Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Prostate ; 84(7): 682-693, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477025

RESUMEN

BACKGROUND: There is an increasing interest in using preclinical models for development and assessment of medical devices and imaging techniques for prostatic disease care. Still, a comprehensive assessment of the prostate's radiological anatomy in primary preclinical models such as dogs, rabbits, and mice utilizing human anatomy as a reference point remains necessary with no optimal model for each purpose being clearly defined in the literature. Therefore, this study compares the anatomical characteristics of different animal models to the human prostatic gland from the imaging perspective. METHODS: We imaged five Beagle laboratory dogs, five New Zealand White rabbits, and five mice, all sexually mature males, under Institutional Animal Care and Use Committee (IACUC) approval. Ultrasonography (US) was performed using the Vevo® F2 for mice (57 MHz probe). Rabbits and dogs were imaged using the Siemens® Acuson S3000 (17 MHz probe) and endocavitary (8 MHz) probes, respectively. Magnetic resonance imaging (MRI) was also conducted with a 7T scanner in mice and 3T scanner in rabbits and dogs. RESULTS: Canine transrectal US emerged as the optimal method for US imaging, depicting a morphologically similar gland to humans but lacking echoic zonal differentiation. MRI findings in canines indicated a homogeneously structured gland similar to the human peripheral zone on T2-weighted images (T2W) and apparent diffusion coefficient (ADC). In rabbits, US imaging faced challenges due to the pubic symphysis, whereas MRI effectively visualized all structures with the prostate presenting a similar aspect to the human peripheral gland on T2W and ADC maps. Murine prostate assessment revealed poor visualization of the prostate glands in ultrasound due to its small size, while 7T MRI delineated the distinct prostates and its lobes, with the lateral and dorsal prostate resembling the peripheral zone and the anterior prostate the central zone of the human gland. CONCLUSION: Dogs stand out as superior models for advanced preclinical studies in prostatic disease research. However, mice present as a good model for early stage studies and rabbits are a cost-effective alternative and serve as valuable tools in specific research domains when canine research is not feasible.


Asunto(s)
Enfermedades de la Próstata , Neoplasias de la Próstata , Masculino , Animales , Humanos , Perros , Conejos , Ratones , Próstata/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética , Neoplasias de la Próstata/diagnóstico por imagen , Enfermedades de la Próstata/diagnóstico por imagen , Modelos Teóricos
2.
Prostate ; 83(12): 1176-1185, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37211857

RESUMEN

BACKGROUND: Male dogs can develop spontaneous prostate cancer, which is similar physiologically to human disease. Recently, Tweedle and coworkers have developed an orthotopic canine prostate model allowing implanted tumors and therapeutic agents to be tested in a more translational large animal model. We used the canine model to evaluate prostate-specific membrane antigen (PSMA)-targeted gold nanoparticles as a theranostic approach for fluorescence (FL) imaging and photodynamic therapy (PDT) of early stage prostate cancer. METHODS: Dogs (four in total) were immunosuppressed with a cyclosporine-based immunosuppressant regimen and their prostate glands were injected with Ace-1-hPSMA cells using transabdominal ultrasound (US) guidance. Intraprostatic tumors grew in 4-5 weeks and were monitored by ultrasound (US). When tumors reached an appropriate size, dogs were injected intravenously (iv) with PSMA-targeted nano agents (AuNPs-Pc158) and underwent surgery 24 h later to expose the prostate tumors for FL imaging and PDT. Ex vivo FL imaging and histopathological studies were performed to confirm PDT efficacy. RESULTS: All dogs had tumor growth in the prostate gland as revealed by US. Twenty-four hours after injection of PSMA-targeted nano agents (AuNPs-Pc158), the tumors were imaged using a Curadel FL imaging device. While normal prostate tissue had minimal fluorescent signal, the prostate tumors had significantly increased FL. PDT was activated by irradiating specific fluorescent tumor areas with laser light (672 nm). PDT bleached the FL signal, while fluorescent signals from the other unexposed tumor tissues were unaffected. Histological analysis of tumors and adjacent prostate revealed that PDT damaged the irradiated areas to a depth of 1-2 mms with the presence of necrosis, hemorrhage, secondary inflammation, and occasional focal thrombosis. The nonirradiated areas showed no visible damages by PDT. CONCLUSION: We have successfully established a PSMA-expressing canine orthotopic prostate tumor model and used the model to evaluate the PSMA-targeted nano agents (AuNPs-Pc158) in the application of FL imaging and PDT. It was demonstrated that the nano agents allowed visualization of the cancer cells and enabled their destruction when they were irradiated with a specific wavelength of light.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Fotoquimioterapia , Neoplasias de la Próstata , Masculino , Humanos , Perros , Animales , Oro/uso terapéutico , Fotoquimioterapia/métodos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Próstata/diagnóstico por imagen , Próstata/patología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral
3.
Prostate ; 82(6): 695-705, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35167141

RESUMEN

BACKGROUND: Prostate cancer (PCa) models in mice and rats are limited by their size and lack of a clearly delineated or easily accessible prostate gland. The canine PCa model is currently the only large animal model which can be used to test new preclinical interventions but is costly and availability is sparse. As an alternative, we developed an orthotopic human prostate tumor model in an immunosuppressed New Zealand White rabbit. Rabbits are phylogenetically closer to humans, their prostate gland is anatomically similar, and its size allows for clinically-relevant testing of interventions. METHODS: Rabbits were immunosuppressed via injection of cyclosporine. Human PC3pipGFP PCa cells were injected into the prostate via either (a) laparotomy or (b) transabdominal ultrasound (US) guided injection. Tumor growth was monitored using US and magnetic resonance imaging (MRI). Contrast-enhanced ultrasound (CEUS) imaging using nanobubbles and Lumason microbubbles was also performed to examine imaging features and determine the optimal contrast dose required for enhanced visualization of the tumor. Ex vivo fluorescence imaging, histopathology, and immunohistochemistry analyses of the collected tissues were performed to validate tumor morphology and prostate-specific membrane antigen (PSMA) expression. RESULTS: Immunosuppression and tumor growth were, in general, well-tolerated by the rabbits. Fourteen out of 20 rabbits, with an average age of 8 months, successfully grew detectable tumors from Day 14 onwards after cell injection. The tumor growth rate was 39 ± 25 mm2 per week. CEUS and MRI of tumors appear hypoechoic and T2 hypointense, respectively, relative to normal prostate tissue. Minimally invasive US-guided tumor cell injection proved to be a better method compared to laparotomy due to the shorter recovery time required for the rabbits following injection. Among the rabbits that grew tumors, seven had tumors both inside and outside the prostate, three had tumors only inside the prostate, and four had tumors exclusively outside of the prostate. All tumors expressed the PSMA receptor. CONCLUSIONS: We have established, for the first time, an orthotopic PCa rabbit model via percutaneous US-guided tumor cell inoculation. This animal model is an attractive, clinically relevant intermediate step to assess preclinical diagnostic and therapeutic compounds.


Asunto(s)
Neoplasias de la Próstata , Animales , Castración , Modelos Animales de Enfermedad , Perros , Humanos , Masculino , Ratones , Microburbujas , Próstata/diagnóstico por imagen , Próstata/patología , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Conejos , Ratas , Ultrasonografía/métodos
4.
J Am Chem Soc ; 143(41): 17097-17108, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34612645

RESUMEN

Prostate-specific membrane antigen (PSMA) is a transmembrane protein that is highly expressed in aggressive prostate cancer (PCa) and has been extensively studied as a PCa diagnostic imaging biomarker. Multiple imaging modalities have exploited PSMA as a biomarker including magnetic resonance (MR), Optical, and PET imaging. Of all the imaging MR imaging provides the most detailed information, concurrently providing anatomical, functional, and potentially molecular information. However, the lower sensitivity of MR requires development of molecular MR contrast agents that provides high signal-to-noise ratios. Herein, we report the first targeted and activatable Gd(III)-based MR contrast agents prostate cancer probe 1 and 2 (PCP-1 and -2). We successfully used PCP-2 to differentiate between PSMA+ and PSMA- prostate cancer cells with both in vitro fluorescence imaging and in vivo MR imaging. The in vivo MR imaging results were further supported by ex vivo fluorescence imaging studies, showcasing the unique bimodal feature of PCP-2. Furthermore, PCP-2 highlights a unique molecular MR probe design strategy that improved the sensitivity of traditional biomarker-targeted MR imaging, addressing a critical unmet need in molecular MR imaging field. This work represents the first example of a targeted and activatable MR contrast agent that can be systemically administered in vivo to highlight PSMA+ prostate tumors, paving the way for the clinical translation of MR PSMA imaging.


Asunto(s)
Medios de Contraste
5.
Nano Lett ; 20(10): 7159-7167, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32845644

RESUMEN

Adjuvant radiotherapy is frequently prescribed to treat cancer. To minimize radiation-related damage to healthy tissue, it requires high precision in tumor localization and radiation dose delivery. This can be achieved by MR guidance and targeted amplification of radiation dose selectively to tumors by using radiosensitizers. Here, we demonstrate prostate cancer-targeted gold nanoparticles (AuNPs) for MR-guided radiotherapy to improve the targeting precision and efficacy. By conjugating Gd(III) complexes and prostate-specific membrane antigen (PSMA) targeting ligands to AuNP surfaces, we found enhanced uptake of AuNPs by PSMA-expressing cancer cells with excellent MR contrast and radiation therapy outcome in vitro and in vivo. The AuNPs binding affinity and r1 relaxivity were dramatically improved and the combination of Au and Gd(III)provided better tumor suppression after radiation. The precise tumor localization by MR and selective tumor targeting of the PSMA-1-targeted AuNPs could enable precise radiotherapy, reduction in irradiating dose, and minimization of healthy tissue damage.


Asunto(s)
Nanopartículas del Metal , Neoplasias de la Próstata , Línea Celular Tumoral , Oro , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia
6.
Nanomedicine ; 28: 102213, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32348874

RESUMEN

Contrast-enhanced ultrasound with microbubbles has shown promise in detection of prostate cancer (PCa), but sensitivity and specificity remain challenging. Targeted nanoscale-contrast agents with improved capability to accumulate in tumors may result in prolonged signal enhancement and improved detection of PCa with ultrasound. Here we report nanobubbles (NB) that specifically targets prostate specific membrane antigen (PSMA) overexpressed in PCa. The PSMA-targeted-NB (PSMA-NB) were utilized to simultaneously image dual-flank PCa (PSMA-positive PC3pip and PSMA-negative PC3flu) to examine whether the biomarker can be successfully detected and imaged in a mouse model. Results demonstrate that active targeting rapidly and selectively enhances tumor accumulation and tumor retention. Importantly, these processes could be visualized and quantified, in real-time, with clinical ultrasound. Such demonstration of the immense yet underutilized potential of ultrasound in the molecular imaging area can open the door to future opportunities for improving sensitivity and specificity of cancer detection using parametric NB-enhanced ultrasound imaging.


Asunto(s)
Antígenos de Neoplasias/análisis , Medios de Contraste/química , Imagen Molecular/métodos , Proteínas de Neoplasias/análisis , Neoplasias de la Próstata/diagnóstico por imagen , Ultrasonografía/métodos , Animales , Línea Celular Tumoral , Proteínas Ligadas a GPI/análisis , Masculino , Ratones , Ratones Desnudos , Microburbujas
7.
Small ; 15(34): e1900968, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31265213

RESUMEN

For over a hundred years, X-rays have been a main component of the radiotherapeutic approaches to treat cancer. Yet, to date, no radiosensitizer has been developed to selectively target prostate cancer. Gold has excellent X-ray absorptivity and is used as a radiotherapy enhancing material. In this work, ultrasmall Au25 nanoclusters (NCs) are developed for selective prostate cancer targeting, radiotherapy enhancement, and rapid clearance from the body. Targeted-Au25 NCs are rapidly and selectively taken up by prostate cancer in vitro and in vivo and also have fast renal clearance. When combined with X-ray irradiation of the targeted cancer tissues, radiotherapy is significantly enhanced. The selective targeting and rapid clearance of the nanoclusters may allow reductions in radiation dose, decreasing exposure to healthy tissue and making them highly attractive for clinical translation.


Asunto(s)
Oro/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Neoplasias de la Próstata/radioterapia , Animales , Línea Celular Tumoral , Proliferación Celular , Oro/orina , Humanos , Imagenología Tridimensional , Hígado/metabolismo , Masculino , Ratones , Tamaño de la Partícula , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/patología , Tomografía Computarizada por Rayos X
9.
J Am Acad Dermatol ; 76(2): 209-216.e9, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27876303

RESUMEN

BACKGROUND: Mohs micrographic surgery examines all margins of the resected sample and has a 99% cure rate. However, many nonmelanoma skin cancers (NMSCs) are not readily amenable to Mohs micrographic surgery. This defines an unmet clinical need to assess the completeness of non-Mohs micrographic surgery resections during surgery to prevent re-excision/recurrence. OBJECTIVE: We sought to examine the utility of quenched activity-based probe imaging to discriminate cancerous versus normal-appearing skin tissue. METHODS: The quenched activity-based probe GB119 was applied to NMSC excised from 68 patients. We validated activation of the probe for hematoxylin-eosin-confirmed cancerous tissue versus normal-appearing skin tissue. RESULTS: Topical application of the probe differentiated basal cell carcinoma and squamous cell carcinoma from normal-appearing skin with overall estimated sensitivity and specificity of 0.989 (95% confidence interval 0.940-1.00) and 0.894 (95% confidence interval 0.769-0.965), respectively. Probe activation accurately defined peripheral margins of NMSC as compared with conventional hematoxylin-eosin-based pathology. LIMITATIONS: This study only examined NMSC debulking excision specimens. The sensitivity and specificity for this approach using final NMSC excision margins will be clinically important. CONCLUSIONS: These findings merit further studies to determine whether quenched activity-based probe technology may enable cost-effective increased cure rates for patients with NMSC by reducing re-excision and recurrence rates with a rapid and easily interpretable technological advance.


Asunto(s)
Neoplasias Cutáneas/patología , Humanos , Factores de Tiempo
10.
Bioconjug Chem ; 26(4): 660-8, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25775241

RESUMEN

A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as ß-gal, are required. We report the development of a platform system for linking ß-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted ß-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered ß-gal reporter complex ex vivo. After fluorescence imaging localized the ß-gal complexes to the brain tumor, we topically applied a bioluminescent ß-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted ß-gal complex was captured within the tumor during noninvasive in vivo imaging.


Asunto(s)
Neoplasias Encefálicas/ultraestructura , Receptores ErbB/genética , Imagen Molecular/métodos , Proteínas de Neoplasias/genética , Imagen Óptica/métodos , beta-Galactosidasa/genética , Animales , Biotina/química , Biotina/metabolismo , Biotinilación , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Factor de Crecimiento Epidérmico/química , Factor de Crecimiento Epidérmico/genética , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Femenino , Expresión Génica , Genes Reporteros , Histidina/química , Histidina/genética , Histidina/metabolismo , Humanos , Ratones , Ratones Desnudos , Proteínas de Neoplasias/metabolismo , Trasplante de Neoplasias , Oligopéptidos/química , Oligopéptidos/genética , Oligopéptidos/metabolismo , Técnicas Estereotáxicas , Estreptavidina/química , Estreptavidina/metabolismo , beta-Galactosidasa/metabolismo
11.
Langmuir ; 30(40): 12018-26, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25238130

RESUMEN

A simple one-step method for preparing biocompatible nanoparticles of gadolinium ferrocyanide coordination polymer KGd(H2O)2[Fe(CN)6]·H2O is reported. The crystal structure of this coordination polymer is determined by X-ray powder diffraction using the bulk materials. The stability, cytotoxicity, cellular uptake, and MR phantom and cellular imaging studies suggest that this coordination-polymer structural platform offers a unique opportunity for developing the next generation of T1-weighted contrast agents with high relaxivity as cellular MR probes for biological receptors or markers. Such high-relaxivity MR probes may hold potential in the study of molecular events and may be used for in vivo MR imaging in biomedical research and clinical applications.


Asunto(s)
Materiales Biocompatibles/química , Medios de Contraste/química , Complejos de Coordinación/química , Ferrocianuros/química , Gadolinio/química , Animales , Cristalografía por Rayos X , Humanos , Imagen por Resonancia Magnética , Imagen Molecular/instrumentación , Imagen Molecular/métodos , Nanopartículas/química , Nanopartículas/ultraestructura , Fantasmas de Imagen , Agua/química
12.
Pharm Res ; 31(6): 1460-8, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23934254

RESUMEN

PURPOSE: To evaluate the ability of radiofrequency (RF)-triggered drug release from a multicomponent chain-shaped nanoparticle to inhibit the growth of an aggressive breast tumor. METHODS: A two-step solid phase chemistry was employed to synthesize doxorubicin-loaded nanochains, which were composed of three iron oxide nanospheres and one doxorubicin-loaded liposome assembled in a 100-nm-long linear nanochain. The nanochains were tested in the 4T1-LUC-GFP orthotopic mouse model, which is a highly aggressive breast cancer model. The 4T1-LUC-GFP cell line stably expresses firefly luciferase, which allowed the non-invasive in vivo imaging of tumor response to the treatment using bioluminescence imaging (BLI). RESULTS: Longitudinal BLI imaging showed that a single nanochain treatment followed by application of RF resulted in an at least 100-fold lower BLI signal compared to the groups treated with nanochains (without RF) or free doxorubicin followed by RF. A statistically significant increase in survival time of the nanochain-treated animals followed by RF (64.3 days) was observed when compared to the nanochain-treated group without RF (35.7 days), free doxorubicin-treated group followed by RF (38.5 days), and the untreated group (30.5 days; n=5 animals per group). CONCLUSIONS: These studies showed that the combination of RF and nanochains has the potential to effectively treat highly aggressive cancers and prolong survival.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Nanopartículas/administración & dosificación , Adyuvantes Farmacéuticos , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/uso terapéutico , Neoplasias de la Mama/patología , Doxorrubicina/administración & dosificación , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapéutico , Femenino , Humanos , Luminiscencia , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Polietilenglicoles/administración & dosificación , Polietilenglicoles/uso terapéutico , Ondas de Radio , Análisis de Supervivencia , Carga Tumoral
13.
Bioact Mater ; 35: 45-55, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38304914

RESUMEN

Lipid-shelled nanobubbles (NBs) can be visualized and activated using noninvasive ultrasound (US) stimulation, leading to significant bioeffects. Prior work demonstrates that active targeting of NBs to prostate-specific membrane antigen (PSMA) overexpressed in prostate cancer (PCa) results in enhanced cellular internalization and prolongs NB retention with persistent, cancer-cell specific acoustic activity. In this work, we hypothesized that tumor-accumulated PSMA-NBs combined with low frequency unfocused therapeutic US (TUS) will lead to selective damage and induce a specific therapeutic effect in PSMA-expressing tumors compared to PSMA-negative tumors. We observed that the internalized NBs and cellular compartments were disrupted after the PSMA-NB + TUS (targeted NB therapy or TNT) application, yet treated cells remained intact and viable. In vivo, PSMA-expressing tumors in mice receiving TNT treatment demonstrated a significantly greater extent of apoptosis (78.4 ± 9.3 %, p < 0.01) compared to controls. TNT treatment significantly inhibited the PSMA expressing tumor growth and increased median survival time by 103 %, p < 0.001). A significant reduction in tumor progression compared to untreated control was also seen in an orthotopic rabbit PCa model. Results demonstrate that cavitation of PSMA-NBs internalized via receptor-mediated endocytosis into target PCa cells using unfocused ultrasound results in significant, tumor-specific bioeffects. The effects, while not lethal to PSMA-expressing cancer cells in vitro, result in significant in vivo reduction in tumor progression in two models of PCa. While the mechanism of action of these effects is yet unclear, it is likely related to a locally-induced immune response, opening the door to future investigations in this area.

14.
Mol Imaging Biol ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760621

RESUMEN

PURPOSE: Prostate specific membrane antigen (PSMA) has been studied in human breast cancer (BCa) biopsies, however, lack of data on PSMA expression in mouse models impedes development of PSMA-targeted therapies, particularly in improving breast conserving surgery (BCS) margins. This study aimed to validate and characterize the expression of PSMA in murine BCa models, demonstrating that PSMA can be utilized to improve therapies and imaging techniques. METHODS: Murine triple negative breast cancer 4T1 cells, and human cell lines, MDA-MB-231, MDA-MB-468, implanted into the mammary fat pads of BALB/c mice, were imaged by our PSMA targeted theranostic agent, PSMA-1-Pc413, and tumor to background ratios (TBR) were calculated to validate selective uptake. Immunohistochemistry was used to correlate PSMA expression in relation to CD31, an endothelial cell biomarker highlighting neovasculature. PSMA expression was also quantified by Reverse Transcriptase Polymerase Chain Reaction (RT-PCR). RESULTS: Accumulation of PSMA-1-Pc413 was observed in 4T1 primary tumors and associated metastases. Average TBR of 4T1 tumors were calculated to be greater than 1.5-ratio at which tumor tissues can be distinguished from normal structures-at peak accumulation with the signal intensity in 4T1 tumors comparable to that in high PSMA expressing PC3-pip tumors. Extraction of 4T1 tumors and lung metastases followed by RT-PCR analysis and PSMA-CD31 co-staining shows that PSMA is consistently localized on tumor neovasculature with no expression in tumor cells and surrounding normal tissues. CONCLUSION: The selective uptake of PSMA-1-Pc413 in these cancer tissues as well as the characterization and validation of PSMA expression on neovasculature in this syngeneic 4T1 model emphasizes their potential for advancements in targeted therapies and imaging techniques for BCa. PSMA holds great promise as an oncogenic target for BCa and its associated metastases.

15.
Int J Cancer ; 132(7): 1624-32, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22987116

RESUMEN

Detection of an extracellular cleaved fragment of a cell-cell adhesion molecule represents a new paradigm in molecular recognition and imaging of tumors. We previously demonstrated that probes that recognize the cleaved extracellular domain of receptor protein tyrosine phosphatase mu (PTPmu) label human glioblastoma brain tumor sections and the main tumor mass of intracranial xenograft gliomas. In this article, we examine whether one of these probes, SBK2, can label dispersed glioma cells that are no longer connected to the main tumor mass. Live mice with highly dispersive glioma tumors were injected intravenously with the fluorescent PTPmu probe to test the ability of the probe to label the dispersive glioma cells in vivo. Analysis was performed using a unique three-dimensional (3D) cryo-imaging technique to reveal highly migratory and invasive glioma cell dispersal within the brain and the extent of colabeling by the PTPmu probe. The PTPmu probe labeled the main tumor site and dispersed cells up to 3.5 mm away. The cryo-images of tumors labeled with the PTPmu probe provide a novel, high-resolution view of molecular tumor recognition, with excellent 3D detail regarding the pathways of tumor cell migration. Our data demonstrate that the PTPmu probe recognizes distant tumor cells even in parts of the brain where the blood-brain barrier is likely intact. The PTPmu probe has potential translational significance for recognizing tumor cells to facilitate molecular imaging, a more complete tumor resection and to serve as a molecular targeting agent to deliver chemotherapeutics to the main tumor mass and distant dispersive tumor cells.


Asunto(s)
Neoplasias Encefálicas/patología , Movimiento Celular , Glioblastoma/patología , Técnicas de Diagnóstico Molecular , Sondas Moleculares , Fragmentos de Péptidos/metabolismo , Proteínas Tirosina Fosfatasas Clase 2 Similares a Receptores/metabolismo , Animales , Barrera Hematoencefálica , Neoplasias Encefálicas/enzimología , Espacio Extracelular/metabolismo , Citometría de Flujo , Colorantes Fluorescentes , Glioblastoma/enzimología , Ratones , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
16.
bioRxiv ; 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37745586

RESUMEN

Rationale: Lipid-shelled nanobubbles (NBs) can be visualized and activated using noninvasive ultrasound (US) stimulation, leading to significant bioeffects. We have previously shown that active targeting of NBs to prostate-specific membrane antigen (PSMA) overexpressed in prostate cancer (PCa) enhances the cellular internalization and prolongs retention of NBs with persistent acoustic activity (~hrs.). In this work, we hypothesized that tumor-accumulated PSMA-NBs combined with low frequency therapeutic US (TUS) will lead to selective damage and induce a therapeutic effect in PSMA-expressing tumors compared to PSMA-negative tumors. Methods: PSMA-targeted NBs were formulated by following our previously established protocol. Cellular internalization of fluorescent PSMA-NBs was evaluated by confocal imaging using late endosome/lysosome staining pre- and post-TUS application. Two animal models were used to assess the technique. Mice with dual tumors (PSMA expressing and PSMA negative) received PSMA-NB injection via the tail vein followed by TUS 1 hr. post injection (termed, targeted NB therapy or TNT). Twenty-four hours after treatment mice were euthanized and tumor cell apoptosis evaluated via TUNEL staining. Mice with single tumors (either PSMA + or -) were used for survival studies. Tumor size was measured for 80 days after four consecutive TNT treatments (every 3 days). To test the approach in a larger model, immunosuppressed rabbits with orthotopic human PSMA expressing tumors received PSMA-NB injection via the tail vein followed by TUS 30 min after injection. Tumor progression was assessed via US imaging and at the end point apoptosis was measured via TUNEL staining. Results: In vitro TNT studies using confocal microscopy showed that the internalized NBs and cellular compartments were disrupted after the TUS application, yet treated cells remained intact and viable. In vivo, PSMA-expressing tumors in mice receiving TNT treatment demonstrated a significantly greater extent of apoptosis (78.45 ± 9.3%, p < 0.01) compared to the other groups. TNT treatment significantly inhibited the PSMA (+) tumor growth and overall survival significantly improved (median survival time increase by 103%, p < 0.001). A significant reduction in tumor progression compared to untreated control was also seen in the rabbit model in intraprostatic (90%) and in extraprostatic lesions (94%) (p = 0.069 and 0.003, respectively). Conclusion: We demonstrate for the first time the effect of PSMA-targeted nanobubble intracellular cavitation on cancer cell viability and tumor progression in two animal models. Data demonstrate that the targeted nanobubble therapy (TNT) approach relies primarily on mechanical disruption of intracellular vesicles and the resulting bioeffects appear to be more specific to target cancer cells expressing the PSMA receptor. The effect, while not lethal in vitro, resulted in significant tumor apoptosis in vivo in both a mouse and a rabbit model of PCa. While the mechanism of action of these effects is yet unclear, it is likely related to a locally-induced immune response, opening the door to future investigations in this area.

17.
Mol Imaging Biol ; 25(1): 58-73, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36002710

RESUMEN

The majority of breast cancer patients is treated with breast-conserving surgery (BCS) combined with adjuvant radiation therapy. Up to 40% of patients has a tumor-positive resection margin after BCS, which necessitates re-resection or additional boost radiation. Cathepsin-targeted near-infrared fluorescence imaging during BCS could be used to detect residual cancer in the surgical cavity and guide additional resection, thereby preventing tumor-positive resection margins and associated mutilating treatments. The cysteine cathepsins are a family of proteases that play a major role in normal cellular physiology and neoplastic transformation. In breast cancer, the increased enzymatic activity and aberrant localization of many of the cysteine cathepsins drive tumor progression, proliferation, invasion, and metastasis. The upregulation of cysteine cathepsins in breast cancer cells indicates their potential as a target for intraoperative fluorescence imaging. This review provides a summary of the current knowledge on the role and expression of the most important cysteine cathepsins in breast cancer to better understand their potential as a target for fluorescence-guided surgery (FGS). In addition, it gives an overview of the cathepsin-targeted fluorescent probes that have been investigated preclinically and in breast cancer patients. The current review underscores that cysteine cathepsins are highly suitable molecular targets for FGS because of favorable expression and activity patterns in virtually all breast cancer subtypes. This is confirmed by cathepsin-targeted fluorescent probes that have been shown to facilitate in vivo breast cancer visualization and tumor resection in mouse models and breast cancer patients. These findings indicate that cathepsin-targeted FGS has potential to improve treatment outcomes in breast cancer patients.


Asunto(s)
Neoplasias de la Mama , Catepsinas , Cisteína , Animales , Ratones , Catepsinas/metabolismo , Cisteína/metabolismo , Fluorescencia , Colorantes Fluorescentes/metabolismo , Neoplasias/diagnóstico por imagen , Neoplasias/metabolismo , Neoplasias/cirugía , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/cirugía
18.
ACS Appl Mater Interfaces ; 14(13): 14916-14927, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35316026

RESUMEN

Combined radiotherapy (RT) and chemotherapy are prescribed to patients with advanced prostate cancer (PCa) to increase their survival; however, radiation-related side effects and systematic toxicity caused by chemotherapeutic drugs are unavoidable. To improve the precision and efficacy of concurrent RT and chemotherapy, we have developed a PCa-targeted gold nanocluster radiosensitizer conjugated with a highly potent cytotoxin, monomethyl auristatin E, PSMA-AuNC-MMAE, for RT and chemotherapy of PCa. This approach resulted in enhanced uptake of NCs by PSMA-positive cancer cells, targeted chemotherapy, and increased efficacy of RT both in vitro and in vivo. In addition, the combination of gold and MMAE further increased the efficacy of either of the agents delivered alone or simultaneously but not covalently linked. The PSMA-AuNC-MMAE conjugates improve the specificity and efficacy of radiation and chemotherapy, potentially reducing the toxicity of each therapy and making this an attractive avenue for clinical treatment of advanced PCa.


Asunto(s)
Oro , Neoplasias de la Próstata , Línea Celular Tumoral , Quimioradioterapia , Oro/uso terapéutico , Humanos , Masculino , Oligopéptidos , Péptido Hidrolasas , Neoplasias de la Próstata/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Nanotheranostics ; 6(3): 270-285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35223380

RESUMEN

Gas-core nanoscale bubbles (or nanobubbles) have gained significant recent attention as promising contrast agents for cancer molecular imaging using medical ultrasound. Previous work has shown that active targeting of nanobubbles to tumor biomarkers such as the prostate-specific membrane antigen (PSMA) significantly prolongs ultrasound signal enhancement, which is a critical feature for successful tumor diagnosis. However, the specific mechanism behind this effect is not well understood, and has not been previously studied in detail. Thus, in the current work, we investigated the process of PMSA- targeted nanobubble transport in tumors across different scales from in vivo whole tumor imaging using high-frequency dynamic contrast-enhanced ultrasound to intracellular confocal imaging and, molecularly using headspace gas chromatography/mass spectrometry. Data demonstrated that, indeed, molecular targeting of nanobubbles to the PSMA biomarker prolongs their tumor uptake and retention across the entire tumor volume, but with variability due to the expected tumor heterogeneity. Importantly, in vitro, the active targeting of NBs results in internalization via receptor-mediated endocytosis into the target cells, and the co-localization with intracellular vesicles (late-stage endosomes/lysosomes) significantly prolongs perfluorocarbon gas retention within the cells. This has not been directly observed previously. These results support the potential for nanobubbles to enable highly specific, background-free diagnostic imaging of the target cells/tissues using ultrasound.


Asunto(s)
Medios de Contraste , Neoplasias de la Próstata , Animales , Línea Celular Tumoral , Medios de Contraste/química , Humanos , Masculino , Ratones , Ratones Desnudos , Neoplasias de la Próstata/diagnóstico por imagen , Ultrasonografía/métodos
20.
Theranostics ; 12(5): 2335-2350, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35265213

RESUMEN

Rationale: Although surgery and radiation therapy in patients with low risk prostate cancer appear appropriate and effective, those with high-risk localized disease almost always become hormone refractory and then rapidly progress. A new treatment strategy is urgently needed for patients with high-risk localized prostate cancer, particularly an approach that combines two drugs with different mechanisms. Combinations of photodynamic therapy (PDT) and chemotherapy have shown synergistic effects in clinical trials, but are limited by off-target toxicity. Prostate specific membrane antigen (PSMA) is a well-established biomarker for prostate cancer. Here we describe the use of a PSMA ligand to selectively and simultaneously deliver a potent microtubule inhibiting agent, monomethyl auristatin E (MMAE), and a PDT agent, IR700, to prostate cancers. Methods: Using a bifunctional PSMA ligand PSMA-1-Cys-C6-Lys, we created a novel theranostic molecule PSMA-1-MMAE-IR700. The molecule was tested in vitro and in vivo for selectivity and antitumor activity studies. Results: PSMA-1-MMAE-IR700 showed selective and specific uptake in PSMA-positive PC3pip cells, but not in PSMA-negative PC3flu cells both in vitro and in vivo. In in vitro cytotoxicity studies, when exposed to 690 nm light, PSMA-1-MMAE-IR700 demonstrated a synergistic effect leading to greater cytotoxicity for PC3pip cells when compared to PSMA-1-IR700 with light irradiation or PSMA-1-MMAE-IR700 without light irradiation. In vivo antitumor activity studies further showed that PSMA-1-MMAE-IR700 with light irradiation significantly inhibited PC3pip tumor growth and prolonged survival time as compared to mice receiving an equimolar amount of PSMA-1-IR700 with light irradiation or PSMA-1-IR700-MMAE without light irradiation. Conclusion: We have synthesized a new multifunctional theranostic molecule that combines imaging, chemotherapy, and PDT for therapy against PSMA-expressing cancer tissues. This work may provide a new treatment option for advanced prostate cancer.


Asunto(s)
Fotoquimioterapia , Neoplasias de la Próstata , Animales , Línea Celular Tumoral , Humanos , Ligandos , Masculino , Ratones , Peso Molecular , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Nanomedicina Teranóstica , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA