Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 43(27): 5057-5075, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37268417

RESUMEN

Age-related hearing loss, or presbyacusis, is a common degenerative disorder affecting communication and quality of life for millions of older adults. Multiple pathophysiologic manifestations, along with many cellular and molecular alterations, have been linked to presbyacusis; however, the initial events and causal factors have not been clearly established. Comparisons of the transcriptome in the lateral wall (LW) with other cochlear regions in a mouse model (of both sexes) of "normal" age-related hearing loss revealed that early pathophysiological alterations in the stria vascularis (SV) are associated with increased macrophage activation and a molecular signature indicative of inflammaging, a common form of immune dysfunction. Structure-function correlation analyses in mice across the lifespan showed that the age-dependent increase in macrophage activation in the stria vascularis is associated with a decline in auditory sensitivity. High-resolution imaging analysis of macrophage activation in middle-aged and aged mouse and human cochleas, along with transcriptomic analysis of age-dependent changes in mouse cochlear macrophage gene expression, support the hypothesis that aberrant macrophage activity is an important contributor to age-dependent strial dysfunction, cochlear pathology, and hearing loss. Thus, this study highlights the SV as a primary site of age-related cochlear degeneration and aberrant macrophage activity and dysregulation of the immune system as early indicators of age-related cochlear pathology and hearing loss. Importantly, novel new imaging methods described here now provide a means to analyze human temporal bones in a way that had not previously been feasible and thereby represent a significant new tool for otopathological evaluation.SIGNIFICANCE STATEMENT Age-related hearing loss is a common neurodegenerative disorder affecting communication and quality of life. Current interventions (primarily hearing aids and cochlear implants) offer imperfect and often unsuccessful therapeutic outcomes. Identification of early pathology and causal factors is crucial for the development of new treatments and early diagnostic tests. Here, we find that the SV, a nonsensory component of the cochlea, is an early site of structural and functional pathology in mice and humans that is characterized by aberrant immune cell activity. We also establish a new technique for evaluating cochleas from human temporal bones, an important but understudied area of research because of a lack of well-preserved human specimens and difficult tissue preparation and processing approaches.


Asunto(s)
Sordera , Presbiacusia , Masculino , Persona de Mediana Edad , Femenino , Humanos , Animales , Ratones , Anciano , Estría Vascular/patología , Calidad de Vida , Cóclea/metabolismo , Presbiacusia/patología , Sordera/patología , Macrófagos , Inflamación/metabolismo
2.
J Mol Cell Cardiol ; 186: 16-30, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37935281

RESUMEN

Epicardial-derived cells (EPDCs) are involved in the regulation of myocardial growth and coronary vascularization and are critically important for proper development of the atrioventricular (AV) valves. SOX9 is a transcription factor expressed in a variety of epithelial and mesenchymal cells in the developing heart, including EPDCs. To determine the role of SOX9 in epicardial development, an epicardial-specific Sox9 knockout mouse model was generated. Deleting Sox9 from the epicardial cell lineage impairs the ability of EPDCs to invade both the ventricular myocardium and the developing AV valves. After birth, the mitral valves of these mice become myxomatous with associated abnormalities in extracellular matrix organization. This phenotype is reminiscent of that seen in humans with myxomatous mitral valve disease (MVD). An RNA-seq analysis was conducted in an effort to identify genes associated with this myxomatous degeneration. From this experiment, Cd109 was identified as a gene associated with myxomatous valve pathogenesis in this model. Cd109 has never been described in the context of heart development or valve disease. This study highlights the importance of SOX9 in the regulation of epicardial cell invasion-emphasizing the importance of EPDCs in regulating AV valve development and homeostasis-and reports a novel expression profile of Cd109, a gene with previously unknown relevance in heart development.


Asunto(s)
Enfermedades de las Válvulas Cardíacas , Válvula Mitral , Humanos , Ratones , Animales , Válvula Mitral/metabolismo , Enfermedades de las Válvulas Cardíacas/patología , Ventrículos Cardíacos/metabolismo , Miocardio/metabolismo , Ratones Noqueados , Factores de Transcripción/metabolismo
3.
J Neurosci ; 42(42): 8002-8018, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36180228

RESUMEN

Dysfunction of the peripheral auditory nerve (AN) contributes to dynamic changes throughout the central auditory system, resulting in abnormal auditory processing, including hypersensitivity. Altered sound sensitivity is frequently observed in autism spectrum disorder (ASD), suggesting that AN deficits and changes in auditory information processing may contribute to ASD-associated symptoms, including social communication deficits and hyperacusis. The MEF2C transcription factor is associated with risk for several neurodevelopmental disorders, and mutations or deletions of MEF2C produce a haploinsufficiency syndrome characterized by ASD, language, and cognitive deficits. A mouse model of this syndromic ASD (Mef2c-Het) recapitulates many of the MEF2C haploinsufficiency syndrome-linked behaviors, including communication deficits. We show here that Mef2c-Het mice of both sexes exhibit functional impairment of the peripheral AN and a modest reduction in hearing sensitivity. We find that MEF2C is expressed during development in multiple AN and cochlear cell types; and in Mef2c-Het mice, we observe multiple cellular and molecular alterations associated with the AN, including abnormal myelination, neuronal degeneration, neuronal mitochondria dysfunction, and increased macrophage activation and cochlear inflammation. These results reveal the importance of MEF2C function in inner ear development and function and the engagement of immune cells and other non-neuronal cells, which suggests that microglia/macrophages and other non-neuronal cells might contribute, directly or indirectly, to AN dysfunction and ASD-related phenotypes. Finally, our study establishes a comprehensive approach for characterizing AN function at the physiological, cellular, and molecular levels in mice, which can be applied to animal models with a wide range of human auditory processing impairments.SIGNIFICANCE STATEMENT This is the first report of peripheral auditory nerve (AN) impairment in a mouse model of human MEF2C haploinsufficiency syndrome that has well-characterized ASD-related behaviors, including communication deficits, hyperactivity, repetitive behavior, and social deficits. We identify multiple underlying cellular, subcellular, and molecular abnormalities that may contribute to peripheral AN impairment. Our findings also highlight the important roles of immune cells (e.g., cochlear macrophages) and other non-neuronal elements (e.g., glial cells and cells in the stria vascularis) in auditory impairment in ASD. The methodological significance of the study is the establishment of a comprehensive approach for evaluating peripheral AN function and impact of peripheral AN deficits with minimal hearing loss.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Masculino , Femenino , Ratones , Animales , Humanos , Trastorno Autístico/complicaciones , Trastorno del Espectro Autista/complicaciones , Trastorno del Espectro Autista/genética , Factores de Transcripción MEF2/genética , Nervio Coclear , Modelos Animales de Enfermedad
4.
Glia ; 70(4): 768-791, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34964523

RESUMEN

The auditory nerve (AN) of the inner ear is the primary conveyor of acoustic information from sensory hair cells to the brainstem. Approximately 95% of peripheral AN fibers are myelinated by glial cells. The integrity of myelin and the glial-associated paranodal structures at the node of Ranvier is critical for normal AN activity and axonal survival and function in the central auditory nervous system. However, little is known about the node of Ranvier's spatiotemporal development in the AN, how the aging process (or injury) affects the activity of myelinating glial cells, and how downstream alterations in myelin and paranodal structure contribute to AN degeneration and sensorineural hearing loss. Here, we characterized two types of Ranvier nodes-the axonal node and the ganglion node-in the mouse peripheral AN, and found that they are distinct in several features of postnatal myelination and age-related degeneration. Cellular, molecular, and structure-function correlations revealed that the two node types are each critical for different aspects of peripheral AN function. Neural processing speed and synchrony is associated with the length of the axonal node, while stimulus level-dependent amplitude growth and action potentials are associated with the ganglion node. Moreover, our data indicate that dysregulation of glial cells (e.g., satellite cells) and degeneration of the ganglion node structure are an important new mechanism of age-related hearing loss.


Asunto(s)
Vaina de Mielina , Nódulos de Ranvier , Animales , Axones/fisiología , Cóclea , Nervio Coclear , Ratones , Vaina de Mielina/fisiología
5.
J Biol Chem ; 295(52): 18091-18104, 2020 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-33087445

RESUMEN

Akt3 regulates mitochondrial content in endothelial cells through the inhibition of PGC-1α nuclear localization and is also required for angiogenesis. However, whether there is a direct link between mitochondrial function and angiogenesis is unknown. Here we show that Akt3 depletion in primary endothelial cells results in decreased uncoupled oxygen consumption, increased fission, decreased membrane potential, and increased expression of the mitochondria-specific protein chaperones, HSP60 and HSP10, suggesting that Akt3 is required for mitochondrial homeostasis. Direct inhibition of mitochondrial homeostasis by the model oxidant paraquat results in decreased angiogenesis, showing a direct link between angiogenesis and mitochondrial function. Next, in exploring functional links to PGC-1α, the master regulator of mitochondrial biogenesis, we searched for compounds that induce this process. We found that, sildenafil, a phosphodiesterase 5 inhibitor, induced mitochondrial biogenesis as measured by increased uncoupled oxygen consumption, mitochondrial DNA content, and voltage-dependent anion channel protein expression. Sildenafil rescued the effects on mitochondria by Akt3 depletion or pharmacological inhibition and promoted angiogenesis, further supporting that mitochondrial homeostasis is required for angiogenesis. Sildenafil also induces the expression of PGC-1 family member PRC and can compensate for PGC-1α activity during mitochondrial stress by an Akt3-independent mechanism. The induction of PRC by sildenafil depends upon cAMP and the transcription factor CREB. Thus, PRC can functionally substitute during Akt3 depletion for absent PGC-1α activity to restore mitochondrial homeostasis and promote angiogenesis. These findings show that mitochondrial homeostasis as controlled by the PGC family of transcriptional activators is required for angiogenic responses.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 5/química , Endotelio Vascular/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Núcleo Celular/efectos de los fármacos , Regulación de la Expresión Génica , Humanos , Mitocondrias/patología , Biogénesis de Organelos , Consumo de Oxígeno , Factores de Transcripción/genética
6.
J Neurosci ; 38(10): 2551-2568, 2018 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-29437856

RESUMEN

Noise exposure causes auditory nerve (AN) degeneration and hearing deficiency, though the proximal biological consequences are not entirely understood. Most AN fibers and spiral ganglion neurons are ensheathed by myelinating glia that provide insulation and ensure rapid transmission of nerve impulses from the cochlea to the brain. Here we show that noise exposure administered to mice of either sex rapidly affects myelinating glial cells, causing molecular and cellular consequences that precede nerve degeneration. This response is characterized by demyelination, inflammation, and widespread expression changes in myelin-related genes, including the RNA splicing regulator Quaking (QKI) and numerous QKI target genes. Analysis of mice deficient in QKI revealed that QKI production in cochlear glial cells is essential for proper myelination of spiral ganglion neurons and AN fibers, and for normal hearing. Our findings implicate QKI dysregulation as a critical early component in the noise response, influencing cochlear glia function that leads to AN demyelination and, ultimately, to hearing deficiency.SIGNIFICANCE STATEMENT Auditory glia cells ensheath a majority of spiral ganglion neurons with myelin, protect auditory neurons, and allow for fast conduction of electrical impulses along the auditory nerve. Here we show that noise exposure causes glial dysfunction leading to myelin abnormality and altered expression of numerous genes in the auditory nerve, including QKI, a gene implicated in regulating myelination. Study of a conditional mouse model that specifically depleted QKI in glia showed that QKI deficiency alone was sufficient to elicit myelin-related abnormality and auditory functional declines. These results establish QKI as a key molecular target in the noise response and a causative agent in hearing loss.


Asunto(s)
Nervio Coclear/patología , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Pérdida Auditiva Provocada por Ruido/genética , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Ratones Quaking/genética , Proteínas de Unión al ARN/genética , Animales , Cóclea/patología , Femenino , Regulación de la Expresión Génica , Inmunohistoquímica , Masculino , Ratones Endogámicos CBA , Neuroglía/patología , Neuronas/patología , Ganglio Espiral de la Cóclea/patología
7.
Mol Ther ; 24(11): 2000-2011, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27600399

RESUMEN

The peripheral auditory nerve (AN) carries sound information from sensory hair cells to the brain. The present study investigated the contribution of mouse and human hematopoietic stem cells (HSCs) to cellular diversity in the AN following the destruction of neuron cell bodies, also known as spiral ganglion neurons (SGNs). Exposure of the adult mouse cochlea to ouabain selectively killed type I SGNs and disrupted the blood-labyrinth barrier. This procedure also resulted in the upregulation of genes associated with hematopoietic cell homing and differentiation, and provided an environment conducive to the tissue engraftment of circulating stem/progenitor cells into the AN. Experiments were performed using both a mouse-mouse bone marrow transplantation model and a severely immune-incompetent mouse model transplanted with human CD34+ cord blood cells. Quantitative immunohistochemical analysis of recipient mice demonstrated that ouabain injury promoted an increase in the number of both HSC-derived macrophages and HSC-derived nonmacrophages in the AN. Although rare, a few HSC-derived cells in the injured AN exhibited glial-like qualities. These results suggest that human hematopoietic cells participate in remodeling of the AN after neuron cell body loss and that hematopoietic cells can be an important resource for promoting AN repair/regeneration in the adult inner ear.


Asunto(s)
Nervio Coclear/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Ouabaína/efectos adversos , Enfermedades del Nervio Vestibulococlear/terapia , Animales , Antígenos CD34/metabolismo , Diferenciación Celular , Nervio Coclear/lesiones , Trasplante de Células Madre de Sangre del Cordón Umbilical , Modelos Animales de Enfermedad , Sangre Fetal/inmunología , Trasplante de Células Madre Hematopoyéticas , Humanos , Ratones , Enfermedades del Nervio Vestibulococlear/inducido químicamente
8.
J Biol Chem ; 290(35): 21629-41, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26152723

RESUMEN

Arterial smooth muscle cells (ASMCs) undergo phenotypic changes during development and pathological processes in vivo and during cell culture in vitro. Our previous studies demonstrated that retrovirally mediated expression of the versican V3 splice variant (V3) by ASMCs retards cell proliferation and migration in vitro and reduces neointimal thickening and macrophage and lipid accumulation in animal models of vascular injury and atherosclerosis. However, the molecular pathways induced by V3 expression that are responsible for these changes are not yet clear. In this study, we employed a microarray approach to examine how expression of V3 induced changes in gene expression and the molecular pathways in rat ASMCs. We found that forced expression of V3 by ASMCs affected expression of 521 genes by more than 1.5-fold. Gene ontology analysis showed that components of the extracellular matrix were the most significantly affected by V3 expression. In addition, genes regulating the formation of the cytoskeleton, which also serve as markers of contractile smooth muscle cells (SMCs), were significantly up-regulated. In contrast, components of the complement system, chemokines, chemokine receptors, and transcription factors crucial for regulating inflammatory processes were among the genes most down-regulated. Consistently, we found that the level of myocardin, a key transcription factor promoting contractile SMC phenotype, was greatly increased, and the proinflammatory transcription factors NFκB1 and CCAAT/enhancer-binding protein ß were significantly attenuated in V3-expressing SMCs. Overall, these findings demonstrate that V3 expression reprograms ASMCs promoting differentiated and anti-inflammatory phenotypes.


Asunto(s)
Antiinflamatorios/metabolismo , Arterias/citología , Diferenciación Celular , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Versicanos/metabolismo , Animales , Apoptosis/genética , Biomarcadores/metabolismo , Supervivencia Celular/genética , Microambiente Celular , Análisis por Conglomerados , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Inflamación/genética , Inflamación/patología , Anotación de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , Ratas Endogámicas F344 , Elementos de Respuesta/genética , Programas Informáticos , Regulación hacia Arriba/genética , Versicanos/genética
9.
Am J Physiol Gastrointest Liver Physiol ; 306(7): G606-13, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24503769

RESUMEN

Acute Helicobacter pylori infection of gastric epithelial cells induces CagA oncoprotein- and peptidoglycan (SLT)-dependent mobilization of NF-κB p50 homodimers that bind to H-K-ATPase α-subunit (HKα) promoter and repress HKα gene transcription. This process may facilitate gastric H. pylori colonization by induction of transient hypochlorhydria. We hypothesized that H. pylori also regulates HKα expression posttranscriptionally by miRNA interaction with HKα mRNA. In silico analysis of the HKα 3' untranslated region (UTR) identified miR-1289 as a highly conserved putative HKα-regulatory miRNA. H. pylori infection of AGS cells transfected with HKα 3' UTR-Luc reporter construct repressed luciferase activity by 70%, whereas ΔcagA or Δslt H. pylori infections partially abrogated repression. Transfection of AGS cells expressing HKα 3' UTR-Luc construct with an oligoribonucleotide mimetic of miR-1289 induced maximal repression (54%) of UTR activity within 30 min; UTR activity was unchanged by nontargeting siRNA transfection. Gastric biopsies from patients infected with cagA(+) H. pylori showed a significant increase in miR-1289 expression compared with uninfected patients or those infected with cagA(-) H. pylori. Finally, miR-1289 expression was necessary and sufficient to attenuate biopsy HKα protein expression in the absence of infection. Taken together, these data indicate that miR-1289 is upregulated by H. pylori in a CagA- and SLT-dependent manner and targets HKα 3' UTR, affecting HKα mRNA translation. The sensitivity of HKα mRNA 3' UTR to binding of miR-1289 identifies a novel regulatory mechanism of gastric acid secretion and offers new insights into mechanisms underlying transient H. pylori-induced hypochlorhydria.


Asunto(s)
Mucosa Gástrica/enzimología , ATPasa Intercambiadora de Hidrógeno-Potásio/metabolismo , Infecciones por Helicobacter/enzimología , Helicobacter pylori/metabolismo , MicroARNs/metabolismo , Subunidad p50 de NF-kappa B/metabolismo , Células Parietales Gástricas/enzimología , Procesamiento Postranscripcional del ARN , Regiones no Traducidas 3' , Aclorhidria/enzimología , Aclorhidria/microbiología , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Línea Celular , Mucosa Gástrica/microbiología , Regulación Enzimológica de la Expresión Génica , Genes Reporteros , ATPasa Intercambiadora de Hidrógeno-Potásio/genética , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Helicobacter pylori/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Subunidad p50 de NF-kappa B/genética , Células Parietales Gástricas/microbiología , Peptidoglicano/metabolismo , Interferencia de ARN , ARN Mensajero/metabolismo , Factores de Tiempo , Transfección , Virulencia
10.
Artículo en Inglés | MEDLINE | ID: mdl-38560035

RESUMEN

Objectives: Prior research on olfactory dysfunction in chronic rhinosinusitis (CRS) has focused on patients with polyps and suggests that direct inflammation of the olfactory cleft mucosa plays a contributory role. The purpose of this study was to evaluate gene expression in superior turbinate mucosal specimens, comparing normosmic and dysosmic CRS patients without polyps (CRSsNP). Methods: Tissue samples were obtained from the superior turbinates of patients with CRSsNP at the time of endoscopic sinus surgery. Samples subsequently underwent RNA sequencing and functional analysis to investigate biological pathways associated with differentially expressed genes between dysosmic (n = 7) and normosmic (n = 4) patients. Results: Differential gene expression analysis comparing dysosmic and normosmic CRSsNP patients showed upregulation of 563 genes and downregulation of 327 genes. Using stringent criteria for multiple comparisons, one upregulated gene (Immediate Early Response 3 [IER3]) had an false discovery rate (FDR) correction adjusted P value considered statistically significant (P < 0.001, fold change 2.69). Reactome functional analysis revealed eight biological pathways significantly different between dysosmic and normosmic patients (P < 0.05, FDR correction) including IL-4 and IL-13 signaling, IL-10 signaling, and rhodopsin-like receptors. Conclusions: RNA sequencing of the superior turbinates in patients with CRSsNP can provide valuable information regarding biological pathways and genes involved in olfactory dysfunction. This study supports literature suggesting that Type 2 inflammation may play a role in olfactory dysfunction in at least some patients with CRSsNP. This study also prompts questions regarding the role of IL-10, rhodopsin-like receptors, and IER3 in the pathogenesis of olfactory dysfunction.

11.
Front Cell Dev Biol ; 12: 1304755, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544819

RESUMEN

Ciona intestinalis is an invertebrate animal model system that is well characterized and has many advantages for the study of cardiovascular biology. The regulatory mechanisms of cardiac myocyte proliferation in Ciona are intriguing since regeneration of functional tissue has been demonstrated in other organs of Ciona in response to injury. To identify genes that are differentially expressed in response to Ciona cardiac injury, microarray analysis was conducted on RNA from adult Ciona hearts with normal or damaged myocardium. After a 24- or 48-h recovery period, total RNA was isolated from damaged and control hearts. Initial results indicate significant changes in gene expression in hearts damaged by ligation in comparison to control hearts. Ligation injury shows differential expression of 223 genes as compared to control with limited false discovery (5.8%). Among these 223 genes, 117 have known human orthologs of which 68 were upregulated and 49 were downregulated. Notably, Fgf9/16/20, insulin-like growth factor binding protein and Ras-related protein Rab11b were significantly upregulated in injured hearts, whereas expression of a junctophilin ortholog was decreased. Histological analyses of injured myocardium were conducted in parallel to the microarray study which revealed thickened myocardium in injured hearts. Taken together, these studies will connect differences in gene expression to cellular changes in the myocardium of Ciona, which will help to promote further investigations into the regulatory mechanisms of cardiac myocyte proliferation across chordates.

12.
BMC Genomics ; 14: 405, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23773363

RESUMEN

BACKGROUND: Cubilin is an endocytic receptor that is necessary for renal and intestinal absorption of a range of ligands. Endocytosis mediated by cubilin and its co-receptor megalin is the principal mechanism for proximal tubule reabsorption of proteins from the glomerular filtrate. Cubilin is also required for intestinal endocytosis of intrinsic factor-vitamin B12 complex. Despite its importance, little is known about the regulation of cubilin expression. RESULTS: Here we show that cubilin expression is under epigenetic regulation by at least two processes. The first process involves inactivation of expression of one of the cubilin alleles. This monoallelic expression state could not be transformed to biallelic by inhibiting DNA methylation or histone deacetylation. The second process involves transcriptional regulation of cubilin by peroxisome proliferator-activated receptor (PPAR) transcription factors that are themselves regulated by DNA methylation and histone deacetylation. This is supported by findings that inhibitors of DNA methylation and histone deacetylation, 5Aza and TSA, increase cubilin mRNA and protein in renal and intestinal cell lines. Not only was the expression of PPARα and γ inducible by 5Aza and TSA, but the positive effects of TSA and 5Aza on cubilin expression were also dependent on both increased PPAR transcription and activation. Additionally, 5Aza and TSA had similar effects on the expression of the cubilin co-receptor, megalin. CONCLUSIONS: Together, these findings reveal that cubilin and megalin mRNA expression is under epigenetic control and thus point to new avenues for overcoming pathological suppression of these genes through targeting of epigenetic regulatory processes.


Asunto(s)
Alelos , Epigénesis Genética , Regulación de la Expresión Génica , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores de Superficie Celular/genética , Albúminas/metabolismo , Animales , Azacitidina/farmacología , Secuencia de Bases , Células CACO-2 , Epigénesis Genética/efectos de los fármacos , Exones/genética , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ácidos Hidroxámicos/farmacología , Intestinos/citología , Túbulos Renales Proximales/citología , Túbulos Renales Proximales/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/genética , Masculino , Proteínas de la Membrana/genética , Ratones , Regiones Promotoras Genéticas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Transporte de Proteínas , Receptores de Superficie Celular/deficiencia
13.
Dev Dyn ; 241(2): 303-14, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22183742

RESUMEN

BACKGROUND: Trabeculation is an integral component of cardiac ventricular morphogenesis and is dependent on the matrix metalloproteinase, ADAMTS1. A substrate of ADAMTS1 is the proteoglycan versican which is expressed in the developing ventricle and which has been implicated in trabeculation. Fibulin-1 is a versican and ADAMTS1-binding extracellular matrix protein required for ventricular morphogenesis. Here we investigated the involvement of fibulin-1 in ADAMTS1-mediated cleavage of versican in vitro, and the involvement of fibulin-1 in versican cleavage in ventricular morphogenesis. RESULTS: We show that fibulin-1 is a cofactor for ADAMTS1-dependent in vitro cleavage of versican V1, yielding a 70-kDa amino-terminal fragment. Furthermore, fibulin-1-deficiency in mice was found to cause a significant reduction (>90%) in ventricular levels of the 70-kDa versican V1 cleavage product and a 2-fold increase in trabecular cardiomyocyte proliferation. Decreased versican V1 cleavage and augmented trabecular cardiomyocyte proliferation in fibulin-1 null hearts is accompanied by increased ventricular activation of ErbB2 and Erk1/2. By contrast, versican deficiency was found to lead to decreased cardiomyocyte proliferation and reduced ventricular trabeculation. CONCLUSION: We conclude that fibulin-1 regulates versican-dependent events in ventricular morphogenesis by promoting ADAMTS1 cleavage of versican leading to suppression of trabecular cardiomyocyte proliferation mediated by the ErbB2-Map kinase pathway.


Asunto(s)
Proteínas ADAM/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proliferación Celular , Ventrículos Cardíacos/embriología , Morfogénesis , Miocitos Cardíacos/fisiología , Proteína ADAMTS1 , Animales , Proteínas de Unión al Calcio/genética , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Ratones , Ratones Mutantes , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Receptor ErbB-2/metabolismo
14.
Front Neurol ; 14: 1214408, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560455

RESUMEN

Sensorineural hearing loss is associated with dysfunction of cochlear cells. Although immune cells play a critical role in maintaining the inner ear microenvironment, the precise immune-related molecular mechanisms underlying the pathophysiology of hearing loss remain unclear. The complement cascade contributes to the regulation of immune cell activity. Additionally, activation of the complement cascade can lead to the cellular opsonization of cells and pathogens, resulting in their engulfment and elimination by phagocytes. Complement factor B (fB) is an essential activator protein in the alternative complement pathway, and variations in the fB gene are associated with age-related macular degeneration. Here we show that mice of both sexes deficient in fB functional alleles (fB-/-) demonstrate progressive hearing impairment. Transcriptomic analysis of auditory nerves from adult mice detected 706 genes that were significantly differentially expressed between fB-/- and wild-type control animals, including genes related to the extracellular matrix and neural development processes. Additionally, a subset of differentially expressed genes was related to myelin function and neural crest development. Histological and immunohistochemical investigations revealed pathological alterations in auditory nerve myelin sheathes of fB-/- mice. Pathological alterations were also seen in the stria vascularis of the cochlear lateral wall in these mice. Our results implicate fB as an integral regulator of myelin maintenance and stria vascularis integrity, underscoring the importance of understanding the involvement of immune signaling pathways in sensorineural hearing loss.

15.
J Cardiovasc Dev Dis ; 10(1)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36661922

RESUMEN

Increased mechanical forces on developing cardiac valves drive formation of the highly organized extracellular matrix (ECM) providing tissue integrity and promoting cell behavior and signaling. However, the ability to investigate the response of cardiac valve cells to increased mechanical forces is challenging and remains poorly understood. The developmental window from birth (P0) to postnatal day 7 (P7) when biomechanical forces on the pulmonary valve (PV) are altered due to the initiation of blood flow to the lungs was evaluated in this study. Grossly enlarged PV, in mice deficient in the proteoglycan protease ADAMTS5, exhibited a transient phenotypic rescue from postnatal day 0 (P0) to P7; the Adamts5-/- aortic valves (AV) did not exhibit a phenotypic correction. We hypothesized that blood flow, initiated to the lungs at birth, alters mechanical load on the PV and promotes ECM maturation. In the Adamts5-/- PV, there was an increase in localization of the proteoglycan proteases ADAMTS1, MMP2, and MMP9 that correlated with reduced Versican (VCAN). At birth, Decorin (DCN), a Collagen I binding, small leucine-rich proteoglycan, exhibited complementary stratified localization to VCAN in the wild type at P0 but colocalized with VCAN in Adamts5-/- PV; concomitant with the phenotypic rescue at P7, the PVs in Adamts5-/- mice exhibited stratification of VCAN and DCN similar to wild type. This study indicates that increased mechanical forces on the PV at birth may activate ECM proteases to organize specialized ECM layers during cardiac valve maturation.

16.
Life Sci ; 311(Pt A): 121158, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36370870

RESUMEN

AIMS: Evidence suggests alterations of thyroid hormone levels can disrupt normal bone development. Most data suggest the major targets of thyroid hormones to be the Htra1/Igf1 pathway. Recent discovery by our group suggests involvement of targets WNT pathway, specifically overexpression of antagonist Sfrp4 in the presence of exogenous thyroid hormone. MAIN METHODS: Here we aimed to model these interactions in vitro using primary and isotype cell lines to determine if thyroid hormone drives increased Sfrp4 expression in cells relevant to craniofacial development. Transcriptional profiling, bioinformatics interrogation, protein and function analyses were used. KEY FINDINGS: Affymetrix transcriptional profiling found Sfrp4 overexpression in primary cranial suture derived cells stimulated with thyroxine in vitro. Interrogation of the SFRP4 promoter identified multiple putative binding sites for thyroid hormone receptors. Experimentation with several cell lines demonstrated that thyroxine treatment induced Sfrp4 expression, demonstrating that Sfrp4 mRNA and protein levels are not tightly coupled. Transcriptional and protein analyses demonstrate thyroid hormone receptor binding to the proximal promoter of the target gene Sfrp4 in murine calvarial pre-osteoblasts. Functional analysis after thyroxine hormone stimulation for alkaline phosphatase activity shows that pre-osteoblasts increase alkaline phosphatase activity compared to other cell types, suggesting cell type susceptibility. Finally, we added recombinant SFRP4 to pre-osteoblasts in combination with thyroxine treatment and observed a significant decrease in alkaline phosphatase positivity. SIGNIFICANCE: Taken together, these results suggest SFRP4 may be a key regulatory molecule that prevents thyroxine driven osteogenesis. These data corroborate clinical findings indicating a potential for SFRP4 as a diagnostic or therapeutic target for hyperostotic craniofacial disorders.


Asunto(s)
Fosfatasa Alcalina , Tiroxina , Ratones , Animales , Tiroxina/metabolismo , Fosfatasa Alcalina/metabolismo , Osteoblastos/metabolismo , Vía de Señalización Wnt/genética , Osteogénesis/genética , Proteínas Proto-Oncogénicas/metabolismo
17.
Lipids Health Dis ; 10: 70, 2011 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-21554699

RESUMEN

BACKGROUND: The lysosphingolipid sphingosine 1-phosphate (S1P) is carried in the blood in association with lipoproteins, predominantly high density lipoproteins (HDL). Emerging evidence suggests that many of the effects of HDL on cardiovascular function may be attributable to its S1P cargo. METHODS: Here we have evaluated how levels of S1P and related sphingolipids in an HDL-containing fraction of human serum correlate with occurrence of ischemic heart disease (IHD). To accomplish this we used liquid chromatography-mass spectrometry to measure S1P levels in the HDL-containing fraction of serum (depleted of LDL and VLDL) from 204 subjects in the Copenhagen City Heart Study (CCHS). The study group consisted of individuals having high serum HDL cholesterol (HDL-C) (females:≥ 73.5 mg/dL; males:≥ 61.9 mg/dL) and verified IHD; subjects with high HDL-C and no IHD; individuals with low HDL-C (females:≤ 38.7 mg/dL; males:≤ 34.1 mg/dL) and IHD, and subjects with low HDL-C and no IHD. RESULTS: The results show a highly significant inverse relationship between the level of S1P in the HDL-containing fraction of serum and the occurrence of IHD. Furthermore, an inverse relationship with IHD was also observed for two other sphingolipids, dihydro-S1P and C24:1-ceramide, in the HDL-containing fraction of serum. Additionally, we demonstrated that the amount of S1P on HDL correlates with the magnitude of HDL-induced endothelial cell barrier signaling. CONCLUSIONS: These findings indicate that compositional differences of sphingolipids in the HDL-containing fraction of human serum are related to the occurrence of IHD, and may contribute to the putative protective role of HDL in IHD.


Asunto(s)
Lipoproteínas HDL/sangre , Lisofosfolípidos/sangre , Isquemia Miocárdica/sangre , Isquemia Miocárdica/epidemiología , Esfingosina/análogos & derivados , Movimiento Celular/efectos de los fármacos , Ceramidas/sangre , Fraccionamiento Químico , Cromatografía Liquida , Dinamarca/epidemiología , Impedancia Eléctrica , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Femenino , Humanos , Lisofosfolípidos/farmacología , Masculino , Espectrometría de Masas , Persona de Mediana Edad , Curva ROC , Esfingolípidos/sangre , Esfingosina/sangre , Esfingosina/farmacología
18.
Dev Dyn ; 239(7): 2024-33, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20549724

RESUMEN

Nkx2.5, a transcription factor implicated in human congenital heart disease, is required for regulation of second heart field (SHF) progenitors contributing to outflow tract (OFT). Here, we define a set of genes (Lrrn1, Elovl2, Safb, Slc39a6, Khdrbs1, Hoxb4, Fez1, Ccdc117, Jarid2, Nrcam, and Enpp3) expressed in SHF containing pharyngeal arch tissue whose regulation is dependent on Nkx2.5. Further investigation shows that Jarid2, which has been implicated in OFT morphogenesis, is a direct target of Nkx2.5 regulation. Jarid2 expression was up-regulated in SHF mesoderm of Nkx2.5-deficient embryos. Chromatin immunoprecipitation analysis showed Nkx2.5 interaction with consensus binding sites in the Jarid2 promoter in pharyngeal arch cells. Finally, Jarid2 promoter activity and mRNA expression levels were down-regulated by Nkx2.5 overexpression. Given the role of Jarid2 as a regulator of early cardiac proliferation, these findings highlight Jarid2 as one of several potential mediators of the critical role played by Nkx2.5 during OFT morphogenesis.


Asunto(s)
Corazón/embriología , Proteínas de Homeodominio/metabolismo , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/metabolismo , Animales , Sitios de Unión , Región Branquial/embriología , Región Branquial/metabolismo , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Endodermo/metabolismo , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/metabolismo , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/genética , Hibridación in Situ , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Complejo Represivo Polycomb 2 , Regiones Promotoras Genéticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética
19.
BMC Bioinformatics ; 11: 166, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20359363

RESUMEN

BACKGROUND: An important objective of DNA microarray-based gene expression experimentation is determining inter-relationships that exist between differentially expressed genes and biological processes, molecular functions, cellular components, signaling pathways, physiologic processes and diseases. RESULTS: Here we describe GeneMesh, a web-based program that facilitates analysis of DNA microarray gene expression data. GeneMesh relates genes in a query set to categories available in the Medical Subject Headings (MeSH) hierarchical index. The interface enables hypothesis driven relational analysis to a specific MeSH subcategory (e.g., Cardiovascular System, Genetic Processes, Immune System Diseases etc.) or unbiased relational analysis to broader MeSH categories (e.g., Anatomy, Biological Sciences, Disease etc.). Genes found associated with a given MeSH category are dynamically linked to facilitate tabular and graphical depiction of Entrez Gene information, Gene Ontology information, KEGG metabolic pathway diagrams and intermolecular interaction information. Expression intensity values of groups of genes that cluster in relation to a given MeSH category, gene ontology or pathway can be displayed as heat maps of Z score-normalized values. GeneMesh operates on gene expression data derived from a number of commercial microarray platforms including Affymetrix, Agilent and Illumina. CONCLUSIONS: GeneMesh is a versatile web-based tool for testing and developing new hypotheses through relating genes in a query set (e.g., differentially expressed genes from a DNA microarray experiment) to descriptors making up the hierarchical structure of the National Library of Medicine controlled vocabulary thesaurus, MeSH. The system further enhances the discovery process by providing links between sets of genes associated with a given MeSH category to a rich set of html linked tabular and graphic information including Entrez Gene summaries, gene ontologies, intermolecular interactions, overlays of genes onto KEGG pathway diagrams and heatmaps of expression intensity values. GeneMesh is freely available online at http://proteogenomics.musc.edu/genemesh/.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Medical Subject Headings , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Programas Informáticos , Bases de Datos Genéticas , Internet , Interfaz Usuario-Computador
20.
Biol Reprod ; 83(6): 1015-26, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20739664

RESUMEN

GATA4 and GATA6 are zinc-finger transcription factors that regulate specific genes involved in steroidogenesis. Using RNA interference (RNAi)-mediated reduction of GATA4 and/or GATA6 with microarray analysis, we aimed to identify novel GATA target genes in luteinizing porcine granulosa cells under vehicle- and cAMP-treated conditions. Microarray analysis identified IGF1 mRNA to be cAMP- and GATA-responsive, and real-time PCR demonstrated that the cAMP-induced increase in IGF1 mRNA was reduced under conditions of GATA6 depletion and GATA4 plus GATA6 depletion, but not GATA4 depletion. Insulin-like growth factor 1 protein levels in media were also decreased by GATA6 or GATA4 plus GATA6 reduction. IGFBP2 and IGFBP4 mRNAs were increased and IGFBP5 mRNA decreased with vehicle and cAMP treatment under GATA4 plus GATA6 RNAi conditions. GATA6 reduction alone increased basal IGFBP4 and decreased IGFBP5 with both vehicle and cAMP, and GATA4 reduction alone lowered cAMP IGFBP5 levels with cAMP. No changes in IGFBP3 mRNA were observed with GATA reduction relative to the control RNAi condition. Levels of insulin-like growth factor binding proteins 2-5 in media as assessed by Western ligand blotting were not altered by GATA reduction. Electromobility gel shift assays with two GATA-containing oligonucleotides of the IGF1 5'-regulatory region showed GATA4 and GATA6 could bind the more proximal GATA-B site. These studies indicate that although GATA4 and GATA6 can bind the porcine IGF1 5'-region, GATA6 is functionally most important for cAMP-stimulated mRNA levels. Using microarray analysis, we identified other mRNAs that were altered by GATA-reduced conditions, including ALDH1, DIO2, and EDNRB. Our findings further support GATA as a coordinator of endocrine/paracrine/autocrine signals in the ovary.


Asunto(s)
Factor de Transcripción GATA4/metabolismo , Factor de Transcripción GATA6/metabolismo , Células de la Granulosa/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Luteinización/metabolismo , Región de Flanqueo 5' , Animales , Células Cultivadas , AMP Cíclico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Femenino , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA6/genética , Perfilación de la Expresión Génica , Silenciador del Gen , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/genética , Proteínas de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN , ARN Mensajero/metabolismo , Sus scrofa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA