Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Ann Bot ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38868992

RESUMEN

BACKGROUND: Whole genome duplication (polyploidization) is a dominant force in sympatric speciation, particularly in plants. Genome doubling instantly poses a barrier to gene flow owing to the strong crossing incompatibilities between individuals differing in ploidy. The strength of the barrier, however, varies from species to species and recent genetic investigations revealed cases of rampant interploidy introgression in multiple ploidy-variable species. SCOPE: Here, we review novel insights into the frequency of interploidy gene flow in natural systems and summarize the underlying mechanisms promoting interploidy gene flow. Field surveys, occasionally complemented by crossing experiments, suggest frequent opportunities for interploidy gene flow, particularly in the direction from diploid to tetraploid, and between (higher) polyploids. However, a scarcity of accompanying population genetic evidence and a virtual lack of integration of these approaches leave the underlying mechanisms and levels of realized interploidy gene flow in nature largely unknown. Finally, we discuss potential consequences of interploidy genome permeability on polyploid speciation and adaptation and highlight novel avenues that have just recently been opened by the very first genomic studies of ploidy-variable species. Standing in stark contrast with rapidly accumulating evidence for evolutionary importance of homoploid introgression, similar cases in ploidy-variable systems are yet to be documented. CONCLUSIONS: The genomics era provides novel opportunity to re-evaluate the role of interploidy introgression in speciation and adaptation. To achieve this goal, interdisciplinary studies bordering ecology and population genetics and genomics are needed.

2.
Front Plant Sci ; 13: 822331, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35360300

RESUMEN

The Balkan Peninsula played an important role in the evolution of many Mediterranean plants and served as a major source for post-Pleistocene colonisation of central and northern Europe. Its complex geo-climatic history and environmental heterogeneity significantly influenced spatiotemporal diversification and resulted in intricate phylogeographic patterns. To explore the evolutionary dynamics and phylogeographic patterns within the widespread eastern Mediterranean and central European species Aurinia saxatilis, we used a combination of phylogenomic (restriction-site associated DNA sequencing, RADseq) and phylogenetic (sequences of the plastid marker ndhF) data as well as species distribution models generated for the present and the Last Glacial Maximum (LGM). The inferred phylogenies retrieved three main geographically distinct lineages. The southern lineage is restricted to the eastern Mediterranean, where it is distributed throughout the Aegean area, the southern Balkan Peninsula, and the southern Apennine Peninsula, and corresponds to the species main distribution area during the LGM. The eastern lineage extends from the eastern Balkan Peninsula over the Carpathians to central Europe, while the central lineage occupies the central Balkan Peninsula. Molecular dating places the divergence among all the three lineages to the early to middle Pleistocene, indicating their long-term independent evolutionary trajectories. Our data revealed an early divergence and stable in situ persistence of the southernmost, eastern Mediterranean lineage, whereas the mainland, south-east European lineages experienced more complex and turbulent evolutionary dynamics triggered by Pleistocene climatic oscillations. Our data also support the existence of multiple glacial refugia in southeast Europe and highlight the central Balkan Peninsula not only as a cradle of lineage diversifications but also as a source of lineage dispersal. Finally, the extant genetic variation within A. saxatilis is congruent with the taxonomic separation of peripatric A. saxatilis subsp. saxatilis and A. saxatilis subsp. orientalis, whereas the taxonomic status of A. saxatilis subsp. megalocarpa remains doubtful.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA