Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2403319, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39082204

RESUMEN

Transition metal centers dispersed over nitrogen-doped carbon (M-NC) supports have been widely explored for electrocatalytic reactions; however, sparsely reported for electrochemical nitrogen reduction reaction (ENRR). Particularly, the single-atom catalysts (SACs) have shown reasonable ammonia yield rate and faradaic efficiency (FE), but their complex synthesis and low durability for long-term electrocatalysis runs restrict their use on a larger scale. Importantly, the catalytic active sites in metal nanostructured-based M-NC catalysts toward enhanced N2 adsorption and activation are still not clear as they are highly challenging to reveal. A few studies have predicted that the surface oxygen vacancies (Ovac) favor an enhanced ENRR performance. Herein, a strategy using tailored M-NC content and Ovac in a single catalyst for enhanced ammonia electrosynthesis is devised. A mesoporous bimetallic spinel oxide (CuFe2O4) supported over N-doped carbon (CuFe2O4@NC) derived from Prussian blue analog (PBA) via controlled pyrolysis possess is found to show boosted ENRR activity. Moreover, operando NH3 formation over the catalyst is observed using four electrode set up. This approach enables rapid evaluation ofelectrocatalytic efficacy and avoids false positive results. The rotating disc electrode results reveal that mass transport in acidic media and surface absorption in alkline media primarily regulate ENRR over CuFe2O4@NC electrocatalyst.

2.
ACS Appl Mater Interfaces ; 16(29): 37938-37951, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39012060

RESUMEN

The development of an efficient, selective, and durable catalysis system for the electrocatalytic N2 reduction reaction (ENRR) is a promising strategy for the sustainable production of ammonia. The high-performance ENRR is limited by two major challenges: poor adsorption of N2 over the catalyst surface and abysmal N2 solubility in aqueous electrolytes. Herein, with the help of our combined density functional theory (DFT) calculations and experimental electrocatalysis study, we demonstrate that concurrently induced electron-deficient Lewis acid sites in an electrocatalyst and in an electrolyte medium can significantly boost the ENRR performance. The DFT calculations, ex situ X-ray photoelectron and FTIR spectroscopy, electrochemical measurements, and N2-TPD (temperature-programmed desorption) over boron-doped strontium titanate (BSTO) samples reveal that the Lewis acid-base interactions of N2 synergistically enhance the adsorption and activation of N2. Besides, the B-dopant induces the defect sites (oxygen vacancies and Ti3+) that assist in enhanced N2 adsorption and results in suppressed hydrogen evolution due to B-induced electron-deficient sites for H+ adsorption. The insights from the DFT study evince that B prefers the Srtop position (on top of Sr) where N2 adsorbs in an end-on configuration, which favors the associative alternating pathway and suppresses the competitive hydrogen evolution. Thus, our combined experimental and DFT study demonstrates an insight toward enhancing the ENRR performance along with the suppressed hydrogen evolution via concurrently engineered electron-deficient sites at electrode and electrolyte interfaces.

3.
Nanoscale Adv ; 6(1): 155-169, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38125588

RESUMEN

Green approaches for nanosynthesis often lack the precise control of synthetic outcomes, which is primarily due to the poorly defined reaction protocols. Herein, we investigated the use of lignocellulosic agro-waste, sugarcane press mud (PM), for the synthesis of ZnO nanoparticles using three different precursor salts and their further application in the photocatalytic degradation of rhodamine dyes. This approach resulted in the formation of ZnO nanoparticles with two different morphologies, i.e., sheet-like structure from the zinc sulphate and nitrate precursors, whereas sphere-like structures from zinc acetate. In all three cases, the wurtzite phase (P63mc) of ZnO nanoparticles remained consistent. Also, the ZnO nanoparticles were found to be positively charged ("ζ" = +8.81 to +9.22 mv) and nearly monodispersed, with a size and band gap in the range of ∼14-20 nm and 3.78-4.1 eV, respectively. Further, the potential photocatalytic activity of these nanoparticles was investigated under direct sunlight. At the same photocatalyst dose of 0.1 g L-1, the three ZnO nanoparticles showed varying efficiencies due to their shape anisotropy. The ZnO NPs from acetate salt (∼20 nm, sheet like) showed the highest dye degradation efficiency (90.03%) in 4.0 hours, indicating the role of the catalyst-dye interface in designing efficient photocatalysts.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA