Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946412

RESUMEN

Despite the huge body of research on osteogenic differentiation and bone tissue engineering, the translation potential of in vitro results still does not match the effort employed. One reason might be that the protocols used for in vitro research have inherent pitfalls. The synthetic glucocorticoid dexamethasone is commonly used in protocols for trilineage differentiation of human bone marrow mesenchymal stromal cells (hBMSCs). However, in the case of osteogenic commitment, dexamethasone has the main pitfall of inhibiting terminal osteoblast differentiation, and its pro-adipogenic effect is well known. In this work, we aimed to clarify the role of dexamethasone in the osteogenesis of hBMSCs, with a particular focus on off-target differentiation. The results showed that dexamethasone does induce osteogenic differentiation by inhibiting SOX9 expression, but not directly through RUNX2 upregulation as it is commonly thought. Rather, PPARG is concomitantly and strongly upregulated, leading to the formation of adipocyte-like cells within osteogenic cultures. Limiting the exposure to dexamethasone to the first week of differentiation did not affect the mineralization potential. Gene expression levels of RUNX2, SOX9, and PPARG were simulated using approximate Bayesian computation based on a simplified theoretical model, which was able to reproduce the observed experimental trends but with a different range of responses, indicating that other factors should be integrated to fully understand how dexamethasone influences cell fate. In summary, this work provides evidence that current in vitro differentiation protocols based on dexamethasone do not represent a good model, and further research is warranted in this field.


Asunto(s)
Dexametasona/farmacología , Glucocorticoides/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Osteogénesis/efectos de los fármacos , PPAR gamma/metabolismo , Factor de Transcripción SOX9/metabolismo , Adulto , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , PPAR gamma/genética , Factor de Transcripción SOX9/genética
2.
Int J Med Sci ; 15(14): 1631-1639, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30588186

RESUMEN

Melatonin, that regulates many physiological processes including circadian rhythms, is a molecule able to promote osteoblasts maturation in vitro and to prevent bone loss in vivo, while regulating also adipocytes metabolism. In this regard, we have previously shown that melatonin in combination with vitamin D, is able to counteract the appearance of an adipogenic phenotype in adipose derived stem cells (ADSCs), cultured in an adipogenic favoring condition. In the present study, we aimed at evaluating the specific phenotype elicited by melatonin and vitamin D based medium, considering also the involvement of epigenetic regulating genes. ADSCs were cultured in a specific adipogenic conditioned media, in the presence of melatonin alone or with vitamin D. The expression of specific osteogenic related genes was evaluated at different time points, together with the histone deacetylases epigenetic regulators, HDAC1 and Sirtuins (SIRT) 1 and 2. Our results show that melatonin and vitamin D are able to modulate ADSCs commitment towards osteogenic phenotype through the upregulation of HDAC1, SIRT 1 and 2, unfolding an epigenetic regulation in stem cell differentiation and opening novel strategies for future therapeutic balancing of stem cell fate toward adipogenic or osteogenic phenotype.


Asunto(s)
Diferenciación Celular/genética , Epigénesis Genética/fisiología , Melatonina/metabolismo , Células Madre/fisiología , Vitamina D/metabolismo , Adipocitos/fisiología , Adipogénesis/genética , Tejido Adiposo/citología , Adulto , Células Cultivadas , Histona Desacetilasa 1/metabolismo , Humanos , Persona de Mediana Edad , Osteoblastos/fisiología , Osteogénesis/genética , Cultivo Primario de Células , Sirtuina 1/metabolismo , Sirtuina 2/metabolismo , Regulación hacia Arriba
3.
Molecules ; 23(2)2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29385685

RESUMEN

In this review, we described different factors that modulate pluripotency in stem cells, in particular we aimed at following the steps of two large families of miRNAs: the miR-200 family and the miR-302 family. We analyzed some factors tuning stem cells behavior as TGF-ß, which plays a pivotal role in pluripotency inhibition together with specific miRNAs, reactive oxygen species (ROS), but also hypoxia, and physical stimuli, such as ad hoc conveyed electromagnetic fields. TGF-ß plays a crucial role in the suppression of pluripotency thus influencing the achievement of a specific phenotype. ROS concentration can modulate TGF-ß activation that in turns down regulates miR-200 and miR-302. These two miRNAs are usually requested to maintain pluripotency, while they are down-regulated during the acquirement of a specific cellular phenotype. Moreover, also physical stimuli, such as extremely-low frequency electromagnetic fields or high-frequency electromagnetic fields conveyed with a radioelectric asymmetric conveyer (REAC), and hypoxia can deeply influence stem cell behavior by inducing the appearance of specific phenotypes, as well as a direct reprogramming of somatic cells. Unraveling the molecular mechanisms underlying the complex interplay between externally applied stimuli and epigenetic events could disclose novel target molecules to commit stem cell fate.


Asunto(s)
Epigénesis Genética/fisiología , MicroARNs/metabolismo , Células Madre Pluripotentes/metabolismo , Animales , Humanos , MicroARNs/genética , Células Madre Pluripotentes/citología
4.
Int J Mol Sci ; 18(5)2017 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-28475114

RESUMEN

Adipose-derived stem cells (ADSCs) represent one of the cellular populations resident in adipose tissue. They can be recruited under certain stimuli and committed to become preadipocytes, and then mature adipocytes. Controlling stem cell differentiation towards the adipogenic phenotype could have a great impact on future drug development aimed at counteracting fat depots. Stem cell commitment can be influenced by different molecules, such as melatonin, which we have previously shown to be an osteogenic inducer. Here, we aimed at evaluating the effects elicited by melatonin, even in the presence of vitamin D, on ADSC adipogenesis assessed in a specific medium. The transcription of specific adipogenesis orchestrating genes, such as aP2, peroxisome proliferator-activated receptor γ (PPAR-γ), and that of adipocyte-specific genes, including lipoprotein lipase (LPL) and acyl-CoA thioesterase 2 (ACOT2), was significantly inhibited in cells that had been treated in the presence of melatonin and vitamin D, alone or in combination. Protein content and lipid accumulation confirmed a reduction in adipogenesis in ADSCs that had been grown in adipogenic conditions, but in the presence of melatonin and/or vitamin D. Our findings indicate the role of melatonin and vitamin D in deciding stem cell fate, and disclose novel therapeutic approaches against fat depots.


Asunto(s)
Adipogénesis/efectos de los fármacos , Tejido Adiposo/citología , Células Madre Adultas/citología , Antioxidantes/farmacología , Melatonina/farmacología , Vitamina D/farmacología , Vitaminas/farmacología , Adulto , Células Madre Adultas/efectos de los fármacos , Células Madre Adultas/metabolismo , Células Cultivadas , Femenino , Humanos , Metabolismo de los Lípidos , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Masculino , Persona de Mediana Edad , PPAR gamma/genética , PPAR gamma/metabolismo , Tioléster Hidrolasas/genética , Tioléster Hidrolasas/metabolismo
5.
Polymers (Basel) ; 16(10)2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38794563

RESUMEN

In this study, electrospun scaffolds were fabricated using polycaprolactone (PCL) loaded with varying concentrations of ß-carotene (1.2%, 2.4%, and 3.6%) via the electrospinning technique. The electrospinning process involved the melting of PCL in acetic acid, followed by the incorporation of ß-carotene powder under constant stirring. Raman spectroscopy revealed a homogeneous distribution of ß-carotene within the PCL matrix. However, the ß-carotene appeared in particulate form, rather than being dissolved and blended with the PCL matrix, a result also confirmed by thermogravimetric analysis. Additionally, X-ray diffraction analysis indicated a decrease in crystallinity with increasing ß-carotene concentration. Mechanical testing of the scaffolds demonstrated an increase in ultimate strain, accompanied by a reduction in ultimate stress, indicating a potential plasticizing effect. Moreover, antimicrobial assays revealed a marginal antibacterial effect against Escherichia coli for scaffolds with higher ß-carotene concentrations. Conversely, preliminary biological assessment using KUSA-A1 mesenchymal cells indicated enhanced cellular proliferation in response to the scaffolds, suggesting the potential biocompatibility and cell-stimulating properties of ß-carotene-loaded PCL scaffolds. Overall, this study provides insights into the fabrication and characterization of electrospun PCL scaffolds containing ß-carotene, laying the groundwork for further exploration in tissue engineering and regenerative medicine applications.

6.
Cells ; 12(14)2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37508486

RESUMEN

Osteoarthritis (OA) is a joint disorder characterized by progressive degeneration of cartilage extracellular matrix (ECM), chondrocyte hypertrophy and apoptosis and inflammation. The current treatments mainly concern pain control and reduction of inflammation, but no therapeutic strategy has been identified as a disease-modifying treatment. Therefore, identifying specific biomarkers useful to prevent, treat or distinguish the stages of OA disease has become an immediate need of clinical practice. The role of microRNAs (miRNAs) in OA has been investigated in the last decade, and increasing evidence has emerged that the influence of the environment on gene expression through epigenetic processes contributes to the development, progression and aggressiveness of OA, in particular acting on the microenvironment modulations. The effects of epigenetic regulation, particularly different miRNA methylation during OA disease, were highlighted in the present systematic review. The evidence arising from this study of the literature conducted in three databases (PubMed, Scopus, Web of Science) suggested that miRNA methylation state already strongly impacts OA progression, driving chondrocytes and synoviocyte proliferation, apoptosis, inflammation and ECM deposition. However, the possibility of understanding the mechanism by which different epigenetic modifications of miRNA or pre-miRNA sequences drive the aggressiveness of OA could be the new focus of future investigations.


Asunto(s)
MicroARNs , Osteoartritis , Humanos , Condrocitos/metabolismo , MicroARNs/metabolismo , Epigénesis Genética , Metilación , Osteoartritis/metabolismo , Inflamación/genética , Inflamación/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo
7.
Arthritis Res Ther ; 24(1): 105, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35545776

RESUMEN

Osteoarthritis (OA) is one of the most common musculoskeletal degenerative diseases and contributes to heavy socioeconomic burden. Current pharmacological and conventional non-pharmacological therapies aim at relieving the symptoms like pain and disability rather than modifying the underlying disease. Surgical treatment and ultimately joint replacement arthroplasty are indicated in advanced stages of OA. Since the underlying mechanisms of OA onset and progression have not been fully elucidated yet, the development of novel therapeutics to prevent, halt, or reverse the disease is laborious. Recently, small molecules of herbal origin have been reported to show potent anti-inflammatory, anti-catabolic, and anabolic effects, implying their potential for treatment of OA. Herein, the molecular mechanisms of these small molecules, their effect on physiological or pathological signaling pathways, the advancement of the extraction methods, and their potential clinical translation based on in vitro and in vivo evidence are comprehensively reviewed.


Asunto(s)
Artroplastia de Reemplazo , Osteoartritis , Antiinflamatorios/uso terapéutico , Humanos , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Dolor/tratamiento farmacológico , Transducción de Señal
8.
Tissue Eng Part B Rev ; 28(5): 949-965, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34579558

RESUMEN

Musculoskeletal disorders are the most common reason of chronic pain and disability, representing an enormous socioeconomic burden worldwide. In this review, new biomedical application fields for Raman spectroscopy (RS) technique related to skeletal tissues are discussed, showing that it can provide a comprehensive profile of tissue composition in situ, in a rapid, label-free, and nondestructive manner. RS can be used as a tool to study tissue alterations associated to aging, pathologies, and disease treatments. The main advantage with respect to currently applied methods in clinics is its ability to provide specific information on molecular composition, which goes beyond other diagnostic tools. Being compatible with water, RS can be performed without pretreatment on unfixed, hydrated tissue samples, without any labeling and chemical fixation used in histochemical methods. This review first provides the description of the basic principles of RS as a biotechnology tool and is introduced into the field of currently available RS-based techniques, developed to enhance Raman signals. The main spectral processing, statistical tools, fingerprint identification, and available databases are mentioned. The recent literature has been analyzed for such applications of RS as tendon and ligaments, cartilage, bone, and tissue engineered constructs for regenerative medicine. Several cases of proof-of-concept preclinical studies have been described. Finally, advantages, limitations, future perspectives, and challenges for the translation of RS into clinical practice have been also discussed. Impact statement Raman spectroscopy (RS) is a powerful noninvasive tool giving access to molecular vibrations and characteristics of samples in a wavelength window of 600 to 3200 cm-1, thus giving access to a molecular fingerprint of biological samples in a nondestructive way. RS could not only be used in clinical diagnostics, but also be used for quality control of tissues and tissue-engineered constructs, reducing number of samples, time, and the variety of analysis required in the quality control chain before implantation.


Asunto(s)
Espectrometría Raman , Ingeniería de Tejidos , Humanos , Espectrometría Raman/métodos , Estudios Prospectivos , Cartílago , Agua
9.
Cells ; 11(21)2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36359814

RESUMEN

Low back pain is a clinically highly relevant musculoskeletal burden and is associated with inflammatory as well as degenerative processes of the intervertebral disc. However, the pathophysiology and cellular pathways contributing to this devastating condition are still poorly understood. Based on previous evidence, we hypothesize that tissue renin-angiotensin system (tRAS) components, including the SARS-CoV-2 entry receptor angiotensin-converting enzyme 2 (ACE2), are present in human nucleus pulposus (NP) cells and associated with inflammatory and degenerative processes. Experiments were performed with NP cells from four human donors. The existence of angiotensin II, angiotensin II type 1 receptor (AGTR1), AGTR2, MAS-receptor (MasR), and ACE2 in human NP cells was validated with immunofluorescent staining and gene expression analysis. Hereafter, the cell viability was assessed after adding agonists and antagonists of the target receptors as well as angiotensin II in different concentrations for up to 48 h of exposure. A TNF-α-induced inflammatory in vitro model was employed to assess the impact of angiotensin II addition and the stimulation or inhibition of the tRAS receptors on inflammation, tissue remodeling, expression of tRAS markers, and the release of nitric oxide (NO) into the medium. Furthermore, protein levels of IL-6, IL-8, IL-10, and intracellular as well as secreted angiotensin II were assessed after exposing the cells to the substances, and inducible nitric oxide synthase (iNOS) levels were evaluated by utilizing Western blot. The existence of tRAS receptors and angiotensin II were validated in human NP cells. The addition of angiotensin II only showed a mild impact on gene expression markers. However, there was a significant increase in NO secreted by the cells. The gene expression ratios of pro-inflammatory/anti-inflammatory cytokines IL-6/IL-10, IL-8/IL-10, and TNF-α/IL-10 were positively correlated with the AGTR1/AGTR2 and AGTR1/MAS1 ratios, respectively. The stimulation of the AGTR2 MAS-receptor and the inhibition of the AGTR1 receptor revealed beneficial effects on the gene expression of inflammatory and tissue remodeling markers. This finding was also present at the protein level. The current data showed that tRAS components are expressed in human NP cells and are associated with inflammatory and degenerative processes. Further characterization of the associated pathways is warranted. The findings indicate that tRAS modulation might be a novel therapeutic approach to intervertebral disc disease.


Asunto(s)
Núcleo Pulposo , Sistema Renina-Angiotensina , Humanos , Angiotensina II/metabolismo , Enzima Convertidora de Angiotensina 2 , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Núcleo Pulposo/citología , Núcleo Pulposo/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
10.
Stem Cell Res Ther ; 13(1): 533, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575539

RESUMEN

BACKGROUND: Bone marrow mesenchymal stromal cells (BMSCs) are promising for therapeutic use in cartilage repair, because of their capacity to differentiate into chondrocytes. Often, in vitro differentiation protocols employ the use of high amount of glucose, which does not reflect cartilage physiology. For this reason, we investigated how different concentrations of glucose can affect the chondrogenic differentiation of BMSCs in cell culture pellets. Additionally, we investigated how fructose could influence the chondrogenic differentiation in vitro. METHODS: BMSC were isolated from six donors and cultured in DMEM containing glucose at either 25 mM (HG), 5.5 mM (LG) or 1 mM (LLG), and 1% non-essential amino acids, 1% ITS+, in the presence of 100 nM dexamethasone, 50 µg/ml ascorbic acid-2 phosphate and 10 ng/ml TGF-ß1. To investigate the effect of different metabolic substrates, other groups were exposed to additional 25 mM fructose. The media were replaced every second day until day 21 when all the pellets were harvested for further analyses. Biochemical analysis for glycosaminoglycans into pellets and released in medium was performed using the DMMB method. Expression of GLUT3 and GLUT5 was assayed by qPCR and validated using FACS analysis and immunofluorescence in monolayer cultures. Chondrogenic differentiation was further confirmed by qPCR analysis of COL2A1, COL1A1, COL10A1, ACAN, RUNX2, SOX9, SP7, MMP13, and PPARG, normalized on RPLP0. Type 2 collagen expression was subsequently validated by immunofluorescence analysis. RESULTS: We show for the first time the presence of fructose transporter GLUT5 in BMSC and its regulation during chondrogenic commitment. Additionally, decreasing glucose concentration during chondrogenesis dramatically decreased the yield of differentiation. However, the use of fructose alone or together with low glucose concentrations does not limit cell differentiation, but on the contrary it might help in maintaining a stable chondrogenic phenotype comparable with the standard culture conditions (high glucose). CONCLUSION: This study provides evidence that BMSC express GLUT5 and differentially regulate GLUT3 in the presence of glucose variation. This study gives a better comprehension of BMSCs sugar use during chondrogenesis.


Asunto(s)
Médula Ósea , Células Madre Mesenquimatosas , Humanos , Transportador de Glucosa de Tipo 3/metabolismo , Condrogénesis , Glucosa/farmacología , Glucosa/metabolismo , Fructosa/farmacología , Fructosa/metabolismo , Condrocitos/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Células Cultivadas , Células de la Médula Ósea
11.
Sci Rep ; 11(1): 13089, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158528

RESUMEN

In the field of regenerative medicine, considerable advances have been made from the technological and biological point of view. However, there are still large gaps to be filled regarding translation and application of mesenchymal stromal cell (MSC)-based therapies into clinical practice. Indeed, variables such as cell type, unpredictable donor variation, and expansion/differentiation methods lead to inconsistencies. Most protocols use bovine serum (FBS) derivatives during MSC expansion. However, the xenogeneic risks associated with FBS limits the use of MSC-based products in clinical practice. Herein we compare a chemically defined, xenogeneic-free commercial growth medium with a conventional medium containing 10% FBS and 5 ng/ml FGF2. Furthermore, the effect of a fibronectin-coated growth surface was investigated. The effect of the different culture conditions on chondrogenic commitment was assessed by analyzing matrix deposition and gene expression of common chondrogenic markers. Chondrogenic differentiation potential was similar between the FBS-containing αMEM and the chemically defined medium with fibronectin coating. On the contrary, the use of fibronectin coating with FBS-containing medium appeared to reduce the differentiation potential of MSCs. Moreover, cells that were poorly responsive to in vitro chondrogenic stimuli were shown to improve their differentiation potential after expansion in a TGF-ß1 containing medium. In conclusion, the use of a xenogeneic-free medium provides a suitable alternative for human bone marrow MSC expansion, due the capability to maintain cell characteristic and potency. To further improve chondrogenic potential of BMSCs, priming the cells with TGF-ß1 during expansion is a promising strategy.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/farmacología , Células Madre Mesenquimatosas/metabolismo , Médula Ósea/fisiología , Células de la Médula Ósea/citología , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Condrogénesis/efectos de los fármacos , Medios de Cultivo/química , Fibronectinas/química , Fibronectinas/metabolismo , Humanos , Células Madre Mesenquimatosas/citología
12.
Biomedicines ; 9(7)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34356857

RESUMEN

Biodegradable and bioresponsive polymer-based nanoparticles (NPs) can be used for oligonucleotide delivery, making them a promising candidate for mRNA-based therapeutics. In this study, we evaluated and optimized the efficiency of a cationic, hyperbranched poly(amidoamine)s-based nanoparticle system to deliver tdTomato mRNA to primary human bone marrow stromal cells (hBMSC), human synovial derived stem cells (hSDSC), bovine chondrocytes (bCH), and rat tendon derived stem/progenitor cells (rTDSPC). Transfection efficiencies varied among the cell types tested (bCH 28.4% ± 22.87, rTDSPC 18.13% ± 12.07, hBMSC 18.23% ± 14.80, hSDSC 26.63% ± 8.81) and while an increase of NPs with a constant amount of mRNA generally improved the transfection efficiency, an increase of the mRNA loading ratio (2:50, 4:50, or 6:50 w/w mRNA:NPs) had no impact. However, metabolic activity of bCHs and rTDSPCs was significantly reduced when using higher amounts of NPs, indicating a dose-dependent cytotoxic response. Finally, we demonstrate the feasibility of transfecting extracellular matrix-rich 3D cell culture constructs using the nanoparticle system, making it a promising transfection strategy for musculoskeletal tissues that exhibit a complex, dense extracellular matrix.

13.
Bone Res ; 9(1): 46, 2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707086

RESUMEN

Tissue engineering is rapidly progressing toward clinical application. In the musculoskeletal field, there has been an increasing necessity for bone and cartilage replacement. Despite the promising translational potential of tissue engineering approaches, careful attention should be given to the quality of developed constructs to increase the real applicability to patients. After a general introduction to musculoskeletal tissue engineering, this narrative review aims to offer an overview of methods, starting from classical techniques, such as gene expression analysis and histology, to less common methods, such as Raman spectroscopy, microcomputed tomography, and biosensors, that can be employed to assess the quality of constructs in terms of viability, morphology, or matrix deposition. A particular emphasis is given to standards and good practices (GXP), which can be applicable in different sectors. Moreover, a classification of the methods into destructive, noninvasive, or conservative based on the possible further development of a preimplant quality monitoring system is proposed. Biosensors in musculoskeletal tissue engineering have not yet been used but have been proposed as a novel technology that can be exploited with numerous advantages, including minimal invasiveness, making them suitable for the development of preimplant quality control systems.

14.
Cells ; 9(2)2020 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-32050423

RESUMEN

The goal of the present study is to identify the differential expression of circular RNA (circRNA), miRNA, and piwi-interacting RNA (piRNA) after lineage commitment towards osteo- and chondrogenesis of human bone marrow mesenchymal stromal cells (hMSCs). The cells were maintained for 7 days in either osteogenic or chondrogenic medium. RNA sequencing was performed to assess the expression of miRNA and piRNA, while RNA hybridization arrays were used to identify which circRNA were differentially expressed. qPCR validation of a selection of targets for both osteogenic and chondrogenic differentiation was carried out. The differential expression of several circRNA, miRNA, and piRNA was identified and validated. The expression of total and circular isoforms of FKBP5 was upregulated both in osteo- and chondrogenesis and it was influenced by the presence of dexamethasone. ZEB1, FADS2, and SMYD3 were also identified as regulated in differentiation and/or by dexamethasone. In conclusion, we have identified a set of different non-coding RNAs that are differentially regulated in early osteogenic and chondrogenic differentiation, paving the way for further investigation to understand how dexamethasone controls the expression of those genes and what their function is in MSC differentiation.


Asunto(s)
Diferenciación Celular/genética , Condrogénesis/genética , Regulación de la Expresión Génica , Células Madre Mesenquimatosas/citología , MicroARNs/genética , Osteogénesis/genética , ARN Circular/genética , ARN Interferente Pequeño/genética , Adulto , Anciano , Anciano de 80 o más Años , Sitios de Unión/genética , Femenino , Humanos , Inmunofenotipificación , Masculino , Células Madre Mesenquimatosas/metabolismo , MicroARNs/metabolismo , Persona de Mediana Edad , ARN Circular/metabolismo , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados
15.
Artículo en Inglés | MEDLINE | ID: mdl-32676497

RESUMEN

The use of human mesenchymal stromal cells (hMSCs) for cartilage regeneration has been hampered by the inherent donor variation of primary monolayer expanded cells. Although CD markers are typically used to characterize cell populations, there is no correlation between CD marker profile and functional outcomes. Therefore, we aimed to discover novel predictive MSC chondrogenesis markers. The chondrogenic potential of primary human bone marrow MSCs (hBMSCs) over multiple passages was assessed by standard pellet culture. We confirmed that the ratio of TGFß-RI/TGFß-RII at the time of cell recovery from the tissue culture plastic reliably predicted chondrogenic potential. Furthermore, it is possible to prospectively characterize any human BMSC cell population as responders or non-responders with respect to chondrogenic differentiation potential. Transient increase of the ratio with siRNA knockdown of TGFß-RII reproducibly recovered the chondrogenic differentiation ability of non-responsive MSCs. Together this offers an opportunity to produce a more functionally characterized cell population for use in autologous cartilage repair therapies.

16.
Cell Transplant ; 29: 963689720916175, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32326741

RESUMEN

Extracorporeal shock waves (ESWTs) are "mechanical" waves, widely used in regenerative medicine, including soft tissue wound repair. Although already being used in the clinical practice, the mechanism of action underlying their biological activities is still not fully understood. In the present paper we tried to elucidate whether a proinflammatory effect may contribute to the regenerative potential of shock waves treatment. For this purpose, we exposed human foreskin fibroblasts (HFF1 cells) to an ESWT treatment (100 pulses using energy flux densities of 0.19 mJ/mm2 at 3 Hz), followed by cell analyses after 5 min, up to 48 h. We then evaluated cell proliferation, reactive oxygen species generation, ATP release, and cytokine production. Cells cultured in the presence of lipopolysaccharide (LPS), to induce inflammation, were used as a positive control, indicating that LPS-mediated induction of a proinflammatory pattern in HFF1 increased their proliferation. Here, we provide evidence that ESWTs affected fibroblast proliferation through the overexpression of selected cytokines involved in the establishment of a proinflammatory program, superimposable to what was observed in LPS-treated cells. The possibility that inflammatory circuits can be modulated by ESWT mechanotransduction may disclose novel hypothesis on their biological underpinning and expand the fields of their biomedical application.


Asunto(s)
Proliferación Celular/fisiología , Fibroblastos/citología , Inflamación/metabolismo , Mecanotransducción Celular/fisiología , Cicatrización de Heridas/fisiología , Citocinas/metabolismo , Humanos
17.
Biofabrication ; 13(1)2020 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-32977317

RESUMEN

Morphogenesis, a complex process, ubiquitous in developmental biology and many pathologies, is based on self-patterning of cells. Spatial patterns of cells, organoids, or inorganic particles can be forced on demand using acoustic surface standing waves, such as the Faraday waves. This technology allows tuning of parameters (sound frequency, amplitude, chamber shape) under contactless, fast and mild culture conditions, for morphologically relevant tissue generation. We call this method Sound Induced Morphogenesis (SIM). In this work, we use SIM to achieve tight control over patterning of endothelial cells and mesenchymal stem cells densities within a hydrogel, with the endpoint formation of vascular structures. Here, we first parameterize our system to produce enhanced cell density gradients. Second, we allow for vasculogenesis after SIM patterning control and compare our controlled technology against state-of-the-art microfluidic culture systems, the latter characteristic of pure self-organized patterning and uniform initial density. Our sound-induced cell density patterning and subsequent vasculogenesis requires less cells than the microfluidic chamber. We advocate for the use of SIM for rapid, mild, and reproducible morphogenesis induction and further explorations in the regenerative medicine and cell therapy fields.


Asunto(s)
Células Endoteliales , Sonido , Hidrogeles , Morfogénesis , Organoides
18.
JOR Spine ; 3(2): e1090, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32613165

RESUMEN

It has been shown that painful intervertebral discs (IVDs) were associated with a deeper innervation. However, the effect of the disc's degenerative microenvironment on neuronal outgrowth remains largely unknown. The focus of this study was to determine the influence of hypoxia on dorsal root ganglion (DRG) neurite outgrowth. Toward this aim, the DRG-derived cell line ND7/23 was either directly subjected to 2% or 20% oxygen conditions or exposed to conditioned medium (CM) collected from IVDs cultured under 2% or 20% oxygen. Viability and outgrowth analysis were performed following 3 days of exposure. Results obtained with the cell line were further validated on cultures of rabbit spinal DRG explants and dissociated DRG neurons. Results showed that hypoxia significantly increased neurite outgrowth length in ND7/23 cells, which was also validated in DRG explant and primary cell culture, although hypoxia conditioned IVD did not significantly increase ND7/23 neurite outgrowth. While hypoxia dramatically decreased the outgrowth frequency in explant cultures, it significantly increased collateral sprouting of dissociated neurons. Importantly, the hypoxia-induced decrease of outgrowth frequency at the explant level was not due to inhibition of outgrowth branching but rather to neuronal necrosis. In summary, hypoxia in DRG promoted neurite sprouting, while neuronal necrosis may reduce the density of neuronal outgrowth at the tissue level. These findings may help to explain the deeper neo-innervation found in the painful disc tissue. HIGHLIGHTS: Hypoxia promoted elongation and branching of neurite outgrowth at single cell level, but reduced outgrowth density at tissue level, possibly due to hypoxia-induced neuronal necrosis; these findings may help to explain the deeper neo-innervation found in clinically painful tissues.

19.
Front Biosci (Schol Ed) ; 11(1): 89-104, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30844738

RESUMEN

Human adult stem cells hold promise for regenerative medicine. They are usually expanded for multiple passages in vitro to increase cell yield prior to transplantation. Unfortunately, prolonged culture leads to cell senescence, a major drawback from successful outcomes in cell therapy approaches. Here, we show that an extract from early Zebrafish embryo (ZF1) counteracted senescence progression in human adipose-derived stem cells (hASCs) along multiple culture passages (from the 5th to the 20th). Exposure to ZF1 strongly reduced the expression of senescence marker beta-galactosidase. Both stemness (NANOG, OCT4, and MYC) and anti-senescence (BMI1, and telomerase reverse transcriptase - TERT) related genes were overexpressed at specific experimental points, without recruitment of the cyclin-dependent kinase Inhibitor 2A (CDKN2A, ali-as p16). Increased telomerase activity was associatt-ed with TERT overexpression. Both osteogenic and adipogenic abilities were enhanced. In conclusion, hASCs exposure to ZF1 is a feasible tool to counteract and reverse human stem cell senescence in long-term culturing conditions.


Asunto(s)
Extractos Celulares/química , Senescencia Celular , Embrión no Mamífero/química , Células Madre/citología , Pez Cebra/embriología , Adipocitos/citología , Adipogénesis , Adulto , Animales , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Femenino , Humanos , Osteogénesis , Trasplante de Células Madre , Telomerasa/genética , beta-Galactosidasa/metabolismo
20.
Cells ; 8(6)2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31242641

RESUMEN

Recent studies highlighting mesenchymal stem cell (MSC) epigenetic memory suggest that a different differentiation medium may be required depending on the tissue of origin. As synovial-derived stem cells (SDSCs) attract interest we aimed to investigate the influence of TGF-ß1, BMP-2 and dexamethasone on SDSC chondrogenesis in vitro. We demonstrate that dexamethasone-free medium led to enhanced chondrogenic differentiation at both the mRNA and matrix level. The greatest COL2A1/COL10A1 ratio was detected in cells exposed to a combination medium containing 10 ng/mL BMP-2 and 1 ng/mL TGF-ß1 in the absence of dexamethasone, and this was reflected in the total amount of glycosaminoglycans produced. In summary, dexamethasone-free medium containing BMP-2 and TGF-ß1 may be the most suitable when using SDSCs for cartilage tissue regeneration.


Asunto(s)
Proteína Morfogenética Ósea 2/farmacología , Condrogénesis/efectos de los fármacos , Dexametasona/farmacología , Células Madre/citología , Membrana Sinovial/citología , Factor de Crecimiento Transformador beta1/farmacología , Adulto , Colágeno Tipo II/metabolismo , ADN/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Glicosaminoglicanos/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA