Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 161(4): 933-45, 2015 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-25957691

RESUMEN

In Rspondin-based 3D cultures, Lgr5 stem cells from multiple organs form ever-expanding epithelial organoids that retain their tissue identity. We report the establishment of tumor organoid cultures from 20 consecutive colorectal carcinoma (CRC) patients. For most, organoids were also generated from adjacent normal tissue. Organoids closely recapitulate several properties of the original tumor. The spectrum of genetic changes within the "living biobank" agrees well with previous large-scale mutational analyses of CRC. Gene expression analysis indicates that the major CRC molecular subtypes are represented. Tumor organoids are amenable to high-throughput drug screens allowing detection of gene-drug associations. As an example, a single organoid culture was exquisitely sensitive to Wnt secretion (porcupine) inhibitors and carried a mutation in the negative Wnt feedback regulator RNF43, rather than in APC. Organoid technology may fill the gap between cancer genetics and patient trials, complement cell-line- and xenograft-based drug studies, and allow personalized therapy design. PAPERCLIP.


Asunto(s)
Bancos de Muestras Biológicas , Neoplasias Colorrectales/patología , Ensayos de Selección de Medicamentos Antitumorales/métodos , Organoides , Neoplasias Colorrectales/tratamiento farmacológico , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas Oncogénicas/metabolismo , Técnicas de Cultivo de Órganos , Organoides/efectos de los fármacos , Medicina de Precisión , Ubiquitina-Proteína Ligasas
2.
Cell ; 155(2): 357-68, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24120136

RESUMEN

Proliferation of the self-renewing epithelium of the gastric corpus occurs almost exclusively in the isthmus of the glands, from where cells migrate bidirectionally toward pit and base. The isthmus is therefore generally viewed as the stem cell zone. We find that the stem cell marker Troy is expressed at the gland base by a small subpopulation of fully differentiated chief cells. By lineage tracing with a Troy-eGFP-ires-CreERT2 allele, single marked chief cells are shown to generate entirely labeled gastric units over periods of months. This phenomenon accelerates upon tissue damage. Troy(+) chief cells can be cultured to generate long-lived gastric organoids. Troy marks a specific subset of chief cells that display plasticity in that they are capable of replenishing entire gastric units, essentially serving as quiescent "reserve" stem cells. These observations challenge the notion that stem cell hierarchies represent a "one-way street."


Asunto(s)
Células Principales Gástricas/citología , Células Madre/citología , Estómago/citología , Animales , Linaje de la Célula , Células Principales Gástricas/química , Mucosa Gástrica/citología , Ratones , Organoides/citología , Receptores del Factor de Necrosis Tumoral/análisis , Vía de Señalización Wnt
3.
Development ; 149(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35502780

RESUMEN

In November 2021, the Institute for Regenerative Medicine (IRM) and the Institute for Immunology (IFI) at the University of Pennsylvania, USA, joined forces and organized a symposium featuring external speakers as well as locally based scientists to discuss how the immune system influences tissue stem cell biology. As we review here, the presentations highlighted emerging concepts in the field, revealing how tissue-specific immune cell activation can guide stem cells in regeneration and repair.


Asunto(s)
Comunicación Celular , Medicina Regenerativa , Células Madre
4.
Clin Exp Immunol ; 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245816

RESUMEN

The epithelium of the gastrointestinal tract has been extensively characterized using advanced histological and RNA sequencing techniques, which has revealed great cellular diversity. Pathogens, such as viruses and bacteria, are highly adapted to their host and often exhibit not only species-specificity, but also a preference or tropism for specific gastrointestinal segments or even cell types - some of these preferences are so specific, that these pathogens still cannot be cultured in the lab. Organoid technology now provides a tool to generate human cell types, which enables the study of host cell tropism. Focusing on the gastrointestinal tract, we provide an overview about cellular differentiation in vivo and in organoids and how differentiation in organoids and their derived models is used to advance our understanding of viral, bacterial, and parasitic infection. We emphasize that it is central to understand the composition of the model, as the alteration of culture conditions yields different cell types which affects infection. We examine future directions for wider application of cellular heterogeneity and potential advanced model systems for gastrointestinal tract infection studies.

5.
PLoS Pathog ; 17(2): e1009210, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33596248

RESUMEN

Epstein-Barr virus (EBV) is best known for infection of B cells, in which it usually establishes an asymptomatic lifelong infection, but is also associated with the development of multiple B cell lymphomas. EBV also infects epithelial cells and is associated with all cases of undifferentiated nasopharyngeal carcinoma (NPC). EBV is etiologically linked with at least 8% of gastric cancer (EBVaGC) that comprises a genetically and epigenetically distinct subset of GC. Although we have a very good understanding of B cell entry and lymphomagenesis, the sequence of events leading to EBVaGC remains poorly understood. Recently, ephrin receptor A2 (EPHA2) was proposed as the epithelial cell receptor on human cancer cell lines. Although we confirm some of these results, we demonstrate that EBV does not infect healthy adult stem cell-derived gastric organoids. In matched pairs of normal and cancer-derived organoids from the same patient, EBV only reproducibly infected the cancer organoids. While there was no clear pattern of differential expression between normal and cancer organoids for EPHA2 at the RNA and protein level, the subcellular location of the protein differed markedly. Confocal microscopy showed EPHA2 localization at the cell-cell junctions in primary cells, but not in cancer cell lines. Furthermore, histologic analysis of patient tissue revealed the absence of EBV in healthy epithelium and presence of EBV in epithelial cells from inflamed tissue. These data suggest that the EPHA2 receptor is not accessible to EBV on healthy gastric epithelial cells with intact cell-cell contacts, but either this or another, yet to be identified receptor may become accessible following cellular changes induced by inflammation or transformation, rendering changes in the cellular architecture an essential prerequisite to EBV infection.


Asunto(s)
Células Epiteliales/virología , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/fisiología , Organoides/virología , Receptor EphA2/metabolismo , Estómago/virología , Internalización del Virus , Células Epiteliales/metabolismo , Infecciones por Virus de Epstein-Barr/metabolismo , Humanos , Organoides/metabolismo , Estómago/fisiología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/virología
6.
Gut ; 70(4): 687-697, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32571970

RESUMEN

OBJECTIVE: The epithelial layer of the GI tract is equipped with innate immune receptors to sense invading pathogens. Dysregulation in innate immune signalling pathways is associated with severe inflammatory diseases, but the responsiveness of GI epithelial cells to bacterial stimulation remains unclear. DESIGN: We generated 42 lines of human and murine organoids from gastric and intestinal segments of both adult and fetal tissues. Genome-wide RNA-seq of the organoids provides an expression atlas of the GI epithelium. The innate immune response in epithelial cells was assessed using several functional assays in organoids and two-dimensional monolayers of cells from organoids. RESULTS: Results demonstrate extensive spatial organisation of innate immune signalling components along the cephalocaudal axis. A large part of this organisation is determined before birth and independent of exposure to commensal gut microbiota. Spatially restricted expression of Toll-like receptor 4 (Tlr4) in stomach and colon, but not in small intestine, is matched by nuclear factor kappa B (NF-κB) responses to lipopolysaccharide (LPS) exposure. Gastric epithelial organoids can sense LPS from the basal as well as from the apical side. CONCLUSION: We conclude that the epithelial innate immune barrier follows a specific pattern per GI segment. The majority of the expression patterns and the function of TLR4 is encoded in the tissue-resident stem cells and determined primarily during development.


Asunto(s)
Células Epiteliales/inmunología , Microbioma Gastrointestinal/inmunología , Inmunidad Innata/fisiología , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Organoides/inmunología , Animales , Células Cultivadas , Humanos , Lipopolisacáridos/inmunología , Transducción de Señal
7.
Int J Med Microbiol ; 310(2): 151392, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31983621

RESUMEN

During the last decades, the flourishing scientific field of molecular pathogenesis brought groundbreaking knowledge of the mechanisms of pathogenicity and the underlying bacterial virulence factors to cause infectious diseases. However, a major paradigm shift is currently occurring after it became increasingly evident that bacterial-host and host-host cell interactions including immune responses orchestrated by defined virulence factors are not the sole drivers of infectious disease development. Strong evidence has been collected that information and nutrient flow within complex microbial communities, as well as to and from host cells and matrices are equally important for successful infection. This particularly holds true for gastrointestinal (GI) pathogens and the GI microbiota interacting and communicating with each other as well as with the host GI mucus and mucosa. Gut-adapted pathogens appear to have developed powerful and specific strategies to interact with human GI mucus including the microbiota for nutrient acquisition, mucosal adhesion, inter-species communication and traversing the mucus barrier. This review covers the existing evidence on these topics and explores the mutual dynamics of host GI mucus, the mucosal habitat and incoming acute and chronic pathogens during GI infections. A particular focus is placed on the role of carbohydrates in diverse mucosal interaction, communication and competition processes. Novel techniques to analyze and synthesize mucus-derived carbohydrates and to generate mucus mimetics are introduced. Finally, open questions and future objectives for pathogen - host GI mucus research will be discussed.


Asunto(s)
Bacterias/patogenicidad , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Glicosilación , Interacciones Huésped-Patógeno , Moco/metabolismo , Animales , Humanos , Mucosa Intestinal/microbiología , Factores de Virulencia/metabolismo
8.
Curr Top Microbiol Immunol ; 400: 149-168, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28124153

RESUMEN

Helicobacter research classically uses fixed human tissue, animal models or cancer cell lines. Each of these study objects has its advantages and has brought central insights into the infection process. Nevertheless, in model systems for basic and medical research, there is a gap between two-dimensional and most often transformed cell cultures and three-dimensional, highly organized tissues. In recent years, stem cell research has provided the means to fill this gap. The identification of the niche factors that support growth, expansion and differentiation of stem cells in vitro has allowed the development of three-dimensional culture systems called organoids. Gastric organoids are grown from gastric stem cells and are organized epithelial structures that comprise all the differentiated cell types of the stomach. They can be expanded without apparent limitation and are amenable to a wide range of standard laboratory techniques. Here, we review different stem cell-derived organoid model systems useful for Helicobacter pylori research and outline their advantages for infection studies.


Asunto(s)
Infecciones por Helicobacter/microbiología , Helicobacter pylori/fisiología , Organoides/crecimiento & desarrollo , Estómago/crecimiento & desarrollo , Animales , Técnicas de Cultivo de Célula , Humanos , Modelos Biológicos , Organoides/microbiología , Estómago/microbiología
9.
Dev Biol ; 420(2): 262-270, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27640087

RESUMEN

Advances in stem cell research have allowed the development of 3-dimensional (3D) primary cell cultures termed organoid cultures, as they closely mimic the in vivo organization of different cell lineages. Bridging the gap between 2-dimensional (2D) monotypic cancer cell lines and whole organisms, organoids are now widely applied to model development and disease. Organoids hold immense promise for addressing novel questions in host-microbe interactions, infectious diseases and the resulting inflammatory conditions. Researchers have started to use organoids for modeling infection with pathogens, such as Helicobacter pylori or Salmonella enteritica, gut-microbiota interactions and inflammatory bowel disease. Future studies will broaden the spectrum of microbes used and continue to establish organoids as a standard model for human host-microbial interactions. Moreover, they will increasingly exploit the unique advantages of organoids, for example to address patient-specific responses to microbes.


Asunto(s)
Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Interacciones Huésped-Patógeno , Organoides/microbiología , Animales , Enfermedades Gastrointestinales/microbiología , Tracto Gastrointestinal/crecimiento & desarrollo , Tracto Gastrointestinal/fisiología , Helicobacter pylori/patogenicidad , Interacciones Huésped-Patógeno/fisiología , Humanos , Enfermedades Inflamatorias del Intestino/microbiología , Modelos Biológicos , Técnicas de Cultivo de Órganos , Organoides/crecimiento & desarrollo , Organoides/fisiología , Receptores de Reconocimiento de Patrones/fisiología , Ingeniería de Tejidos
10.
Gut ; 65(2): 202-13, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25539675

RESUMEN

BACKGROUND AND AIMS: Helicobacter pylori is the causative agent of gastric diseases and the main risk factor in the development of gastric adenocarcinoma. In vitro studies with this bacterial pathogen largely rely on the use of transformed cell lines as infection model. However, this approach is intrinsically artificial and especially inappropriate when it comes to investigating the mechanisms of cancerogenesis. Moreover, common cell lines are often defective in crucial signalling pathways relevant to infection and cancer. A long-lived primary cell system would be preferable in order to better approximate the human in vivo situation. METHODS: Gastric glands were isolated from healthy human stomach tissue and grown in Matrigel containing media supplemented with various growth factors, developmental regulators and apoptosis inhibitors to generate long-lasting normal epithelial cell cultures. RESULTS: Culture conditions were developed which support the formation and quasi-indefinite growth of three dimensional (3D) spheroids derived from various sites of the human stomach. Spheroids could be differentiated to gastric organoids after withdrawal of Wnt3A and R-spondin1 from the medium. The 3D cultures exhibit typical morphological features of human stomach tissue. Transfer of sheared spheroids into 2D culture led to the formation of dense planar cultures of polarised epithelial cells serving as a suitable in vitro model of H. pylori infection. CONCLUSIONS: A robust and quasi-immortal 3D organoid model has been established, which is considered instrumental for future research aimed to understand the underlying mechanisms of infection, mucosal immunity and cancer of the human stomach.


Asunto(s)
Adenocarcinoma/microbiología , Infecciones por Helicobacter/microbiología , Neoplasias Gástricas/microbiología , Estómago/citología , Línea Celular , Células Cultivadas , Medios de Cultivo , Mucosa Gástrica/citología , Helicobacter pylori/crecimiento & desarrollo , Humanos , Modelos Biológicos , Antro Pilórico/citología
11.
Gastroenterology ; 148(1): 126-136.e6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25307862

RESUMEN

BACKGROUND & AIMS: We previously established long-term, 3-dimensional culture of organoids from mouse tissues (intestine, stomach, pancreas, and liver) and human intestine and pancreas. Here we describe conditions required for long-term 3-dimensional culture of human gastric stem cells. The technology can be applied to study the epithelial response to infection with Helicobacter pylori. METHODS: We generated organoids from surgical samples of human gastric corpus. Culture conditions were developed based on those for the mouse gastric and human intestinal systems. We used microinjection to infect the organoids with H pylori. Epithelial responses were measured using microarray and quantitative polymerase chain reaction analyses. RESULTS: Human gastric cells were expanded indefinitely in 3-dimensional cultures. We cultured cells from healthy gastric tissues, single-sorted stem cells, or tumor tissues. Organoids maintained many characteristics of their respective tissues based on their histology, expression of markers, and euploidy. Organoids from healthy tissue expressed markers of 4 lineages of the stomach and self-organized into gland and pit domains. They could be directed to specifically express either lineages of the gastric gland, or the gastric pit, by addition of nicotinamide and withdrawal of WNT. Although gastric pit lineages had only marginal reactions to bacterial infection, gastric gland lineages mounted a strong inflammatory response. CONCLUSIONS: We developed a system to culture human gastric organoids. This system can be used to study H pylori infection and other gastric pathologies.


Asunto(s)
Células Epiteliales/microbiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/patogenicidad , Células Madre/microbiología , Estómago/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Técnicas de Cultivo de Célula , Linaje de la Célula , Proliferación Celular , Separación Celular , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Mucosa Gástrica/metabolismo , Regulación de la Expresión Génica , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/patología , Helicobacter pylori/inmunología , Humanos , Masculino , Persona de Mediana Edad , Niacinamida/farmacología , Organoides , Fenotipo , Ploidias , Células Madre/efectos de los fármacos , Células Madre/inmunología , Células Madre/metabolismo , Células Madre/patología , Estómago/efectos de los fármacos , Estómago/inmunología , Estómago/patología , Factores de Tiempo , Proteínas Wnt/metabolismo
12.
Cell Microbiol ; 15(11): 1896-912, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23782461

RESUMEN

Helicobacter pylori is a bacterial pathogen that colonizes the gastric niche of ∼ 50% of the human population worldwide and is known to cause peptic ulceration and gastric cancer. Pathology of infection strongly depends on a cag pathogenicity island (cagPAI)-encoded type IV secretion system (T4SS). Here, we aimed to identify as yet unknown bacterial factors involved in cagPAI effector function and performed a large-scale screen of an H. pylori transposon mutant library using activation of the pro-inflammatory transcription factor NF-κB in human gastric epithelial cells as a measure of T4SS function. Analysis of ∼ 3000 H. pylori mutants revealed three non-cagPAI genes that affected NF-κB nuclear translocation. Of these, the outer membrane protein HopQ from H. pylori strain P12 was essential for CagA translocation and for CagA-mediated host cell responses such as formation of the hummingbird phenotype and cell scattering. Besides that, deletion of hopQ reduced T4SS-dependent activation of NF-κB, induction of MAPK signalling and secretion of interleukin 8 (IL-8) in the host cells, but did not affect motility or the quantity of bacteria attached to host cells. Hence, we identified HopQ as a non-cagPAI-encoded cofactor of T4SS function.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Sistemas de Secreción Bacterianos , Helicobacter pylori/metabolismo , Factores de Virulencia/metabolismo , Proteínas de la Membrana Bacteriana Externa/genética , Línea Celular , Elementos Transponibles de ADN , Células Epiteliales/microbiología , Eliminación de Gen , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , Humanos , Interleucina-8/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Datos de Secuencia Molecular , Mutagénesis Insercional , FN-kappa B/metabolismo , Análisis de Secuencia de ADN , Transducción de Señal , Factores de Virulencia/genética
14.
Stem Cell Reports ; 19(5): 629-638, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38670110

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection primarily affects the lung but can also cause gastrointestinal (GI) symptoms. In vitro experiments confirmed that SARS-CoV-2 robustly infects intestinal epithelium. However, data on infection of adult gastric epithelium are sparse and a side-by-side comparison of the infection in the major segments of the GI tract is lacking. We provide this direct comparison in organoid-derived monolayers and demonstrate that SARS-CoV-2 robustly infects intestinal epithelium, while gastric epithelium is resistant to infection. RNA sequencing and proteome analysis pointed to angiotensin-converting enzyme 2 (ACE2) as a critical factor, and, indeed, ectopic expression of ACE2 increased susceptibility of gastric organoid-derived monolayers to SARS-CoV-2. ACE2 expression pattern in GI biopsies of patients mirrors SARS-CoV-2 infection levels in monolayers. Thus, local ACE2 expression limits SARS-CoV-2 expression in the GI tract to the intestine, suggesting that the intestine, but not the stomach, is likely to be important in viral replication and possibly transmission.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Mucosa Gástrica , Mucosa Intestinal , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , SARS-CoV-2/fisiología , Humanos , COVID-19/virología , COVID-19/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virología , Mucosa Gástrica/metabolismo , Mucosa Gástrica/virología , Tropismo Viral , Organoides/virología , Organoides/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/virología , Replicación Viral , Animales
15.
Stem Cell Reports ; 18(2): 417-419, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36638789

RESUMEN

The rapidly evolving stem cell field puts much stress on developing educational resources. The ISSCR Education Committee has created a flexible stem cell syllabus rooted in core concepts to facilitate stem cell literacy. The free syllabus will be updated regularly to maintain accuracy and relevance.


Asunto(s)
Curriculum , Alfabetización , Células Madre
16.
PLoS Pathog ; 6(1): e1000743, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20126447

RESUMEN

The complex host-pathogen interplay involves the recognition of the pathogen by the host's innate immune system and countermeasures taken by the pathogen. Detection of invading bacteria by the host leads to rapid activation of the transcription factor NF-kappaB, followed by inflammation and eradication of the intruders. In response, some pathogens, including enteropathogenic Escherichia coli (EPEC), acquired means of blocking NF-kappaB activation. We show that inhibition of NF-kappaB activation by EPEC involves the injection of NleE into the host cell. Importantly, we show that NleE inhibits NF-kappaB activation by preventing activation of IKKbeta and consequently the degradation of the NF-kappaB inhibitor, IkappaB. This NleE activity is enhanced by, but is not dependent on, a second injected effector, NleB. In conclusion, this study describes two effectors, NleB and NleE, with no similarity to other known proteins, used by pathogens to manipulate NF-kappaB signaling pathways.


Asunto(s)
Activación Enzimática/fisiología , Infecciones por Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , FN-kappa B/metabolismo , Transducción de Señal/fisiología , Factores de Virulencia/metabolismo , Western Blotting , Escherichia coli Enteropatógena/metabolismo , Células HeLa , Humanos , Proteínas I-kappa B/metabolismo , Transporte de Proteínas/fisiología , Transfección
17.
Cell Microbiol ; 13(8): 1168-82, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21615661

RESUMEN

The early stage of infection with Neisseria gonorrhoeae (Ngo), the causative agent of gonorrhoea, is marked by type IV pilus (Tfp)-mediated attachment and the formation of bacterial microcolonies on epithelial cells. Retraction of the Ngo Tfp generates substantial force on its substrate which can elicit host cell signalling. Here, we observed that this retraction force could also activate nuclear factor (NF)-κB, the central signalling cascade of innate immunity. Using a p65-GFP-expressing epithelial cell line, we show that piliated Ngo induce asynchronous NF-κB activation in infected cells, which is temporally associated with the formation of gonococcal microcolonies. A mutant lacking PilT, an ATPase necessary for Tfp retraction, induced markedly reduced NF-κB activation. This was accompanied by decreased NF-κB target gene transcription and cytokine release. The impaired ability of the pilT mutant to activate NF-κB was compensated by applying mechanical shear stress to the infected host cells, indicating that the mechanical forces generated by retractile pili are involved in the retraction-dependent activation of NF-κB elicited by gonococcal microcolonies. Thus, our work provides evidence for an intriguing relationship between microcolony growth, pilus retraction and host cell signalling, with likely implications with regard to the course of symptomatic versus asymptomatic gonococcal infections.


Asunto(s)
Adhesión Bacteriana/inmunología , Células Epiteliales/microbiología , Fimbrias Bacterianas/fisiología , Interacciones Huésped-Patógeno , FN-kappa B/metabolismo , Neisseria gonorrhoeae/inmunología , Neisseria gonorrhoeae/patogenicidad , Línea Celular , Citocinas/metabolismo , Células Epiteliales/inmunología , Humanos , Neisseria gonorrhoeae/crecimiento & desarrollo , Transducción de Señal
18.
Nat Commun ; 13(1): 5878, 2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36198679

RESUMEN

The human gastric epithelium forms highly organized gland structures with different subtypes of cells. The carcinogenic bacterium Helicobacter pylori can attach to gastric cells and subsequently translocate its virulence factor CagA, but the possible host cell tropism of H. pylori is currently unknown. Here, we report that H. pylori preferentially attaches to differentiated cells in the pit region of gastric units. Single-cell RNA-seq shows that organoid-derived monolayers recapitulate the pit region, while organoids capture the gland region of the gastric units. Using these models, we show that H. pylori preferentially attaches to highly differentiated pit cells, marked by high levels of GKN1, GKN2 and PSCA. Directed differentiation of host cells enable enrichment of the target cell population and confirm H. pylori preferential attachment and CagA translocation into these cells. Attachment is independent of MUC5AC or PSCA expression, and instead relies on bacterial TlpB-dependent chemotaxis towards host cell-released urea, which scales with host cell size.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Hormonas Peptídicas , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Quimiotaxis , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/metabolismo , Humanos , Hormonas Peptídicas/metabolismo , Tropismo , Urea/metabolismo , Factores de Virulencia/metabolismo
19.
Mol Microbiol ; 78(5): 1130-44, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21091500

RESUMEN

Helicobacter pylori is a human gastric pathogen associated with gastric and duodenal ulcers as well as gastric cancer. Mounting evidence suggests this pathogen's motility is prerequisite for successful colonization of human gastric tissues. Here, we isolated an H. pylori G27 HP0518 mutant exhibiting altered motility in comparison to its parental strain. We show that the mutant's modulated motility is linked to increased levels of O-linked glycosylation on flagellin A (FlaA) protein. Recombinant HP0518 protein decreased glycosylation levels of H. pylori flagellin in vitro, indicating that HP0518 functions in deglycosylation of FlaA protein. Furthermore, mass spectrometric analysis revealed increased glycosylation of HP0518 FlaA was due to a change in pseudaminic acid (Pse) levels on FlaA; HP0518 mutant-derived flagellin contained approximately threefold more Pse than the parental strain. Further phenotypic and molecular characterization demonstrated that the hyper-motile HP0518 mutant exhibits superior colonization capabilities and subsequently triggers enhanced CagA phosphorylation and NF-κB activation in AGS cells. Our study shows that HP0518 is involved in the deglycosylation of flagellin, thereby regulating pathogen motility. These findings corroborate the prominent function of H. pylori flagella in pathogen-host cell interactions and modulation of host cell responses, likely influencing the pathogenesis process.


Asunto(s)
Proteínas Bacterianas/metabolismo , Flagelina/metabolismo , Helicobacter pylori/fisiología , Animales , Adhesión Bacteriana , Proteínas Bacterianas/genética , Línea Celular , Femenino , Flagelina/genética , Regulación Bacteriana de la Expresión Génica , Glicosilación , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Humanos , Ratones , Ratones Endogámicos C57BL
20.
J Mol Med (Berl) ; 99(4): 517-530, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33538854

RESUMEN

The human gastrointestinal tract is in constant contact with microbial stimuli. Its barriers have to ensure co-existence with the commensal bacteria, while enabling surveillance of intruding pathogens. At the centre of the interaction lies the epithelial layer, which marks the boundaries of the body. It is equipped with a multitude of different innate immune sensors, such as Toll-like receptors, to mount inflammatory responses to microbes. Dysfunction of this intricate system results in inflammation-associated pathologies, such as inflammatory bowel disease. However, the complexity of the cellular interactions, their molecular basis and their development remains poorly understood. In recent years, stem cell-derived organoids have gained increasing attention as promising models for both development and a broad range of pathologies, including infectious diseases. In addition, organoids enable the study of epithelial innate immunity in vitro. In this review, we focus on the gastrointestinal epithelial barrier and its regional organization to discuss innate immune sensing and development.


Asunto(s)
Células Epiteliales/inmunología , Tracto Gastrointestinal/inmunología , Inmunidad Innata , Organoides , Adulto , Animales , Bancos de Muestras Biológicas , Polaridad Celular , Predicción , Microbioma Gastrointestinal/inmunología , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Perfilación de la Expresión Génica , Células Caliciformes/inmunología , Humanos , Tolerancia Inmunológica , Recién Nacido , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/inmunología , Ratones , Modelos Inmunológicos , FN-kappa B/fisiología , Especificidad de Órganos , Organoides/citología , Organoides/inmunología , Células de Paneth/inmunología , Ganglios Linfáticos Agregados/inmunología , Células Madre/inmunología , Receptores Toll-Like/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA