Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 16(7): e1008015, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32678848

RESUMEN

Calmodulin-dependent kinase II (CaMKII) has long been known to play an important role in learning and memory as well as long term potentiation (LTP). More recently it has been suggested that it might be involved in the time averaging of synaptic signals, which can then lead to the high precision of information stored at a single synapse. However, the role of the scaffolding molecule, neurogranin (Ng), in governing the dynamics of CaMKII is not yet fully understood. In this work, we adopt a rule-based modeling approach through the Monte Carlo method to study the effect of Ca2+ signals on the dynamics of CaMKII phosphorylation in the postsynaptic density (PSD). Calcium surges are observed in synaptic spines during an EPSP and back-propagating action potential due to the opening of NMDA receptors and voltage dependent calcium channels. Using agent-based models, we computationally investigate the dynamics of phosphorylation of CaMKII monomers and dodecameric holoenzymes. The scaffolding molecule, Ng, when present in significant concentration, limits the availability of free calmodulin (CaM), the protein which activates CaMKII in the presence of calcium. We show that Ng plays an important modulatory role in CaMKII phosphorylation following a surge of high calcium concentration. We find a non-intuitive dependence of this effect on CaM concentration that results from the different affinities of CaM for CaMKII depending on the number of calcium ions bound to the former. It has been shown previously that in the absence of phosphatase, CaMKII monomers integrate over Ca2+ signals of certain frequencies through autophosphorylation (Pepke et al, Plos Comp. Bio., 2010). We also study the effect of multiple calcium spikes on CaMKII holoenzyme autophosphorylation, and show that in the presence of phosphatase, CaMKII behaves as a leaky integrator of calcium signals, a result that has been recently observed in vivo. Our models predict that the parameters of this leaky integrator are finely tuned through the interactions of Ng, CaM, CaMKII, and PP1, providing a mechanism to precisely control the sensitivity of synapses to calcium signals. Author Summary not valid for PLOS ONE submissions.


Asunto(s)
Señalización del Calcio , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calmodulina/metabolismo , Neurogranina/metabolismo , Potenciales de Acción , Animales , Área Bajo la Curva , Biología Computacional , Simulación por Computador , Potenciación a Largo Plazo , Ratones , Método de Montecarlo , Plasticidad Neuronal , Fosforilación , Densidad Postsináptica/metabolismo , Unión Proteica , Receptores de N-Metil-D-Aspartato/metabolismo , Programas Informáticos , Sinapsis/fisiología , Factores de Tiempo
2.
Phys Biol ; 12(4): 045005, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26086598

RESUMEN

A stochastic reaction network model of Ca(2+) dynamics in synapses (Pepke et al PLoS Comput. Biol. 6 e1000675) is expressed and simulated using rule-based reaction modeling notation in dynamical grammars and in MCell. The model tracks the response of calmodulin and CaMKII to calcium influx in synapses. Data from numerically intensive simulations is used to train a reduced model that, out of sample, correctly predicts the evolution of interaction parameters characterizing the instantaneous probability distribution over molecular states in the much larger fine-scale models. The novel model reduction method, 'graph-constrained correlation dynamics', requires a graph of plausible state variables and interactions as input. It parametrically optimizes a set of constant coefficients appearing in differential equations governing the time-varying interaction parameters that determine all correlations between variables in the reduced model at any time slice.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/química , Calcio/química , Calmodulina/química , Sinapsis/enzimología , Algoritmos , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calmodulina/metabolismo , Cinética , Modelos Químicos , Modelos Neurológicos , Simulación de Dinámica Molecular , Probabilidad
3.
J Gen Physiol ; 151(8): 1017-1034, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31324651

RESUMEN

Dendritic spines are small subcompartments that protrude from the dendrites of neurons and are important for signaling activity and synaptic communication. These subcompartments have been characterized to have different shapes. While it is known that these shapes are associated with spine function, the specific nature of these shape-function relationships is not well understood. In this work, we systematically investigated the relationship between the shape and size of both the spine head and spine apparatus, a specialized endoplasmic reticulum compartment within the spine head, in modulating rapid calcium dynamics using mathematical modeling. We developed a spatial multicompartment reaction-diffusion model of calcium dynamics in three dimensions with various flux sources, including N-methyl-D-aspartate receptors (NMDARs), voltage-sensitive calcium channels (VSCCs), and different ion pumps on the plasma membrane. Using this model, we make several important predictions. First, the volume to surface area ratio of the spine regulates calcium dynamics. Second, membrane fluxes impact calcium dynamics temporally and spatially in a nonlinear fashion. Finally, the spine apparatus can act as a physical buffer for calcium by acting as a sink and rescaling the calcium concentration. These predictions set the stage for future experimental investigations of calcium dynamics in dendritic spines.


Asunto(s)
Señalización del Calcio , Espinas Dendríticas/metabolismo , Modelos Teóricos , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Espinas Dendríticas/ultraestructura , Ratas , Receptores de N-Metil-D-Aspartato/metabolismo
4.
eNeuro ; 5(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29430519

RESUMEN

Efficient clearance of dopamine (DA) from the synapse is key to regulating dopaminergic signaling. This role is fulfilled by DA transporters (DATs). Recent advances in the structural characterization of DAT from Drosophila (dDAT) and in high-resolution imaging of DA neurons and the distribution of DATs in living cells now permit us to gain a mechanistic understanding of DA reuptake events in silico. Using electron microscopy images and immunofluorescence of transgenic knock-in mouse brains that express hemagglutinin-tagged DAT in DA neurons, we reconstructed a realistic environment for MCell simulations of DA reuptake, wherein the identity, population and kinetics of homology-modeled human DAT (hDAT) substates were derived from molecular simulations. The complex morphology of axon terminals near active zones was observed to give rise to large variations in DA reuptake efficiency, and thereby in extracellular DA density. Comparison of the effect of different firing patterns showed that phasic firing would increase the probability of reaching local DA levels sufficiently high to activate low-affinity DA receptors, mainly owing to high DA levels transiently attained during the burst phase. The experimentally observed nonuniform surface distribution of DATs emerged as a major modulator of DA signaling: reuptake was slower, and the peaks/width of transient DA levels were sharper/wider under nonuniform distribution of DATs, compared with uniform. Overall, the study highlights the importance of accurate descriptions of extrasynaptic morphology, DAT distribution, and conformational kinetics for quantitative evaluation of dopaminergic transmission and for providing deeper understanding of the mechanisms that regulate DA transmission.


Asunto(s)
Axones/metabolismo , Axones/ultraestructura , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina/metabolismo , Potenciales de Acción/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/ultraestructura , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/ultraestructura , Humanos , Ratones Transgénicos , Simulación de Dinámica Molecular , Conformación Proteica , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos
6.
Neuroinformatics ; 12(2): 277-89, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24100964

RESUMEN

Establishing meaningful relationships between cellular structure and function requires accurate morphological reconstructions. In particular, there is an unmet need for high quality surface reconstructions to model subcellular and synaptic interactions among neurons and glia at nanometer resolution. We address this need with VolRoverN, a software package that produces accurate, efficient, and automated 3D surface reconstructions from stacked 2D contour tracings. While many techniques and tools have been developed in the past for 3D visualization of cellular structure, the reconstructions from VolRoverN meet specific quality criteria that are important for dynamical simulations. These criteria include manifoldness, water-tightness, lack of self- and object-object-intersections, and geometric accuracy. These enhanced surface reconstructions are readily extensible to any cell type and are used here on spiny dendrites with complex morphology and axons from mature rat hippocampal area CA1. Both spatially realistic surface reconstructions and reduced skeletonizations are produced and formatted by VolRoverN for easy input into analysis software packages for neurophysiological simulations at multiple spatial and temporal scales ranging from ion electro-diffusion to electrical cable models.


Asunto(s)
Simulación por Computador , Hipocampo/anatomía & histología , Procesamiento de Imagen Asistido por Computador , Neuronas/ultraestructura , Programas Informáticos , Animales , Masculino , Ratas
7.
Nurse Pract ; 43(1): 1-2, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29240624
9.
J Am Acad Nurse Pract ; 24 Suppl 1: 270-6, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22564103

RESUMEN

PURPOSE: To discuss the role of nurse practitioners (NPs) in motivating and guiding patients with type 2 diabetes to self-manage their disease, achieve their treatment goals, and have a more positive treatment experience. DATA SOURCES: Personal experience; clinical studies. CONCLUSIONS: NPs play a key role in educating patients and helping them understand the need for, and benefits of, improved diabetes control. Yet, achieving improved diabetes control goes far beyond sharing information. The NP can be pivotal in helping to motivate patients to be active players in their own diabetes management. IMPLICATIONS FOR PRACTICE: NPs can improve the treatment experience of patients with diabetes by educating and motivating them to make beneficial lifestyle changes and commit to treatments tailored to their individual needs and expectations.


Asunto(s)
Diabetes Mellitus Tipo 2/enfermería , Enfermeras Practicantes/psicología , Rol de la Enfermera , Automonitorización de la Glucosa Sanguínea , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/psicología , Humanos , Hipoglucemiantes/uso terapéutico , Insulina/uso terapéutico , Estilo de Vida , Educación del Paciente como Asunto/métodos , Satisfacción del Paciente , Autocuidado/métodos
13.
Nurse Pract ; 41(8): 14-5, 2016 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-27434386
14.
Nurse Pract ; 41(5): 12-3, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27096557
16.
Nurse Pract ; 41(11): 10-11, 2016 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-27764062
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA