Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Physiol ; 594(4): 985-1003, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26662168

RESUMEN

KEY POINTS: Cerebellar Purkinje cells project GABAergic inhibitory input to neurons of the deep cerebellar nuclei (DCN) that generate a rebound increase in firing, but the specific patterns of input that might elicit a rebound response have not been established. We used recordings of Purkinje cell firing obtained during perioral whisker stimulation in vivo to create a physiological stimulus template to activate Purkinje cell afferents in vitro. DCN cell bursts were evoked by the stimulus pattern but not in relation to the perioral whisker stimulus, complex spikes or regular patterns within the Purkinje cell record. Reverse correlation revealed that bursts were triggered by an elevation-pause pattern of Purkinje cell firing, with pause duration a key factor in burst generation. Our data identify for the first time a physiological pattern of Purkinje cell input that can be encoded by the generation of rebound bursts in DCN cells. ABSTRACT: The end result of signal processing in cerebellar cortex is encoded in the output of Purkinje cells that project inhibitory input to deep cerebellar nuclear (DCN) neurons. DCN cells can respond to a period of inhibition in vitro with a rebound burst of firing, yet the optimal physiological pattern of Purkinje cell input that might evoke a rebound burst is unknown. The current study used spike trains recorded from rat Purkinje cells in response to perioral stimuli in vivo to create a physiological pattern to stimulate Purkinje cell axons in vitro. The perioral stimulus-evoked Purkinje cell firing pattern proved to be virtually ineffective in evoking a rebound burst despite the ability to reliably evoke rebounds using a traditional brief 100 Hz stimulus. Similarly, neither complex spike firing nor Purkinje cell patterns identified by CV2 analysis were reliably associated with rebound bursts. Reverse correlation revealed that the optimal Purkinje cell input to evoke a rebound burst was a sequential increase in mean firing rate of at least 30 Hz above baseline over 250 ms followed by a reduction of 40-60 Hz below baseline for up to 500 ms. The most important factor was the duration of a pause in Purkinje cell firing that allowed DCN cells to recover from a state of net inhibitory influence. These data indicate that physiological patterns of Purkinje cell firing can elicit rebound bursts in DCN cells in vitro, with pauses in Purkinje cell firing rate acting as a key stimulus for DCN cell rebound responses.


Asunto(s)
Potenciales de Acción , Núcleos Cerebelosos/fisiología , Potenciales Evocados , Células de Purkinje/fisiología , Animales , Axones/fisiología , Ratas , Ratas Sprague-Dawley
2.
J Neurosci ; 33(18): 7811-24, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23637173

RESUMEN

Synaptic transmission and neuronal excitability depend on the concentration of extracellular calcium ([Ca](o)), yet repetitive synaptic input is known to decrease [Ca](o) in numerous brain regions. In the cerebellar molecular layer, synaptic input reduces [Ca](o) by up to 0.4 mm in the vicinity of stellate cell interneurons and Purkinje cell dendrites. The mechanisms used to maintain network excitability and Purkinje cell output in the face of this rapid change in calcium gradient have remained an enigma. Here we use single and dual patch recordings in an in vitro slice preparation of Sprague Dawley rats to investigate the effects of physiological decreases in [Ca](o) on the excitability of cerebellar stellate cells and their inhibitory regulation of Purkinje cells. We find that a Ca(v)3-K(v)4 ion channel complex expressed in stellate cells acts as a calcium sensor that responds to a decrease in [Ca]o by dynamically adjusting stellate cell output to maintain inhibitory charge transfer to Purkinje cells. The Ca(v)3-K(v)4 complex thus enables an adaptive regulation of inhibitory input to Purkinje cells during fluctuations in [Ca](o), providing a homeostatic control mechanism to regulate Purkinje cell excitability during repetitive afferent activity.


Asunto(s)
Calcio/metabolismo , Caveolina 3/metabolismo , Líquido Extracelular/metabolismo , Inhibición Neural/fisiología , Neuronas/metabolismo , Canales de Potasio Shal/metabolismo , Animales , Animales Recién Nacidos , Anticuerpos/farmacología , Calcio/farmacología , Caveolina 3/genética , Cerebelo/citología , Relación Dosis-Respuesta a Droga , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Líquido Extracelular/efectos de los fármacos , Antagonistas del GABA/farmacología , Proteínas Fluorescentes Verdes/genética , Técnicas In Vitro , Potenciales Postsinápticos Inhibidores/efectos de los fármacos , Potenciales Postsinápticos Inhibidores/genética , Proteínas de Interacción con los Canales Kv/genética , Proteínas de Interacción con los Canales Kv/inmunología , Proteínas de Interacción con los Canales Kv/metabolismo , Masculino , Fibras Nerviosas/fisiología , Inhibición Neural/efectos de los fármacos , Ácidos Fosfínicos/farmacología , Piperidinas/farmacología , Propanolaminas/farmacología , Pirazoles/farmacología , Ratas , Ratas Sprague-Dawley , Canales de Potasio Shal/genética , Transfección
3.
Proc Natl Acad Sci U S A ; 107(19): 8599-604, 2010 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-20445106

RESUMEN

Structural features of neurons create challenges for effective production and distribution of essential metabolic energy. We investigated how metabolic energy is distributed between cellular compartments in photoreceptors. In avascular retinas, aerobic production of energy occurs only in mitochondria that are located centrally within the photoreceptor. Our findings indicate that metabolic energy flows from these central mitochondria as phosphocreatine toward the photoreceptor's synaptic terminal in darkness. In light, it flows in the opposite direction as ATP toward the outer segment. Consistent with this model, inhibition of creatine kinase in avascular retinas blocks synaptic transmission without influencing outer segment activity. Our findings also reveal how vascularization of neuronal tissue can influence the strategies neurons use for energy management. In vascularized retinas, mitochondria in the synaptic terminals of photoreceptors make neurotransmission less dependent on creatine kinase. Thus, vasculature of the tissue and the intracellular distribution of mitochondria can play key roles in setting the strategy for energy distribution in neurons.


Asunto(s)
Oscuridad , Metabolismo Energético/fisiología , Retina/fisiología , Animales , Creatina Quinasa/antagonistas & inhibidores , Creatina Quinasa/metabolismo , Dinitrofluorobenceno/farmacología , Electrorretinografía , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/efectos de la radiación , Glutamatos/metabolismo , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Mitocondrias/efectos de la radiación , Modelos Biológicos , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/enzimología , Terminales Presinápticos/efectos de la radiación , Inhibidores de Proteínas Quinasas/farmacología , Retina/efectos de los fármacos , Retina/enzimología , Retina/efectos de la radiación , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/enzimología , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Segmento Externo de las Células Fotorreceptoras Retinianas/efectos de los fármacos , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/efectos de la radiación , Vasos Retinianos/efectos de los fármacos , Vasos Retinianos/enzimología , Vasos Retinianos/efectos de la radiación , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/efectos de la radiación , Urodelos/fisiología
4.
J Neurosci ; 30(47): 15866-77, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21106825

RESUMEN

Cones release glutamate-filled vesicles continuously in darkness, and changing illumination modulates this release. Because sustained release in darkness is governed by vesicle replenishment rates, we analyzed how cone membrane potential regulates replenishment. Synaptic release from cones was measured by recording postsynaptic currents in Ambystoma tigrinum horizontal or OFF bipolar cells evoked by depolarization of simultaneously voltage-clamped cones. We measured replenishment after attaining a steady state between vesicle release and replenishment using trains of test pulses. Increasing Ca(2+) currents (I(Ca)) by changing the test step from -30 to -10 mV increased replenishment. Lengthening -30 mV test pulses to match the Ca(2+) influx during 25 ms test pulses to -10 mV produced similar replenishment rates. Reducing Ca(2+) driving force by using test steps to +30 mV slowed replenishment. Using UV flashes to reverse inhibition of I(Ca) by nifedipine accelerated replenishment. Increasing [Ca(2+)](i) by flash photolysis of caged Ca(2+) also accelerated replenishment. Replenishment, but not the initial burst of release, was enhanced by using an intracellular Ca(2+) buffer of 0.5 mm EGTA rather than 5 mm EGTA, and diminished by 1 mm BAPTA. This suggests that although release and replenishment exhibited similar Ca(2+) dependencies, release sites are <200 nm from Ca(2+) channels but replenishment sites are >200 nm away. Membrane potential thus regulates replenishment by controlling Ca(2+) influx, principally by effects on replenishment mechanisms but also by altering releasable pool size. This in turn provides a mechanism for converting changes in light intensity into changes in sustained release at the cone ribbon synapse.


Asunto(s)
Calcio/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Sinapsis/fisiología , Vesículas Sinápticas/metabolismo , Ambystoma , Animales , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Masculino , Vesículas Sinápticas/fisiología
5.
J Neurophysiol ; 106(6): 2922-35, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21880934

RESUMEN

Light hyperpolarizes cone photoreceptors, causing synaptic voltage-gated Ca(2+) channels to open infrequently. To understand neurotransmission under these conditions, we determined the number of L-type Ca(2+) channel openings necessary for vesicle fusion at the cone ribbon synapse. Ca(2+) currents (I(Ca)) were activated in voltage-clamped cones, and excitatory postsynaptic currents (EPSCs) were recorded from horizontal cells in the salamander retina slice preparation. Ca(2+) channel number and single-channel current amplitude were calculated by mean-variance analysis of I(Ca). Two different comparisons-one comparing average numbers of release events to average I(Ca) amplitude and the other involving deconvolution of both EPSCs and simultaneously recorded cone I(Ca)-suggested that fewer than three Ca(2+) channel openings accompanied fusion of each vesicle at the peak of release during the first few milliseconds of stimulation. Opening fewer Ca(2+) channels did not enhance fusion efficiency, suggesting that few unnecessary channel openings occurred during strong depolarization. We simulated release at the cone synapse, using empirically determined synaptic dimensions, vesicle pool size, Ca(2+) dependence of release, Ca(2+) channel number, and Ca(2+) channel properties. The model replicated observations when a barrier was added to slow Ca(2+) diffusion. Consistent with the presence of a diffusion barrier, dialyzing cones with diffusible Ca(2+) buffers did not affect release efficiency. The tight clustering of Ca(2+) channels, along with a high-Ca(2+) affinity release mechanism and diffusion barrier, promotes a linear coupling between Ca(2+) influx and vesicle fusion. This may improve detection of small light decrements when cones are hyperpolarized by bright light.


Asunto(s)
Canales de Calcio Tipo L/fisiología , Calcio/metabolismo , Activación del Canal Iónico/fisiología , Luz , Retina/citología , Células Fotorreceptoras Retinianas Conos/fisiología , Sinapsis/fisiología , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Animales , Bario/farmacología , Fenómenos Biofísicos/efectos de los fármacos , Calcio/farmacología , Agonistas de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/efectos de los fármacos , Quelantes/farmacología , Simulación por Computador , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Masculino , Modelos Biológicos , Nifedipino/farmacología , Técnicas de Placa-Clamp , Probabilidad , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Células Horizontales de la Retina/efectos de los fármacos , Células Horizontales de la Retina/fisiología , Sinapsis/efectos de los fármacos , Urodelos
6.
Mol Vis ; 17: 920-31, 2011 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-21541265

RESUMEN

PURPOSE: Vision is encoded at photoreceptor synapses by the number of released vesicles and size of the post-synaptic response. We hypothesized that elevating cytosolic glutamate could enhance quantal size by increasing glutamate in vesicles. METHODS: We introduced glutamate (10-40 mM) into cone terminals through a patch pipette and recorded excitatory post-synaptic currents (EPSCs) from horizontal or OFF bipolar cells in the Ambystoma tigrinum retinal slice preparation. RESULTS: Elevating cytosolic glutamate in cone terminals enhanced EPSCs as well as quantal miniature EPSCs (mEPSCs). Enhancement was prevented by inhibiting vesicular glutamate transport with 1S,3R-1-aminocyclopentane-1,3-dicarboxylate in the patch pipette. A low affinity glutamate receptor antagonist, γD-glutamylglycine (1 mM), less effectively inhibited EPSCs evoked from cones loaded with glutamate than control cones indicating that release from cones with supplemental glutamate produced higher glutamate levels in the synaptic cleft. Raising presynaptic glutamate did not alter exocytotic capacitance responses and exocytosis was observed after inhibiting glutamate loading with the vesicular ATPase inhibitor, concanamycin A, suggesting that release capability is not restricted by low vesicular glutamate levels. Variance-mean analysis of currents evoked by flash photolysis of caged glutamate indicated that horizontal cell AMPA receptors have a single channel conductance of 10.1 pS suggesting that ~8.7 GluRs contribute to each mEPSC. CONCLUSIONS: Quantal amplitude at the cone ribbon synapse is capable of adjustment by changes in cytosolic glutamate levels. The small number of channels contributing to each mEPSC suggests that stochastic variability in channel opening could be an important source of quantal variability.


Asunto(s)
Ácido Glutámico/farmacología , Células Fotorreceptoras Retinianas Conos/metabolismo , Sinapsis/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Ambystoma/fisiología , Animales , Cicloleucina/análogos & derivados , Cicloleucina/farmacología , Citosol/efectos de los fármacos , Citosol/metabolismo , Inhibidores Enzimáticos/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Exocitosis/efectos de los fármacos , Macrólidos/farmacología , Receptores de Glutamato/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Procesos Estocásticos , Sinapsis/fisiología , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Visión Ocular/fisiología
7.
Vis Neurosci ; 28(3): 183-92, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21439110

RESUMEN

Receptive field organization of cone-driven bipolar cells was investigated by intracellular recording in the intact light-adapted retina of the tiger salamander (Ambystoma tigrinum). Centered spots and concentric annuli of optimum dimensions were used to selectively stimulate the receptive field center and surround with sinusoidal modulations of contrast at 3 Hz. At low contrasts, responses of both the center and surround of both ON and OFF bipolar cells were linear, showing high gain and thus contrast enhancement relative to cones. The contrast/response curves for the fundamental response, measured by a Fast Fourier Transform, reached half maximum amplitude quickly at 13% contrast followed by saturation at high contrasts. The variation of the normalized amplitude of the center and surround responses was remarkably similar, showing linear regression over the entire response range with very high correlations, r2 = 0.97 for both ON and OFF cells. The contrast/response curves of both center and surround for both ON and OFF cells were well fit (r2 = 0.98) by an equation for single-site binding. In about half the cells studied, the nonlinear waveforms of center and surround could be brought into coincidence by scaling and shifting the surround response in time. This implies that a nonlinearity, common to both center and surround, occurs after polarity inversion at the cone feedback synapse. Evidence from paired whole-cell recordings between single cones and OFF bipolar cells suggests that substantial nonlinearity is not due to transmission at the cone synapse but instead arises from intrinsic bipolar cell and network mechanisms. When sinusoidal contrast modulations were applied to the center and surround simultaneously, clear additivity was observed for small responses in both ON and OFF cells, whereas the interaction was strikingly nonadditive for large responses. The contribution of the surround was then greatly reduced, suggesting attenuation at the cone feedback synapse.


Asunto(s)
Adaptación Ocular/fisiología , Sensibilidad de Contraste/fisiología , Retina/citología , Células Bipolares de la Retina/fisiología , Campos Visuales/fisiología , Potenciales de Acción/fisiología , Ambystoma , Animales , Análisis de Fourier , Técnicas In Vitro , Luz , Modelos Lineales , Técnicas de Placa-Clamp/métodos , Estimulación Luminosa , Psicofísica
8.
J Neurophysiol ; 103(1): 419-23, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19923246

RESUMEN

Cone light responses are transmitted to postsynaptic neurons by changes in the rate of synaptic vesicle release. Vesicle pool size at the cone synapse constrains the amount of release and can thus shape contrast detection. We measured the number of vesicles in the rapidly releasable and reserve pools at cone ribbon synapses by performing simultaneous whole cell recording from cones and horizontal or off bipolar cells in the salamander retinal slice preparation. We found that properties of spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs) are representative of mEPSCs evoked by depolarizing presynaptic stimulation. Strong, brief depolarization of the cone stimulated release of the entire rapidly releasable pool (RRP) of vesicles. Comparing charge transfer of the EPSC with mEPSC charge transfer, we determined that the fast component of the EPSC reflects release of approximately 40 vesicles. Comparing EPSCs with simultaneous presynaptic capacitance measurements, we found that horizontal cell EPSCs constitute 14% of the total number of vesicles released from a cone terminal. Using a fluorescent ribeye-binding peptide, we counted approximately 13 ribbons per cone. Together, these results suggest each cone contacts a single horizontal cell at approximately 2 ribbons. The size of discrete components in the EPSC amplitude histogram also suggested approximately 2 ribbon contacts per cell pair. We therefore conclude there are approximately 20 vesicles per ribbon in the RRP, similar to the number of vesicles contacting the plasma membrane at the ribbon base. EPSCs evoked by lengthy depolarization suggest a reserve pool of approximately 90 vesicles per ribbon, similar to the number of additional docking sites further up the ribbon.


Asunto(s)
Células Fotorreceptoras Retinianas Conos/fisiología , Sinapsis/fisiología , Vesículas Sinápticas/fisiología , Urodelos/fisiología , Animales , Membrana Celular/fisiología , Capacidad Eléctrica , Potenciales Postsinápticos Excitadores , Técnicas In Vitro , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Terminales Presinápticos/fisiología , Probabilidad , Retina/fisiología , Células Bipolares de la Retina/fisiología , Células Horizontales de la Retina/fisiología , Factores de Tiempo
9.
J Neurosci ; 28(22): 5691-5, 2008 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-18509030

RESUMEN

Retinal horizontal cells (HCs) provide negative feedback to cones, but, largely because annular illumination fails to evoke a depolarizing response in rods, it is widely believed that there is no feedback from HCs to rods. However, feedback from HCs to cones involves small changes in the calcium current (I(Ca)) that do not always generate detectable depolarizing responses. We therefore recorded I(Ca) directly from rods to test whether they were modulated by feedback from HCs. To circumvent problems presented by overlapping receptive fields of HCs and rods, we manipulated the membrane potential of voltage-clamped HCs while simultaneously recording from rods in a salamander retinal slice preparation. Like HC feedback in cones, hyperpolarizing HCs from -14 to -54, -84, and -104 mV increased the amplitude of I(Ca) recorded from synaptically connected rods and caused hyperpolarizing shifts in I(Ca) voltage dependence. These effects were blocked by supplementing the bicarbonate-buffered saline solution with HEPES. In rods lacking light-responsive outer segments, hyperpolarizing neighboring HCs with light caused a negative activation shift and increased the amplitude of I(Ca). These changes in I(Ca) were blocked by HEPES and by inhibiting HC light responses with a glutamate antagonist, indicating that they were caused by HC feedback. These results show that rods, like cones, receive negative feedback from HCs that regulates the amplitude and voltage dependence of I(Ca). HC-to-rod feedback counters light-evoked decreases in synaptic output and thus shapes the transmission of rod responses to downstream visual neurons.


Asunto(s)
Retroalimentación/fisiología , Retina/citología , Células Horizontales de la Retina/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Animales , Simulación por Computador , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica/métodos , Antagonistas de Aminoácidos Excitadores/farmacología , HEPES/farmacología , Técnicas In Vitro , Ácido Quinurénico/farmacología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Modelos Neurológicos , Técnicas de Placa-Clamp , Estimulación Luminosa/métodos , Urodelos
10.
J Physiol ; 586(20): 4859-75, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18755743

RESUMEN

Tonic synapses are specialized for sustained calcium entry and transmitter release, allowing them to operate in a graded fashion over a wide dynamic range. We identified a novel plasma membrane calcium entry mechanism that extends the range of rod photoreceptor signalling into light-adapted conditions. The mechanism, which shares molecular and physiological characteristics with store-operated calcium entry (SOCE), is required to maintain baseline [Ca(2+)](i) in rod inner segments and synaptic terminals. Sustained Ca(2+) entry into rod cytosol is augmented by store depletion, blocked by La(3+) and Gd(3+) and suppressed by organic antagonists MRS-1845 and SKF-96365. Store depletion and the subsequent Ca(2+) influx directly stimulated exocytosis in terminals of light-adapted rods loaded with the activity-dependent dye FM1-43. Moreover, SOCE blockers suppressed rod-mediated synaptic inputs to horizontal cells without affecting presynaptic voltage-operated Ca(2+) entry. Silencing of TRPC1 expression with small interference RNA disrupted SOCE in rods, but had no effect on cone Ca(2+) signalling. Rods were immunopositive for TRPC1 whereas cone inner segments immunostained with TRPC6 channel antibodies. Thus, SOCE modulates Ca(2+) homeostasis and light-evoked neurotransmission at the rod photoreceptor synapse mediated by TRPC1.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Células Fotorreceptoras Retinianas Bastones/fisiología , Urodelos/fisiología , Animales , Señalización del Calcio/efectos de la radiación , Células Cultivadas , Luz , Células Fotorreceptoras Retinianas Bastones/efectos de la radiación
11.
Eur J Neurosci ; 27(10): 2575-86, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18547244

RESUMEN

At the photoreceptor ribbon synapse, glutamate released from vesicles at different positions along the ribbon reaches the same postsynaptic receptors. Thus, vesicles may not exert entirely independent effects. We examined whether responses of salamander retinal horizontal cells evoked by light or direct depolarization during paired recordings could be predicted by summation of individual miniature excitatory postsynaptic currents (mEPSCs). For EPSCs evoked by depolarization of rods or cones, linear convolution of mEPSCs with photoreceptor release functions predicted EPSC waveforms and changes caused by inhibiting glutamate receptor desensitization. A low-affinity glutamate antagonist, kynurenic acid (KynA), preferentially reduced later components of rod-driven EPSCs, suggesting lower levels of glutamate are present during the later sustained component of the EPSC. A glutamate-scavenging enzyme, glutamic-pyruvic transaminase, did not inhibit mEPSCs or the initial component of rod-driven EPSCs, but reduced later components of the EPSC. Inhibiting glutamate uptake with a low concentration of DL-threo-beta-benzoyloxyaspartate (TBOA) also did not alter mEPSCs or the initial component of rod-driven EPSCs, but enhanced later components of the EPSC. Low concentrations of TBOA and KynA did not affect the kinetics of fast cone-driven EPSCs. Under both rod- and cone-dominated conditions, light-evoked currents (LECs) were enhanced considerably by TBOA. LECs were more strongly inhibited than EPSCs by KynA, suggesting the presence of lower glutamate levels. Collectively, these results indicate that the initial EPSC component can be largely predicted from a linear sum of individual mEPSCs, but with sustained release, residual amounts of glutamate from multiple vesicles pool together, influencing LECs and later components of EPSCs.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Ácido Glutámico/metabolismo , Células Fotorreceptoras/fisiología , Células Horizontales de la Retina/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Alanina Transaminasa/metabolismo , Alanina Transaminasa/farmacología , Ambystoma , Animales , Ácido Aspártico/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Luz , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp , Estimulación Luminosa , Células Fotorreceptoras/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/fisiología , Células Fotorreceptoras de Vertebrados/ultraestructura , Células Horizontales de la Retina/efectos de los fármacos , Sinapsis/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Visión Ocular/efectos de los fármacos , Visión Ocular/fisiología
12.
Cell Rep ; 11(2): 175-82, 2015 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-25865881

RESUMEN

Control over the frequency and pattern of neuronal spike discharge depends on Ca2+-gated K+ channels that reduce cell excitability by hyperpolarizing the membrane potential. The Ca2+-dependent slow afterhyperpolarization (sAHP) is one of the most prominent inhibitory responses in the brain, with sAHP amplitude linked to a host of circuit and behavioral functions, yet the channel that underlies the sAHP has defied identification for decades. Here, we show that intermediate-conductance Ca2+-dependent K+ (IKCa) channels underlie the sAHP generated by trains of synaptic input or postsynaptic stimuli in CA1 hippocampal pyramidal cells. These findings are significant in providing a molecular identity for the sAHP of central neurons that will identify pharmacological tools capable of potentially modifying the several behavioral or disease states associated with the sAHP.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Neuronas/fisiología , Canales de Potasio Calcio-Activados/química , Células Piramidales/fisiología , Potenciales de Acción/fisiología , Animales , Región CA1 Hipocampal/química , Región CA1 Hipocampal/fisiología , Polaridad Celular/fisiología , Hipocampo/química , Hipocampo/fisiología , Ratones , Neuronas/química , Técnicas de Placa-Clamp , Canales de Potasio Calcio-Activados/metabolismo , Células Piramidales/química
13.
PLoS One ; 8(4): e61844, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23626738

RESUMEN

Calcium-activated potassium channels of the KCa1.1 class are known to regulate repolarization of action potential discharge through a molecular association with high voltage-activated calcium channels. The current study examined the potential for low voltage-activated Cav3 (T-type) calcium channels to interact with KCa1.1 when expressed in tsA-201 cells and in rat medial vestibular neurons (MVN) in vitro. Expression of the channel α-subunits alone in tsA-201 cells was sufficient to enable Cav3 activation of KCa1.1 current. Cav3 calcium influx induced a 50 mV negative shift in KCa1.1 voltage for activation, an interaction that was blocked by Cav3 or KCa1.1 channel blockers, or high internal EGTA. Cav3 and KCa1.1 channels coimmunoprecipitated from lysates of either tsA-201 cells or rat brain, with Cav3 channels associating with the transmembrane S0 segment of the KCa1.1 N-terminus. KCa1.1 channel activation was closely aligned with Cav3 calcium conductance in that KCa1.1 current shared the same low voltage dependence of Cav3 activation, and was blocked by voltage-dependent inactivation of Cav3 channels or by coexpressing a non calcium-conducting Cav3 channel pore mutant. The Cav3-KCa1.1 interaction was found to function highly effectively in a subset of MVN neurons by activating near -50 mV to contribute to spike repolarization and gain of firing. Modelling data indicate that multiple neighboring Cav3-KCa1.1 complexes must act cooperatively to raise calcium to sufficiently high levels to permit KCa1.1 activation. Together the results identify a novel Cav3-KCa1.1 signaling complex where Cav3-mediated calcium entry enables KCa1.1 activation over a wide range of membrane potentials according to the unique voltage profile of Cav3 calcium channels, greatly extending the roles for KCa1.1 potassium channels in controlling membrane excitability.


Asunto(s)
Calcio/metabolismo , Caveolina 3/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Neuronas/metabolismo , Subunidades de Proteína/metabolismo , Transducción de Señal/fisiología , Núcleos Vestibulares/metabolismo , Potenciales de Acción/fisiología , Secuencia de Aminoácidos , Animales , Bloqueadores de los Canales de Calcio/farmacología , Caveolina 3/genética , Línea Celular Transformada , Expresión Génica , Humanos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Neuronas/citología , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Ratas , Núcleos Vestibulares/citología , Núcleos Vestibulares/efectos de los fármacos
14.
Nat Neurosci ; 14(9): 1135-41, 2011 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-21785435

RESUMEN

In vision, balance and hearing, sensory receptor cells translate sensory stimuli into electrical signals whose amplitude is graded with stimulus intensity. The output synapses of these sensory neurons must provide fast signaling to follow rapidly changing stimuli while also transmitting graded information covering a wide range of stimulus intensity and must be able to sustain this signaling for long time periods. To meet these demands, specialized machinery for transmitter release, the synaptic ribbon, has evolved at the synaptic outputs of these neurons. We found that acute disruption of synaptic ribbons by photodamage to the ribbon markedly reduced both sustained and transient components of neurotransmitter release in mouse bipolar cells and salamander cones without affecting the ultrastructure of the ribbon or its ability to localize synaptic vesicles to the active zone. Our results indicate that ribbons mediate both slow and fast signaling at sensory synapses and support an additional role for the synaptic ribbon in priming vesicles for exocytosis at active zones.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Retina/citología , Células Bipolares de la Retina/citología , Sinapsis/fisiología , Vesículas Sinápticas/fisiología , Oxidorreductasas de Alcohol , Animales , Biofisica , Proteínas Co-Represoras , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/farmacología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Exocitosis/fisiología , Técnicas In Vitro , Luz/efectos adversos , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Técnicas de Placa-Clamp , Péptidos/metabolismo , Péptidos/farmacología , Fosfoproteínas/metabolismo , Fosfoproteínas/farmacología , Unión Proteica/efectos de los fármacos , Células Bipolares de la Retina/ultraestructura , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura , Vesículas Sinápticas/ultraestructura , Factores de Tiempo , Urodelos
15.
Nat Neurosci ; 12(3): 303-10, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19219039

RESUMEN

Cone photoreceptors distinguish small changes in light intensity while operating over a wide dynamic range. The cone synapse encodes intensity by modulating tonic neurotransmitter release, but precise encoding is limited by the quantal nature of synaptic vesicle exocytosis. Cones possess synaptic ribbons, structures that are thought to accelerate the delivery of vesicles for tonic release. Here we show that the synaptic ribbon actually constrains vesicle delivery, resulting in a maintained state of synaptic depression in darkness. Electron microscopy of cones from the lizard Anolis segrei revealed that depression is caused by the depletion of vesicles on the ribbon, indicating that resupply, not fusion, is the rate-limiting step that controls release. Responses from postsynaptic retinal neurons from the salamander Ambystoma tigrinum showed that the ribbon behaves like a capacitor, charging with vesicles in light and discharging in a phasic burst at light offset. Phasic release extends the operating range of the cone synapse to more accurately encode changes in light intensity, accentuating features that are salient to photopic vision.


Asunto(s)
Estimulación Luminosa/métodos , Células Fotorreceptoras Retinianas Conos/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Ambystoma , Animales , Lagartos , Neurotransmisores/fisiología , Células Fotorreceptoras de Vertebrados/fisiología , Vesículas Sinápticas/fisiología
16.
PLoS One ; 4(8): e6723, 2009 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-19696927

RESUMEN

Calcium is a messenger ion that controls all aspects of cone photoreceptor function, including synaptic release. The dynamic range of the cone output extends beyond the activation threshold for voltage-operated calcium entry, suggesting another calcium influx mechanism operates in cones hyperpolarized by light. We have used optical imaging and whole-cell voltage clamp to measure the contribution of store-operated Ca(2+) entry (SOCE) to Ca(2+) homeostasis and its role in regulation of neurotransmission at cone synapses. Mn(2+) quenching of Fura-2 revealed sustained divalent cation entry in hyperpolarized cones. Ca(2+) influx into cone inner segments was potentiated by hyperpolarization, facilitated by depletion of intracellular Ca(2+) stores, unaffected by pharmacological manipulation of voltage-operated or cyclic nucleotide-gated Ca(2+) channels and suppressed by lanthanides, 2-APB, MRS 1845 and SKF 96365. However, cation influx through store-operated channels crossed the threshold for activation of voltage-operated Ca(2+) entry in a subset of cones, indicating that the operating range of inner segment signals is set by interactions between store- and voltage-operated Ca(2+) channels. Exposure to MRS 1845 resulted in approximately 40% reduction of light-evoked postsynaptic currents in photopic horizontal cells without affecting the light responses or voltage-operated Ca(2+) currents in simultaneously recorded cones. The spatial pattern of store-operated calcium entry in cones matched immunolocalization of the store-operated sensor STIM1. These findings show that store-operated channels regulate spatial and temporal properties of Ca(2+) homeostasis in vertebrate cones and demonstrate their role in generation of sustained excitatory signals across the first retinal synapse.


Asunto(s)
Calcio/metabolismo , Homeostasis , Canales Iónicos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Transducción de Señal , Animales , Membrana Celular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA