Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Acta Neuropathol ; 145(4): 439-459, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36729133

RESUMEN

Identification and characterisation of novel targets for treatment is a priority in the field of psychiatry. FKBP5 is a gene with decades of evidence suggesting its pathogenic role in a subset of psychiatric patients, with potential to be leveraged as a therapeutic target for these individuals. While it is widely reported that FKBP5/FKBP51 mRNA/protein (FKBP5/1) expression is impacted by psychiatric disease state, risk genotype and age, it is not known in which cell types and sub-anatomical areas of the human brain this occurs. This knowledge is critical to propel FKBP5/1-targeted treatment development. Here, we performed an extensive, large-scale postmortem study (n = 1024) of FKBP5/1, examining neocortical areas (BA9, BA11 and ventral BA24/BA24a) derived from subjects that lived with schizophrenia, major depression or bipolar disorder. With an extensive battery of RNA (bulk RNA sequencing, single-nucleus RNA sequencing, microarray, qPCR, RNAscope) and protein (immunoblot, immunohistochemistry) analysis approaches, we thoroughly investigated the effects of disease state, ageing and genotype on cortical FKBP5/1 expression including in a cell type-specific manner. We identified consistently heightened FKBP5/1 levels in psychopathology and with age, but not genotype, with these effects strongest in schizophrenia. Using single-nucleus RNA sequencing (snRNAseq; BA9 and BA11) and targeted histology (BA9, BA24a), we established that these disease and ageing effects on FKBP5/1 expression were most pronounced in excitatory superficial layer neurons of the neocortex, and this effect appeared to be consistent in both the granular and agranular areas examined. We then found that this increase in FKBP5 levels may impact on synaptic plasticity, as FKBP5 gex levels strongly and inversely correlated with dendritic mushroom spine density and brain-derived neurotrophic factor (BDNF) levels in superficial layer neurons in BA11. These findings pinpoint a novel cellular and molecular mechanism that has potential to open a new avenue of FKBP51 drug development to treat cognitive symptoms in psychiatric disorders.


Asunto(s)
Trastornos Mentales , Neocórtex , Humanos , Trastornos Mentales/genética , Envejecimiento/genética , Neuronas , Genotipo , Polimorfismo de Nucleótido Simple
2.
PLoS Biol ; 18(1): e3000595, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31961851

RESUMEN

Triglycerides are the major form of stored fat in all animals. One important determinant of whole-body fat storage is whether an animal is male or female. Here, we use Drosophila, an established model for studies on triglyceride metabolism, to gain insight into the genes and physiological mechanisms that contribute to sex differences in fat storage. Our analysis of triglyceride storage and breakdown in both sexes identified a role for triglyceride lipase brummer (bmm) in the regulation of sex differences in triglyceride homeostasis. Normally, male flies have higher levels of bmm mRNA both under normal culture conditions and in response to starvation, a lipolytic stimulus. We find that loss of bmm largely eliminates the sex difference in triglyceride storage and abolishes the sex difference in triglyceride breakdown via strongly male-biased effects. Although we show that bmm function in the fat body affects whole-body triglyceride levels in both sexes, in males, we identify an additional role for bmm function in the somatic cells of the gonad and in neurons in the regulation of whole-body triglyceride homeostasis. Furthermore, we demonstrate that lipid droplets are normally present in both the somatic cells of the male gonad and in neurons, revealing a previously unrecognized role for bmm function, and possibly lipid droplets, in these cell types in the regulation of whole-body triglyceride homeostasis. Taken together, our data reveal a role for bmm function in the somatic cells of the gonad and in neurons in the regulation of male-female differences in fat storage and breakdown and identify bmm as a link between the regulation of triglyceride homeostasis and biological sex.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/genética , Drosophila/metabolismo , Lipasa/fisiología , Metabolismo de los Lípidos/genética , Lipólisis/genética , Caracteres Sexuales , Animales , Animales Modificados Genéticamente , Metabolismo Energético/genética , Femenino , Lipasa/genética , Lipasa/metabolismo , Masculino , Micronutrientes/metabolismo , Triglicéridos/metabolismo
3.
Purinergic Signal ; 18(4): 451-467, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35478453

RESUMEN

Mutant superoxide dismutase 1 (SOD1) can be constitutively released from motor neurons and transmitted to naïve motor neurons to promote the progression of amyotrophic lateral sclerosis (ALS). However, the biological impacts of this process and the precise mechanisms of SOD1 release remain to be fully resolved. Using biochemical and fluorescent techniques, this study aimed to determine if P2X7 receptor activation could induce mutant SOD1 release from motor neurons and whether this released SOD1 could be transmitted to motor neurons or microglia to mediate effects associated with neurodegeneration in ALS. Aggregated SOD1G93A, released from murine NSC-34 motor neurons transiently transfected with SOD1G93A, could be transmitted to naïve NSC-34 cells and murine EOC13 microglia to induce endoplasmic reticulum (ER) stress and tumour necrosis factor-alpha (TNFα) release, respectively. Immunoblotting revealed NSC-34 cells expressed P2X7. Extracellular ATP induced cation dye uptake into these cells, which was blocked by the P2X7 antagonist AZ10606120, demonstrating these cells express functional P2X7. Moreover, ATP induced the rapid release of aggregated SOD1G93A from NSC-34 cells transiently transfected with SOD1G93A, a process blocked by AZ10606120 and revealing a role for P2X7 in this process. ATP-induced SOD1G93A release coincided with membrane blebbing. Finally, aggregated SOD1G93A released via P2X7 activation could also be transmitted to NSC-34 and EOC13 cells to induce ER stress and TNFα release, respectively. Collectively, these results identify a novel role for P2X7 in the prion-like propagation of SOD1 in ALS and provide a possible explanation for the therapeutic benefits of P2X7 antagonism previously observed in ALS SOD1G93A mice.


Asunto(s)
Esclerosis Amiotrófica Lateral , Receptores Purinérgicos P2X7 , Superóxido Dismutasa-1 , Animales , Ratones , Adenosina Trifosfato/farmacología , Esclerosis Amiotrófica Lateral/patología , Modelos Animales de Enfermedad , Ratones Transgénicos , Neuronas Motoras/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Superóxido Dismutasa-1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
4.
Pharmacol Rev ; 66(3): 638-75, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24928329

RESUMEN

The P2X7 receptor is a trimeric ATP-gated cation channel found predominantly, but not exclusively, on immune cells. P2X7 activation results in a number of downstream events, including the release of proinflammatory mediators and cell death and proliferation. As such, P2X7 plays important roles in various inflammatory, immune, neurologic and musculoskeletal disorders. This review focuses on the use of P2X7 antagonists in rodent models of neurologic disease and injury, inflammation, and musculoskeletal and other disorders. The cloning and characterization of human, rat, mouse, guinea pig, dog, and Rhesus macaque P2X7, as well as recent observations regarding the gating and permeability of P2X7, are discussed. Furthermore, this review discusses polymorphic and splice variants of P2X7, as well as the generation and use of P2X7 knockout mice. Recent evidence for emerging signaling pathways downstream of P2X7 activation and the growing list of negative and positive modulators of P2X7 activation and expression are also described. In addition, the use of P2X7 antagonists in numerous rodent models of disease is extensively summarized. Finally, the use of P2X7 antagonists in clinical trials in humans and future directions exploring P2X7 as a therapeutic target are described.


Asunto(s)
Diseño de Fármacos , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/efectos de los fármacos , Animales , Ensayos Clínicos como Asunto , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Polimorfismo Genético , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal/efectos de los fármacos
5.
Physiol Genomics ; 46(14): 512-22, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24824213

RESUMEN

The relative function of the P2X7 receptor, an ATP-gated ion channel, varies between humans due to polymorphisms in the P2RX7 gene. This study aimed to assess the functional impact of P2X7 variation in a random sample of the canine population. Blood and genomic DNA were obtained from 69 dogs selected as representatives of a cross section of different breeds. P2X7 function was determined by flow cytometric measurements of dye uptake and patch-clamp measurements of inward currents. P2X7 expression was determined by immunoblotting and immunocytochemistry. Sequencing was used to identify P2RX7 gene polymorphisms. P2X7 was cloned from an English springer spaniel, and point mutations were introduced into this receptor by site-directed mutagenesis. The relative function of P2X7 on monocytes varied between individual dogs. The canine P2RX7 gene encoded four missense polymorphisms: F103L and P452S, found in heterozygous and homozygous dosage, and R270C and R365Q, found only in heterozygous dosage. Moreover, R270C and R365Q were associated with the cocker spaniel and Labrador retriever, respectively. F103L, R270C, and R365Q but not P452S corresponded to decreased P2X7 function in monocytes but did not explain the majority of differences in P2X7 function between dogs, indicating that other factors contribute to this variability. Heterologous expression of site-directed mutants of P2X7 in human embryonic kidney-293 cells indicated that the R270C mutant was nonfunctional, the F103L and R365Q mutants had partly reduced function, and the P452S mutant functioned normally. Taken together, these data highlight that a R270C polymorphism has major functional impact on canine P2X7.


Asunto(s)
Mutación Missense/genética , Polimorfismo de Nucleótido Simple/genética , Receptores Purinérgicos P2X7/genética , Animales , Línea Celular , Perros , Células HEK293 , Heterocigoto , Homocigoto , Humanos , Células de Riñón Canino Madin Darby , Monocitos/metabolismo
6.
Mediators Inflamm ; 2013: 271813, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23431238

RESUMEN

The P2X7 purinergic receptor is a ligand-gated cation channel expressed on leukocytes including microglia. This study aimed to determine if P2X7 activation induces the uptake of organic cations, reactive oxygen species (ROS) formation, and death in the murine microglial EOC13 cell line. Using the murine macrophage J774 cell line as a positive control, RT-PCR, immunoblotting, and immunolabelling established the presence of P2X7 in EOC13 cells. A cytofluorometric assay demonstrated that the P2X7 agonists adenosine-5'-triphosphate (ATP) and 2'(3')-O-(4-benzoylbenzoyl) ATP induced ethidium(+) or YO-PRO-1(2+) uptake into both cell lines. ATP induced ethidium(+) uptake into EOC13 cells in a concentration-dependent manner, with an EC(50) of ~130 µM. The P2X7 antagonists Brilliant Blue G, A438079, AZ10606120, and AZ11645373 inhibited ATP-induced cation uptake into EOC13 cells by 75-100%. A cytofluorometric assay demonstrated that P2X7 activation induced ROS formation in EOC13 cells, via a mechanism independent of Ca(2+) influx and K(+) efflux. Cytofluorometric measurements of Annexin-V binding and 7AAD uptake demonstrated that P2X7 activation induced EOC13 cell death. The ROS scavenger N-acetyl-L-cysteine impaired both P2X7-induced EOC13 ROS formation and cell death, suggesting that ROS mediate P2X7-induced EOC13 death. In conclusion, P2X7 activation induces the uptake of organic cations, ROS formation, and death in EOC13 microglia.


Asunto(s)
Muerte Celular/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animales , Línea Celular , Immunoblotting , Ratones , Antagonistas del Receptor Purinérgico P2X/farmacología , Piridinas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tetrazoles/farmacología , Tiazoles/farmacología
7.
Psychiatry Res ; 296: 113661, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33373807

RESUMEN

Displacement of people from their homes, families and countries is a current global crisis, with over 70 million people forcibly on the move. A substantial proportion of these people will end up in regions with a different language and culture, where they are registered as refugees or asylum seekers. Due to the underlying reasons for displacement (including conflicts, persecution or violation of human rights), displaced people are severely stress-exposed, which continues into their post-migration life and increases risk for developing psychiatric disorders such as post-traumatic stress disorder and other anxiety disorders and mood disorders. While landmark studies have illustrated the increased prevalence of psychopathology in asylum seeker and refugee populations following pre-/post-displacement stress, few studies add to our understanding of the basic biological mechanisms underpinning risk to psychiatric disorders in these populations. Additionally, the mechanisms underlying resilience despite significant adversity remain unclear. Understanding the molecular mechanisms underpinning the development of psychiatric disorders in refugees can propel treatments (both drug and non-drug) that are capable of influencing biology at the molecular level, and the design of interventions. In the following review, we summarise the status quo of research investigating the pathophysiology of psychiatric disorders in refugees, and propose new ways to address gaps in knowledge with multidisciplinary research.


Asunto(s)
Trastornos Mentales/epidemiología , Salud Mental/etnología , Trauma Psicológico/etnología , Psicopatología , Refugiados/psicología , Trastornos por Estrés Postraumático/psicología , Estrés Psicológico/etnología , Trastornos de Ansiedad , Humanos , Hidrocortisona/sangre , Masculino , Trastornos del Humor , Prevalencia , Trauma Psicológico/diagnóstico , Trauma Psicológico/psicología , Refugiados/estadística & datos numéricos , Trastornos por Estrés Postraumático/diagnóstico , Trastornos por Estrés Postraumático/etnología , Estrés Psicológico/diagnóstico , Estrés Psicológico/psicología
8.
Br J Pharmacol ; 177(12): 2812-2829, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32017039

RESUMEN

BACKGROUND AND PURPOSE: P2X4 receptors are emerging therapeutic targets for treating chronic pain and cardiovascular disease. Dogs are well-recognised natural models of human disease, but information regarding P2X4 receptors in dogs is lacking. To aid the development and validation of P2X4 receptor ligands, we have characterised and compared canine and human P2X4 receptors. EXPERIMENTAL APPROACH: Genomic DNA was extracted from whole blood samples from 101 randomly selected dogs and sequenced across the P2RX4 gene to identify potential missense variants. Recombinant canine and human P2X4 receptors tagged with Emerald GFP were expressed in 1321N1 and HEK293 cells and analysed by immunoblotting and confocal microscopy. In these cells, receptor pharmacology was characterised using nucleotide-induced Fura-2 AM measurements of intracellular Ca2+ and known P2X4 receptor antagonists. P2X4 receptor-mediated inward currents in HEK293 cells were assessed by automated patch clamp. KEY RESULTS: No P2RX4 missense variants were identified in any canine samples. Canine and human P2X4 receptors were localised primarily to lysosomal compartments. ATP was the primary agonist of canine P2X4 receptors with near identical efficacy and potency at human receptors. 2'(3')-O-(4-benzoylbenzoyl)-ATP, but not ADP, was a partial agonist with reduced potency for canine P2X4 receptors compared to the human orthologues. Five antagonists inhibited canine P2X4 receptors, with 1-(2,6-dibromo-4-isopropyl-phenyl)-3-(3-pyridyl)urea displaying reduced sensitivity and potency at canine P2X4 receptors. CONCLUSION AND IMPLICATIONS: P2X4 receptors are highly conserved across dog pedigrees and display expression patterns and pharmacological profiles similar to human receptors, supporting validation and use of therapeutic agents for P2X4 receptor-related disease onset and management in dogs and humans.


Asunto(s)
Antagonistas del Receptor Purinérgico P2X , Receptores Purinérgicos P2X4 , Adenosina Trifosfato , Animales , Perros , Células HEK293 , Humanos , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X7
9.
PeerJ ; 5: e3064, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28265522

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease characterised by the accumulation of aggregated proteins, microglia activation and motor neuron loss. The mechanisms underlying neurodegeneration and disease progression in ALS are unknown, but the ATP-gated P2X7 receptor channel is implicated in this disease. Therefore, the current study aimed to examine P2X7 in the context of neurodegeneration, and investigate whether the P2X7 antagonist, Brilliant Blue G (BBG), could alter disease progression in a murine model of ALS. METHODS: Human SOD1G93A transgenic mice, which normally develop ALS, were injected with BBG or saline, three times per week, from pre-onset of clinical disease (62-64 days of age) until end-stage. During the course of treatment mice were assessed for weight, clinical score and survival, and motor coordination, which was assessed by rotarod performance. Various parameters from end-stage mice were assessed as follows. Motor neuron loss and microgliosis were assessed by immunohistochemistry. Relative amounts of lumbar spinal cord SOD1 and P2X7 were quantified by immunoblotting. Serum monocyte chemoattractant protein-1 was measured by ELISA. Splenic leukocyte populations were assessed by flow cytometry. Relative expression of splenic and hepatic P2X7 mRNA was measured by quantitative real-time PCR. Lumbar spinal cord SOD1 and P2X7 were also quantified by immunoblotting in untreated female SOD1G93A mice during the course of disease. RESULTS: BBG treatment reduced body weight loss in SOD1G93A mice of combined sex, but had no effect on clinical score, survival or motor coordination. BBG treatment reduced body weight loss in female, but not male, SOD1G93A mice. BBG treatment also prolonged survival in female, but not male, SOD1G93A mice, extending the mean survival time by 4.3% in female mice compared to female mice treated with saline. BBG treatment had no effect on clinical score or motor coordination in either sex. BBG treatment had no major effect on any end-stage parameters. Total amounts of lumbar spinal cord SOD1 and P2X7 in untreated female SOD1G93A mice did not change over time. DISCUSSION: Collectively, this data suggests P2X7 may have a partial role in ALS progression in mice, but additional research is required to fully elucidate the contribution of this receptor in this disease.

10.
Nucleosides Nucleotides Nucleic Acids ; 36(12): 736-744, 2017 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-29200326

RESUMEN

The current study aimed to determine if probenecid could directly impair the canine P2X7 receptor, a ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate (ATP). Patch clamp measurements demonstrated that probenecid impairs ATP-induced inward currents in HEK-293 cells expressing canine P2X7. Flow cytometric measurements of ethidium+ uptake into HEK-293 cells expressing canine P2X7 showed that probenecid impairs ATP-induced pore formation in a concentration-dependent manner, with a half maximal inhibitory concentration of 158 µM. Finally, ELISA measurements revealed that probenecid impairs ATP-induced interleukin-1ß release in dog blood. In conclusion, this study reveals that probenecid can directly impair canine P2X7 activation.


Asunto(s)
Probenecid/farmacología , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores Purinérgicos P2X7/metabolismo , Animales , Perros , Células HEK293 , Humanos , Interleucina-1beta/metabolismo , Porosidad , Receptores Purinérgicos P2X7/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA