Aprendizaje Profundo , Ultrasonido Enfocado de Alta Intensidad de Ablación , Leiomioma , Neoplasias Uterinas , Femenino , Humanos , Neoplasias Uterinas/diagnóstico por imagen , Neoplasias Uterinas/cirugía , Estudios Retrospectivos , Leiomioma/diagnóstico por imagen , Leiomioma/cirugía , Imagen por Resonancia Magnética/métodos , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Resultado del Tratamiento
4.
Eur Radiol ; 32(7): 4537-4546, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35190891

RESUMEN

OBJECTIVES: Visualization of the bone distribution is an important prerequisite for MRI-guided high-intensity focused ultrasound (MRI-HIFU) treatment planning of bone metastases. In this context, we evaluated MRI-based synthetic CT (sCT) imaging for the visualization of cortical bone. METHODS: MR and CT images of nine patients with pelvic and femoral metastases were retrospectively analyzed in this study. The metastatic lesions were osteolytic, osteoblastic or mixed. sCT were generated from pre-treatment or treatment MR images using a UNet-like neural network. sCT was qualitatively and quantitatively compared to CT in the bone (pelvis or femur) containing the metastasis and in a region of interest placed on the metastasis itself, through mean absolute difference (MAD), mean difference (MD), Dice similarity coefficient (DSC), and root mean square surface distance (RMSD). RESULTS: The dataset consisted of 3 osteolytic, 4 osteoblastic and 2 mixed metastases. For most patients, the general morphology of the bone was well represented in the sCT images and osteolytic, osteoblastic and mixed lesions could be discriminated. Despite an average timespan between MR and CT acquisitions of 61 days, in bone, the average (± standard deviation) MAD was 116 ± 26 HU, MD - 14 ± 66 HU, DSC 0.85 ± 0.05, and RMSD 2.05 ± 0.48 mm and, in the lesion, MAD was 132 ± 62 HU, MD - 31 ± 106 HU, DSC 0.75 ± 0.2, and RMSD 2.73 ± 2.28 mm. CONCLUSIONS: Synthetic CT images adequately depicted the cancellous and cortical bone distribution in the different lesion types, which shows its potential for MRI-HIFU treatment planning. KEY POINTS: • Synthetic computed tomography was able to depict bone distribution in metastatic lesions. • Synthetic computed tomography images intrinsically aligned with treatment MR images may have the potential to facilitate MR-HIFU treatment planning of bone metastases, by combining visualization of soft tissues and cancellous and cortical bone.


Asunto(s)
Neoplasias Óseas , Imagen por Resonancia Magnética , Neoplasias Óseas/diagnóstico por imagen , Neoplasias Óseas/terapia , Estudios de Factibilidad , Fémur/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética/métodos , Pelvis , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos
5.
Magn Reson Med ; 86(5): 2647-2655, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34061390

RESUMEN

PURPOSE: To demonstrate that interleaved MR thermometry can monitor temperature in water and fat with adequate temporal resolution. This is relevant for high intensity focused uUltrasounds (HIFU) treatment of bone lesions, which are often found near aqueous tissues, as muscle, or embedded in adipose tissues, as subcutaneous fat and bone marrow. METHODS: Proton resonance frequency shift (PRFS)-based thermometry scans and T1 -based 2D variable flip angle (2D-VFA) thermometry scans were acquired alternatingly over time. Temperature in water was monitored using PRFS thermometry, and in fat by 2D-VFA thermometry with slice profile effect correction. The feasibility of interleaved water/fat temperature monitoring was studied ex vivo in porcine bone during MR-HIFU sonication. Precision and stability of measurements in vivo were evaluated in a healthy volunteer under non-heating conditions. RESULTS: The method allowed observing temperature change over time in muscle and fat, including bone marrow, during MR-HIFU sonication, with a temporal resolution of 6.1 s. In vivo, the apparent temperature change was stable on the time scale of the experiment: In 7 min the systematic drift was <0.042°C/min in muscle (PRFS after drift correction) and <0.096°C/min in bone marrow (2D-VFA). The SD of the temperature change averaged over time was 0.98°C (PRFS) and 2.7°C (2D-VFA). CONCLUSIONS: Interleaved MR thermometry allows temperature measurements in water and fat with a temporal resolution high enough for monitoring HIFU ablation. Specifically, combined fat and water thermometry provides uninterrupted information on temperature changes in tissue close to the bone cortex.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Termometría , Animales , Humanos , Imagen por Resonancia Magnética , Porcinos , Temperatura , Agua
6.
NMR Biomed ; 34(8): e4542, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34031938

RESUMEN

PURPOSE: To perform dynamic T1 mapping using a 2D variable flip angle (VFA) method, a correction for the slice profile effect is needed. In this work we investigated the impact of flip angle selection and excitation RF pulse profile on the performance of slice profile correction when applied to T1 mapping over a range of T1 values. METHODS: A correction of the slice profile effect is proposed, based on Bloch simulation of steady-state signals. With this correction, Monte Carlo simulations were performed to assess the accuracy and precision of 2D VFA T1 mapping in the presence of noise, for RF pulses with time-bandwidth products of 2, 3 and 10 and with flip angle pairs in the range [1°-90°]. To evaluate its performance over a wide range of T1 , maximum errors were calculated for six T1 values between 50 ms and 1250 ms. The method was demonstrated using in vitro and in vivo experiments. RESULTS: Without corrections, 2D VFA severely underestimates T1 . Slice profile errors were effectively reduced with the correction based on simulations, both in vitro and in vivo. The precision and accuracy of the method depend on the nominal T1 values, the FA pair, and the RF pulse shape. FA pairs leading to <5% errors in T1 can be identified for the common RF shapes, for T1 values between 50 ms and 1250 ms. CONCLUSIONS: 2D VFA T1 mapping with Bloch-simulation-based correction can deliver T1 estimates that are accurate and precise to within 5% over a wide T1 range.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Humanos , Fantasmas de Imagen , Ondas de Radio , Reproducibilidad de los Resultados
7.
Magn Reson Med ; 83(3): 962-973, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31544289

RESUMEN

PURPOSE: To demonstrate that proton resonance frequency shift MR thermometry (PRFS-MRT) acquisition with nonselective free induction decay (FID), combined with coil sensitivity profiles, allows spatially resolved B0 drift-corrected thermometry. METHODS: Phantom experiments were performed at 1.5T and 3T. Acquisition of PRFS-MRT and FID were performed during MR-guided high-intensity focused ultrasound heating. The phase of the FIDs was used to estimate the change in angular frequency δωdrift per coil element. Two correction methods were investigated: (1) using the average δωdrift over all coil elements (0th-order) and (2) using coil sensitivity profiles for spatially resolved correction. Optical probes were used for independent temperature verification. In-vivo feasibility of the methods was evaluated in the leg of 1 healthy volunteer at 1.5T. RESULTS: In 30 minutes, B0 drift led to an apparent temperature change of up to -18°C and -98°C at 1.5T and 3T, respectively. In the sonicated area, both corrections had a median error of 0.19°C at 1.5T and -0.54°C at 3T. At 1.5T, the measured median error with respect to the optical probe was -1.28°C with the 0th-order correction and improved to 0.43°C with the spatially resolved correction. In vivo, without correction the spatiotemporal median of the apparent temperature was at -4.3°C and interquartile range (IQR) of 9.31°C. The 0th-order correction had a median of 0.75°C and IQR of 0.96°C. The spatially resolved method had the lowest median at 0.33°C and IQR of 0.80°C. CONCLUSION: FID phase information from individual receive coil elements allows spatially resolved B0 drift correction in PRFS-based MRT.


Asunto(s)
Pierna/diagnóstico por imagen , Espectroscopía de Resonancia Magnética , Algoritmos , Voluntarios Sanos , Ultrasonido Enfocado de Alta Intensidad de Ablación , Calor , Humanos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Protones , Reproducibilidad de los Resultados , Termografía , Termometría
8.
Magn Reson Med ; 83(2): 590-607, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31483520

RESUMEN

PURPOSE: To demonstrate feasibility of transceive phase mapping with the PLANET method and its application for conductivity reconstruction in the brain. METHODS: Accuracy and precision of transceive phase (ϕ± ) estimation with PLANET, an ellipse fitting approach to phase-cycled balanced steady state free precession (bSSFP) data, were assessed with simulations and measurements and compared to standard bSSFP. Measurements were conducted on a homogeneous phantom and in the brain of healthy volunteers at 3 tesla. Conductivity maps were reconstructed with Helmholtz-based electrical properties tomography. In measurements, PLANET was also compared to a reference technique for transceive phase mapping, i.e., spin echo. RESULTS: Accuracy and precision of ϕ± estimated with PLANET depended on the chosen flip angle and TR. PLANET-based ϕ± was less sensitive to perturbations induced by off-resonance effects and partial volume (e.g., white matter + myelin) than bSSFP-based ϕ± . For flip angle = 25° and TR = 4.6 ms, PLANET showed an accuracy comparable to that of reference spin echo but a higher precision than bSSFP and spin echo (factor of 2 and 3, respectively). The acquisition time for PLANET was ~5 min; 2 min faster than spin echo and 8 times slower than bSSFP. However, PLANET simultaneously reconstructed T1 , T2 , B0 maps besides mapping ϕ± . In the phantom, PLANET-based conductivity matched the true value and had the smallest spread of the three methods. In vivo, PLANET-based conductivity was similar to spin echo-based conductivity. CONCLUSION: Provided that appropriate sequence parameters are used, PLANET delivers accurate and precise ϕ± maps, which can be used to reconstruct brain tissue conductivity while simultaneously recovering T1 , T2 , and B0 maps.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Vaina de Mielina/patología , Sustancia Blanca/diagnóstico por imagen , Algoritmos , Simulación por Computador , Conductividad Eléctrica , Voluntarios Sanos , Humanos , Análisis de los Mínimos Cuadrados , Imagen por Resonancia Magnética , Modelos Estadísticos , Método de Montecarlo , Fantasmas de Imagen , Reproducibilidad de los Resultados
9.
J Magn Reson Imaging ; 52(5): 1374-1382, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32491246

RESUMEN

BACKGROUND: Differences in imaging parameters influence computer-extracted parenchymal enhancement measures from breast MRI. PURPOSE: To investigate the effect of differences in dynamic contrast-enhanced MRI acquisition parameter settings on quantitative parenchymal enhancement of the breast, and to evaluate harmonization of contrast-enhancement values with respect to flip angle and repetition time. STUDY TYPE: Retrospective. PHANTOM/POPULATIONS: We modeled parenchymal enhancement using simulations, a phantom, and two cohorts (N = 398 and N = 302) from independent cancer centers. SEQUENCE FIELD/STRENGTH: 1.5T dynamic contrast-enhanced T1 -weighted spoiled gradient echo MRI. Vendors: Philips, Siemens, General Electric Medical Systems. ASSESSMENT: We assessed harmonization of parenchymal enhancement in simulations and phantom by varying the MR parameters that influence the amount of T1 -weighting: flip angle (8°-25°) and repetition time (4-12 msec). We calculated the median and interquartile range (IQR) of the enhancement values before and after harmonization. In vivo, we assessed overlap of quantitative parenchymal enhancement in the cohorts before and after harmonization using kernel density estimations. Cohort 1 was scanned with flip angle 20° and repetition time 8 msec; cohort 2 with flip angle 10° and repetition time 6 msec. STATISTICAL TESTS: Paired Wilcoxon signed-rank-test of bootstrapped kernel density estimations. RESULTS: Before harmonization, simulated enhancement values had a median (IQR) of 0.46 (0.34-0.49). After harmonization, the IQR was reduced: median (IQR): 0.44 (0.44-0.45). In the phantom, the IQR also decreased, median (IQR): 0.96 (0.59-1.22) before harmonization, 0.96 (0.91-1.02) after harmonization. Harmonization yielded significantly (P < 0.001) better overlap in parenchymal enhancement between the cohorts: median (IQR) was 0.46 (0.37-0.58) for cohort 1 vs. 0.37 (0.30-0.44) for cohort 2 before harmonization (57% overlap); and 0.35 (0.28-0.43) vs. .0.37 (0.30-0.44) after harmonization (85% overlap). DATA CONCLUSION: The proposed practical harmonization method enables an accurate comparison between patients scanned with differences in imaging parameters. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 4.


Asunto(s)
Mama , Imagen por Resonancia Magnética , Mama/diagnóstico por imagen , Humanos , Aumento de la Imagen , Fantasmas de Imagen , Reproducibilidad de los Resultados , Estudios Retrospectivos
10.
Eur Radiol ; 30(7): 3869-3878, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32166489

RESUMEN

OBJECTIVES: The clinical applicability of magnetic resonance image-guided high-intensity focused ultrasound (MR-HIFU) treatment of uterine fibroids is often limited due to inaccessible fibroids or bowel interference. The aim of this study was to implement a newly developed 3-step modified manipulation protocol and to evaluate its influence on the number of eligible women and treatment failure rate. METHODS: From June 2016 to June 2018, 165 women underwent a screening MRI examination, 67 women of whom were consecutively treated with MR-HIFU at our institution. Group 1 (n = 20) was treated with the BRB manipulation protocol which consisted of sequential applications of urinary bladder filling, rectal filling, and urinary bladder emptying. Group 2 (n = 47) was treated using the 3-step modified manipulation protocol which included (1) the BRB maneuver with adjusted rectal filling by adding psyllium fibers to the solution; (2) Trendelenburg position combined with bowel massage; (3) the manual uterine manipulation (MUM) method for uterine repositioning. A comparison was made between the two manipulation protocols to evaluate differences in safety, the eligibility percentage, and treatment failure rate due to unsuccessful manipulation. RESULTS: After implementing the 3-step modified manipulation protocol, our ineligibility rate due to bowel interference or inaccessible fibroids decreased from 18% (16/88) to 0% (0/77). Our treatment failure rate due to unsuccessful manipulation decreased from 20% (4/20) to 2% (1/47). There were no thermal complications to the bowel or uterus. CONCLUSIONS: Implementation of the 3-step modified manipulation protocol during MR-HIFU therapy of uterine fibroids improved the eligibility percentage and reduced the treatment failure rate. TRIAL REGISTRATION: Registry number NL56182.075.16 KEY POINTS: • A newly developed 3-step modified manipulation protocol was successfully implemented without the occurrence of thermal complication to the bowel or uterus. • The 3-step modified manipulation protocol increased our eligibility percentage for MR-HIFU treatment of uterine fibroids. • The 3-step modified manipulation protocol reduced our treatment failure rate for MR-HIFU treatment of uterine fibroids.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Leiomioma/diagnóstico por imagen , Leiomioma/cirugía , Imagen por Resonancia Magnética Intervencional/métodos , Neoplasias Uterinas/diagnóstico por imagen , Neoplasias Uterinas/cirugía , Adulto , Protocolos Clínicos , Femenino , Humanos , Resultado del Tratamiento , Neoplasias Uterinas/patología , Útero/diagnóstico por imagen , Útero/cirugía
11.
Eur Radiol ; 30(5): 2473-2482, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32040725

RESUMEN

OBJECTIVES: Since 2004, uterine fibroids have been treated with MR-HIFU, but there are persevering doubts on long-term efficacy to date. In the Focused Ultrasound Myoma Outcome Study (FUMOS), we evaluated long-term outcomes after MR-HIFU therapy, primarily to assess the reintervention rate. METHODS: Data was retrospectively collected from 123 patients treated with MR-HIFU at our hospital from 2010 to 2017. Follow-up duration and baseline (MRI) characteristics were retrieved from medical records. Treatment failures, adverse events, and the nonperfused volume percentage (NPV%) were determined. Patients received a questionnaire about reinterventions, recovery time, satisfaction, and pregnancy outcomes. Restrictive treatment protocols were compared with unrestrictive (aiming for complete ablation) treatments. Subgroups were analyzed based on the achieved NPV < 50 or ≥ 50%. RESULTS: Treatment failures occurred in 12.1% and the number of adverse events was 13.7%. Implementation of an unrestrictive treatment protocol significantly (p = 0.006) increased the mean NPV% from 37.4% [24.3-53.0] to 57.4% [33.5-76.5]. At 63.5 ± 29.0 months follow-up, the overall reintervention rate was 33.3% (n = 87). All reinterventions were performed within 34 months follow-up, but within 21 months in the unrestrictive group. The reintervention rate significantly (p = 0.002) decreased from 48.8% in the restrictive group (n = 43; follow-up 87.5 ± 7.3 months) to 18.2% in the unrestrictive group (n = 44; follow-up 40.0 ± 22.1 months). The median recovery time was 2.0 [1.0-7.0] days. Treatment satisfaction rate was 72.4% and 4/11 women completed family planning after MR-HIFU. CONCLUSIONS: The unrestrictive treatment protocol significantly increased the NPV%. Unrestrictive MR-HIFU treatments led to acceptable reintervention rates comparable to other reimbursed uterine-sparing treatments, and no reinterventions were reported beyond 21 months follow-up. KEY POINTS: • All reinterventions were performed within 34 months follow-up, but in the unrestrictive treatment protocol group, no reinterventions were reported beyond 21 months follow-up. • The NPV% was negatively associated with the risk of reintervention; thus, operators should aim for complete ablation during MR-guided HIFU therapy of uterine fibroids. • Unrestrictive treatments have led to acceptable reintervention rates after MR-guided HIFU therapy compared to other reimbursed uterine-sparing treatments.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Imagen por Resonancia Magnética Intervencional/métodos , Mioma/terapia , Neoplasias Uterinas/terapia , Adulto , Protocolos Clínicos , Femenino , Estudios de Seguimiento , Humanos , Leiomioma/cirugía , Masculino , Persona de Mediana Edad , Mioma/diagnóstico , Estudios Retrospectivos , Encuestas y Cuestionarios , Factores de Tiempo , Resultado del Tratamiento , Neoplasias Uterinas/diagnóstico , Neoplasias Uterinas/cirugía
12.
MAGMA ; 33(5): 689-700, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32219676

RESUMEN

BACKGROUND: Although the biological characteristics of uterine fibroids (UF) have implications for therapy choice and effectiveness, there is limited MRI data about these characteristics. Currently, the Funaki classification and Scaled Signal Intensity (SSI) are used to predict treatment outcome but both screening-tools appear to be suboptimal. Therefore, multiparametric and quantitative MRI was studied to evaluate various biological characteristics of UF. METHODS: 87 patients with UF underwent an MRI-examination. Differences between UF tissues and myometrium were investigated using T2-mapping, Apparent Diffusion Coefficient (ADC) maps with different b-value combinations, contrast-enhanced T1-weighted and T2-weighted imaging. Additionally, the Funaki classification and SSI were calculated. RESULTS: Significant differences between myometrium and UF tissue in T2-mapping (p = 0.001), long-TE ADC low b-values (p = 0.002), ADC all b-values (p < 0.001) and high b-values (p < 0.001) were found. Significant differences between Funaki type 3 versus type 1 and 2 were observed in SSI (p < 0.001) and T2-values (p < 0.001). Significant correlations were found between SSI and T2-mapping (p < 0.001; ρs = 0.82), ADC all b-values (p = 0.004; ρs = 0.31), ADC high b-values (p < 0.001; ρs = 0.44) and long-TE ADC low b-values (p = 0.004; ρs = 0.31). CONCLUSIONS: Quantitative MR-data allowed us to distinguish UF tissue from myometrium and to discriminate different UF tissue types and may, therefore, be a useful tool to predict treatment outcome/determine optimal treatment modality.


Asunto(s)
Leiomioma , Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias Uterinas , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Miometrio
13.
Magn Reson Med ; 81(4): 2385-2398, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30394582

RESUMEN

PURPOSE: To perform multi-echo water/fat separated proton resonance frequency (PRF)-shift temperature mapping. METHODS: State-of-the-art, iterative multi-echo water/fat separation algorithms produce high-quality water and fat images in the absence of heating but are not suitable for real-time imaging due to their long compute times and potential errors in heated regions. Existing fat-referenced PRF-shift temperature reconstruction methods partially address these limitations but do not address motion or large time-varying and spatially inhomogeneous B0 shifts. We describe a model-based temperature reconstruction method that overcomes these limitations by fitting a library of separated water and fat images measured before heating directly to multi-echo data measured during heating, while accounting for the PRF shift with temperature. RESULTS: Simulations in a mixed water/fat phantom with focal heating showed that the proposed algorithm reconstructed more accurate temperature maps in mixed tissues compared to a fat-referenced thermometry method. In a porcine phantom experiment with focused ultrasound heating at 1.5 Tesla, temperature maps were accurate to within 1∘ C of fiber optic probe temperature measurements and were calculated in 0.47 s per time point. Free-breathing breast and liver imaging experiments demonstrated motion and off-resonance compensation. The algorithm can also accurately reconstruct water/fat separated temperature maps from a single echo during heating. CONCLUSIONS: The proposed model-based water/fat separated algorithm produces accurate PRF-shift temperature maps in mixed water and fat tissues in the presence of spatiotemporally varying off-resonance and motion.


Asunto(s)
Tejido Adiposo/química , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Termografía/métodos , Agua/química , Algoritmos , Animales , Mama/diagnóstico por imagen , Simulación por Computador , Femenino , Voluntarios Sanos , Calefacción , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Modelos Estadísticos , Movimiento (Física) , Reproducibilidad de los Resultados , Porcinos , Temperatura , Ultrasonografía
14.
Magn Reson Med ; 82(5): 1725-1740, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31317584

RESUMEN

PURPOSE: The PLANET method was designed to simultaneously reconstruct maps of T1 and T2 , the off-resonance, the RF phase, and the banding free signal magnitude. The method requires a stationary B0 field over the course of a phase-cycled balanced SSFP acquisition. In this work we investigated the influence of B0 drift on the performance of the PLANET method for single-component and two-component signal models, and we propose a strategy for drift correction. METHODS: The complex phase-cycled balanced SSFP signal was modeled with and without frequency drift. The behavior of the signal influenced by drift was mathematically interpreted as a sum of drift-dependent displacement of the data points along an ellipse and drift-dependent rotation around the origin. The influence of drift on parameter estimates was investigated experimentally on a phantom and on the brain of healthy volunteers and was verified by numerical simulations. A drift correction algorithm was proposed and tested on a phantom and in vivo. RESULTS: Drift can be assumed to be linear over the typical duration of a PLANET acquisition. In a phantom (a single-component signal model), drift induced errors of 4% and 8% in the estimated T1 and T2 values. In the brain, where multiple components are present, drift only had a minor effect. For both single-component and two-component signal models, drift-induced errors were successfully corrected by applying the proposed drift correction algorithm. CONCLUSION: We have demonstrated theoretically and experimentally the sensitivity of the PLANET method to B0 drift and have proposed a drift correction method.


Asunto(s)
Mapeo Encefálico/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Voluntarios Sanos , Humanos , Aumento de la Imagen/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Método de Montecarlo , Fantasmas de Imagen
15.
Magn Reson Med ; 81(3): 1534-1552, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30303562

RESUMEN

PURPOSE: In this work we demonstrate how sequence parameter settings influence the accuracy and precision in T1 , T2 , and off-resonance maps obtained with the PLANET method for a single-component signal model. In addition, the performance of the method for the particular case of a two-component relaxation model for white matter tissue was assessed. METHODS: Numerical simulations were performed to investigate the influence of sequence parameter settings on the accuracy and precision in the estimated parameters for a single-component model, as well as for a two-component white matter model. Phantom and in vivo experiments were performed for validation. In addition, the effects of Gibbs ringing were investigated. RESULTS: By making a proper choice for sequence parameter settings, accurate and precise parameter estimation can be achieved for a single-component signal model over a wide range of relaxation times at realistic SNR levels. Due to the presence of a second myelin-related signal component in white matter, an underestimation of approximately 30% in T1 and T2 was observed, predicted by simulations and confirmed by measurements. Gibbs ringing artifacts correction improved the precision and accuracy of the parameter estimates. CONCLUSION: For a single-component signal model there is a broad "sweet spot" of sequence parameter combinations for which a high accuracy and precision in the parameter estimates is achieved over a wide range of relaxation times. For a multicomponent signal model, the single-component PLANET reconstruction results in systematic errors in the parameter estimates as expected.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imágenes de Resonancia Magnética Multiparamétrica , Vaina de Mielina/química , Sustancia Blanca/diagnóstico por imagen , Algoritmos , Artefactos , Médula Ósea/patología , Calibración , Simulación por Computador , Voluntarios Sanos , Humanos , Modelos Teóricos , Método de Montecarlo , Fantasmas de Imagen , Reproducibilidad de los Resultados , Relación Señal-Ruido
16.
Magn Reson Med ; 79(2): 711-722, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28543430

RESUMEN

PURPOSE: To demonstrate the feasibility of a novel, ellipse fitting approach, named PLANET, for simultaneous estimation of relaxation times T1 and T2 from a single 3D phase-cycled balanced steady-state free precession (bSSFP) sequence. METHODS: A method is presented in which the elliptical signal model is used to describe the phase-cycled bSSFP steady-state signal. The fitting of the model to the acquired data is reformulated into a linear convex problem, which is solved directly by a linear least squares method, specific to ellipses. Subsequently, the relaxation times T1 and T2 , the banding free magnitude, and the off-resonance are calculated from the fitting results. RESULTS: Maps of T1 and T2 , as well as an off-resonance and a banding free magnitude can be simultaneously, quickly, and robustly estimated from a single 3D phase-cycled bSSFP sequence. The feasibility of the method was demonstrated in a phantom and in the brain of healthy volunteers on a clinical MR scanner. The results were in good agreement for the phantom, but a systematic underestimation of T1 was observed in the brain. CONCLUSION: The presented method allows for accurate mapping of relaxation times and off-resonance, and for the reconstruction of banding free magnitude images at realistic signal-to-noise ratios. Magn Reson Med 79:711-722, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Encéfalo/diagnóstico por imagen , Humanos , Fantasmas de Imagen
17.
J Magn Reson Imaging ; 47(3): 692-701, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28646608

RESUMEN

PURPOSE: To demonstrate that fluid filling of the digestive tract improves the performance of respiratory motion-compensated proton resonance frequency shift (PRFS)-based magnetic resonance (MR) thermometry in the pancreas. MATERIALS AND METHODS: In seven volunteers (without heating), we evaluated PRFS thermometry in the pancreas with and without filling of the surrounding digestive tract. All data acquisition was performed at 1.5T, then all datasets were analyzed and compared with three different PRFS respiratory motion-compensated thermometry methods: gating, multibaseline, and referenceless. The temperature precision of the different methods was evaluated by assessing temperature standard deviation over time, while a simulation experiment was used to study the accuracy of the methods. RESULTS: Without fluid intake, errors in temperature precision in the pancreas up to 10°C were observed for all evaluated methods. After liquid intake, temperature precision improved to median values between 1.8 and 2.9°C. The simulations showed that gating had the lowest accuracy, with errors up to 7°C. Multibaseline and referenceless thermometry performed better, with a median error in the pancreas between -3 and +3°C after fluid intake, for all volunteers. CONCLUSION: Preparation of the digestive tract near the pancreas by filling it with fluid improved MR thermometry precision and accuracy for all common respiratory motion-compensated methods evaluated. These improvements are attributed to reducing field inhomogeneity in the pancreas. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:692-701.


Asunto(s)
Jugos de Frutas y Vegetales , Tracto Gastrointestinal , Imagen por Resonancia Magnética/métodos , Páncreas/diagnóstico por imagen , Termometría/métodos , Adulto , Humanos , Masculino , Valores de Referencia
18.
Magn Reson Med ; 75(3): 1187-97, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25940426

RESUMEN

PURPOSE: To investigate the effect of the aqueous and fatty tissue magnetic susceptibility distribution on absolute and relative temperature measurements as obtained directly from the water/fat (w/f) frequency difference. METHODS: Absolute thermometry was investigated using spherical phantoms filled with pork and margarine, which were scanned in three orthogonal orientations. To evaluate relative fat referencing, multigradient echo scans were acquired before and after heating pork tissue via high-intensity focused ultrasound (HIFU). Simulations were performed to estimate the errors that can be expected in human breast tissue. RESULTS: The sphere experiment showed susceptibility-related errors of 8.4 °C and 0.2 °C for pork and margarine, respectively. For relative fat referencing measurements, fat showed pronounced phase changes of opposite polarity to aqueous tissue. The apparent mean temperature for a numerical breast model assumed to be 37 °C was 47.2 ± 21.6 °C. Simulations of relative fat referencing for a HIFU sonication (ΔT = 29.7 °C) yielded a maximum temperature error of 6.6 °C compared with 2.5 °C without fat referencing. CONCLUSION: Variations in the observed frequency difference between water and fat are largely due to variations in the w/f spatial distribution. This effect may lead to considerable errors in absolute MR thermometry. Additionally, fat referencing may exacerbate rather than correct for proton resonance frequency shift-temperature measurement errors.


Asunto(s)
Grasas/química , Imagen por Resonancia Magnética/métodos , Termografía/métodos , Agua/química , Mama/diagnóstico por imagen , Simulación por Computador , Femenino , Humanos , Modelos Biológicos , Fantasmas de Imagen
19.
NMR Biomed ; 29(11): 1634-1643, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27687017

RESUMEN

The MR time-signal behavior of water has been reported to be different on short and long time scales for systems of randomly distributed perturbers in water in the static dephasing regime. Up to now, the signal of the perturbers in such systems has not been taken into consideration. Water-fat emulsions are macroscopically homogeneous systems and can be considered as microscopically randomly distributed perturbing fat spheres embedded in water. In such water-fat systems, the signal of the perturber, fat, cannot be ignored. Since water and fat are within the same system, the fat signal behavior may show similarities with water, with differences in short and long time scales. This could complicate fat-referenced MR thermometry (MRT) methods such as multi-gradient echo-based (MGE) MRT. Simulations were performed using a numerical phantom comprising spherical fat objects embedded in a spherical water medium. To characterize the fat signal, the theoretical signal description of water was fitted to the simulated fat signal. The simulated signals were sampled as an MGE signal and MGE MRT was used to calculate temperatures. The sampling was done with and without delay, to investigate the effect on the temperature error of the time ranges in which the signal was sampled. It was confirmed that the fat signal behavior was similar to that of water and consisted of two regimes. The separation between the short and long time scales was approximately at 55 ms for fat, as compared with 8.9 ms for water. Without delayed signal sampling, the MGE MRT temperature error was about 2.5°C. With delayed sampling such that both the water and the fat signals were either in the short or in the long time scale the error was reduced to 0.2°C.


Asunto(s)
Tejido Adiposo/química , Tejido Adiposo/diagnóstico por imagen , Agua Corporal/química , Agua Corporal/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Modelos Químicos , Simulación por Computador , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Modelos Biológicos , Modelos Estadísticos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Factores de Tiempo
20.
Eur Radiol ; 26(11): 4037-4046, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26852219

RESUMEN

OBJECTIVES: To assess the safety and feasibility of MRI-guided high-intensity focused ultrasound (MR-HIFU) ablation in breast cancer patients using a dedicated breast platform. METHODS: Patients with early-stage invasive breast cancer underwent partial tumour ablation prior to surgical resection. MR-HIFU ablation was performed using proton resonance frequency shift MR thermometry and an MR-HIFU system specifically designed for breast tumour ablation. The presence and extent of tumour necrosis was assessed by histopathological analysis of the surgical specimen. Pearson correlation coefficients were calculated to assess the relationship between sonication parameters, temperature increase and size of tumour necrosis at histopathology. RESULTS: Ten female patients underwent MR-HIFU treatment. No skin redness or burns were observed in any of the patients. No correlation was found between the applied energy and the temperature increase. In six patients, tumour necrosis was observed with a maximum diameter of 3-11 mm. In these patients, the number of targeted locations was equal to the number of areas with tumour necrosis. A good correlation was found between the applied energy and the size of tumour necrosis at histopathology (Pearson = 0.76, p = 0.002). CONCLUSIONS: Our results show that MR-HIFU ablation with the dedicated breast system is safe and results in histopathologically proven tumour necrosis. KEY POINTS: • MR-HIFU ablation with the dedicated breast system is safe and feasible • In none of the patients was skin redness or burns observed • No correlation was found between the applied energy and the temperature increase • The correlation between applied energy and size of tumour necrosis was good.


Asunto(s)
Neoplasias de la Mama/cirugía , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Imagen por Resonancia Magnética Intervencional/métodos , Mama/patología , Mama/cirugía , Neoplasias de la Mama/patología , Estudios de Factibilidad , Femenino , Humanos , Persona de Mediana Edad , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA