RESUMEN
Social anxiety disorder (SAD) is a crippling psychiatric disorder characterized by intense fear or anxiety in social situations and their avoidance. However, the underlying biology of SAD is unclear and better treatments are needed. Recently, the gut microbiota has emerged as a key regulator of both brain and behaviour, especially those related to social function. Moreover, increasing data supports a role for immune function and oxytocin signalling in social responses. To investigate whether the gut microbiota plays a causal role in modulating behaviours relevant to SAD, we transplanted the microbiota from SAD patients, which was identified by 16S rRNA sequencing to be of a differential composition compared to healthy controls, to mice. Although the mice that received the SAD microbiota had normal behaviours across a battery of tests designed to assess depression and general anxiety-like behaviours, they had a specific heightened sensitivity to social fear, a model of SAD. This distinct heightened social fear response was coupled with changes in central and peripheral immune function and oxytocin expression in the bed nucleus of the stria terminalis. This work demonstrates an interkingdom basis for social fear responses and posits the microbiome as a potential therapeutic target for SAD.
Asunto(s)
Microbioma Gastrointestinal , Fobia Social , Humanos , Animales , Ratones , Microbioma Gastrointestinal/fisiología , Oxitocina , ARN Ribosómico 16S/genética , Miedo , Ansiedad/psicologíaRESUMEN
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson's disease, and Alzheimer's disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Asunto(s)
Bacterias/metabolismo , Encefalopatías/microbiología , Encéfalo/microbiología , Microbioma Gastrointestinal , Intestinos/microbiología , Factores de Edad , Envejecimiento , Animales , Bacterias/inmunología , Bacterias/patogenicidad , Conducta , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Encefalopatías/metabolismo , Encefalopatías/fisiopatología , Encefalopatías/psicología , Disbiosis , Sistema Nervioso Entérico/metabolismo , Sistema Nervioso Entérico/microbiología , Sistema Nervioso Entérico/fisiopatología , Interacciones Huésped-Patógeno , Humanos , Intestinos/inmunología , Neuroinmunomodulación , Plasticidad Neuronal , Factores de RiesgoRESUMEN
Recent research highlights the pivotal role of the maternal gut microbiome during pregnancy in shaping offspring neurodevelopment. In this study, we investigated the impact of maternal intake of a multispecies probiotic formulation during a critical prenatal window (from gestational day 6 until birth) on neurodevelopmental trajectories in mice. Our findings demonstrate significant and persistent benefits in emotional behavior, gut microbiota composition, and expression of tight junction-related genes, particularly in male offspring, who exhibited heightened sensitivity to the probiotic intervention compared to females. Additionally, we observed elevated gene expression levels of the anti-inflammatory cytokine IL-10 and the oxytocin receptor (Oxtr) in the prefrontal cortex (PFC) of exposed juvenile offspring; however, these changes persisted only in the adult male offspring. Furthermore, the sustained increase in the expression of the proton-coupled oligopeptide transporter 1 (PepT1), which is involved in the transport of bacterial peptidoglycan motifs, in the PFC of exposed male offspring suggests a potential mechanistic pathway underlying the observed sex-dependent effects on behavior and gene expression. These results underscore the potential of prenatal multispecies probiotic interventions to promote long-term neurodevelopmental outcomes, with implications for precision microbial reconstitution aimed at promoting healthy neurodevelopment and behavior.
Asunto(s)
Microbioma Gastrointestinal , Probióticos , Receptores de Oxitocina , Animales , Femenino , Probióticos/administración & dosificación , Embarazo , Microbioma Gastrointestinal/fisiología , Masculino , Ratones , Receptores de Oxitocina/metabolismo , Receptores de Oxitocina/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Corteza Prefrontal/metabolismo , Ratones Endogámicos C57BL , Interleucina-10/metabolismoRESUMEN
The developing central nervous system is highly sensitive to nutrient changes during the perinatal period, emphasising the potential impact of alterations of maternal diet on offspring brain development and behaviour. A growing body of research implicates the gut microbiota in neurodevelopment and behaviour. Maternal overweight and obesity during the perinatal period has been linked to changes in neurodevelopment, plasticity and affective disorders in the offspring, with implications for microbial signals from the maternal gut. Here we investigate the impact of maternal high-fat diet (mHFD)-induced changes in microbial signals on offspring brain development, and neuroimmune signals, and the enduring effects on behaviour into adolescence. We first demonstrate that maternal caecal microbiota composition at term pregnancy (embryonic day 18: E18) differs significantly in response to maternal diet. Moreover, mHFD resulted in the upregulation of microbial genes in the maternal intestinal tissue linked to alterations in quinolinic acid synthesis and elevated kynurenine levels in the maternal plasma, both neuronal plasticity mediators related to glutamate metabolism. Metabolomics of mHFD embryonic brains at E18 also detected molecules linked to glutamate-glutamine cycle, including glutamic acid, glutathione disulphide, and kynurenine. During adolescence, the mHFD offspring exhibited increased locomotor activity and anxiety-like behaviour in a sex-dependent manner, along with upregulation of glutamate-related genes compared to controls. Overall, our results demonstrate that maternal exposure to high-fat diet results in microbiota changes, behavioural imprinting, altered brain metabolism, and glutamate signalling during critical developmental windows during the perinatal period.
Asunto(s)
Encéfalo , Dieta Alta en Grasa , Microbioma Gastrointestinal , Efectos Tardíos de la Exposición Prenatal , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Embarazo , Encéfalo/metabolismo , Microbioma Gastrointestinal/fisiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Efectos Tardíos de la Exposición Prenatal/microbiología , Masculino , Conducta Animal/fisiología , Fenómenos Fisiologicos Nutricionales Maternos , Conducta del Adolescente/fisiología , Ratones , Ansiedad/metabolismo , Ansiedad/microbiologíaRESUMEN
Social anxiety disorder is a common psychiatric condition that severely affects quality of life of individuals and is a significant societal burden. Although many risk factors for social anxiety exist, it is currently unknown how social fear sensitivity manifests biologically. Furthermore, since some individuals are resilient and others are susceptible to social fear, it is important to interrogate the mechanisms underpinning individual response to social fear situations. The microbiota-gut-brain axis has been associated with social behaviour, has recently been linked with social anxiety disorder, and may serve as a therapeutic target for modulation. Here, we assess the potential of this axis to be linked with social fear extinction processes in a murine model of social anxiety disorder. To this end, we correlated differential social fear responses with microbiota composition, central gene expression, and immune responses. Our data provide evidence that microbiota variability is strongly correlated with alterations in social fear behaviour. Moreover, we identified altered gene candidates by amygdalar transcriptomics that are linked with social fear sensitivity. These include genes associated with social behaviour (Armcx1, Fam69b, Kcnj9, Maoa, Serinc5, Slc6a17, Spata2, and Syngr1), inflammation and immunity (Cars, Ckmt1, Klf5, Maoa, Map3k12, Pex5, Serinc5, Sidt1, Spata2), and microbe-host interaction (Klf5, Map3k12, Serinc5, Sidt1). Together, these data provide further evidence for a role of the microbiota-gut-brain axis in social fear responses.
Asunto(s)
Eje Cerebro-Intestino , Extinción Psicológica , Miedo , Microbioma Gastrointestinal , Ratones Endogámicos C57BL , Animales , Miedo/fisiología , Ratones , Microbioma Gastrointestinal/fisiología , Extinción Psicológica/fisiología , Masculino , Eje Cerebro-Intestino/fisiología , Encéfalo/metabolismo , Conducta Social , Fobia Social/metabolismo , Fobia Social/psicología , Amígdala del Cerebelo/metabolismo , Modelos Animales de Enfermedad , Ansiedad/metabolismoRESUMEN
The impact of diet on the microbiota composition and the role of diet in supporting optimal mental health have received much attention in the last decade. However, whether whole dietary approaches can exert psychobiotic effects is largely understudied. Thus, we investigated the influence of a psychobiotic diet (high in prebiotic and fermented foods) on the microbial profile and function as well as on mental health outcomes in a healthy human population. Forty-five adults were randomized into either a psychobiotic (n = 24) or control (n = 21) diet for 4 weeks. Fecal microbiota composition and function was characterized using shotgun sequencing. Stress, overall health and diet were assessed using validated questionnaires. Metabolic profiling of plasma, urine and fecal samples was performed. Intervention with a psychobiotic diet resulted in reductions of perceived stress (32% in diet vs. 17% in control group), but not between groups. Similarly, biological marker of stress were not affected. Additionally, higher adherence to the diet resulted in stronger decreases in perceived stress. While the dietary intervention elicited only subtle changes in microbial composition and function, significant changes in the level of 40 specific fecal lipids and urinary tryptophan metabolites were observed. Lastly, microbial volatility was linked to greater changes in perceived stress scores in those on the psychobiotic diet. These results highlight that dietary approaches can be used to reduce perceived stress in a human cohort. Using microbiota-targeted diets to positively modulate gut-brain communication holds possibilities for the reduction of stress and stress-associated disorders, but additional research is warranted to investigate underlying mechanisms, including the role of the microbiota.
Asunto(s)
Dieta , Microbiota , Humanos , Adulto , Heces , Estrés Psicológico/psicologíaRESUMEN
Aging is associated with remodelling of immune and central nervous system responses resulting in behavioural impairments including social deficits. Growing evidence suggests that the gut microbiome is also impacted by aging, and we propose that strategies to reshape the aged gut microbiome may ameliorate some age-related effects on host physiology. Thus, we assessed the impact of gut microbiota depletion, using an antibiotic cocktail, on aging and its impact on social behavior and the immune system. Indeed, microbiota depletion in aged mice eliminated the age-dependent deficits in social recognition. We further demonstrate that although age and gut microbiota depletion differently shape the peripheral immune response, aging induces an accumulation of T cells in the choroid plexus, that is partially blunted following microbiota depletion. Moreover, an untargeted metabolomic analysis revealed age-dependent alterations of cecal metabolites that are reshaped by gut microbiota depletion. Together, our results suggest that the aged gut microbiota can be specifically targeted to affect social deficits. These studies propel the need for future investigations of other non-antibiotic microbiota targeted interventions on age-related social deficits both in animal models and humans.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Ratones , Animales , Anciano , Conducta Social , Microbioma Gastrointestinal/fisiología , Reconocimiento en Psicología , EnvejecimientoRESUMEN
Mounting evidence suggests a link between gut microbiota abnormalities and post-traumatic stress disorder (PTSD). However, whether and how the gut microbiota influences PTSD susceptibility is poorly understood. Here using the arousal-based individual screening model, we provide evidence for pre-trauma and post-trauma gut microbiota alterations in susceptible mice exhibiting persistent PTSD-related phenotypes. A more in-depth analysis revealed an increased abundance of bacteria affecting brain processes including myelination, and brain systems like the dopaminergic neurotransmission. Because dopaminergic dysfunctions play a key role in the pathophysiological mechanisms subserving PTSD, we assessed whether these alterations in gut microbiota composition could be associated with abnormal levels of metabolites inducing dopaminergic dysfunctions. We found high levels of the l-tyrosine-derived metabolite p-cresol exclusively in the prefrontal cortex of susceptible mice. We further uncovered abnormal levels of dopamine and DOPAC, together with a detrimental increase of dopamine D3 receptor expression, exclusively in the prefrontal cortex of susceptible mice. Conversely, we observed either resilience mechanisms aimed at counteracting these p-cresol-induced dopaminergic dysfunctions or myelination-related resilience mechanisms only in the prefrontal cortex of resilient mice. These findings reveal that gut microbiota abnormalities foster trauma susceptibility and thus it may represent a promising target for therapeutic interventions.
Asunto(s)
Dopamina , Ratones , AnimalesRESUMEN
Numerous studies have emphasised the importance of the gut microbiota during early life and its role in modulating neurodevelopment and behaviour. Epidemiological studies have shown that early-life antibiotic exposure can increase an individual's risk of developing immune and metabolic diseases. Moreover, preclinical studies have shown that long-term antibiotic-induced microbial disruption in early life can have enduring effects on physiology, brain function and behaviour. However, these studies have not investigated the impact of targeted antibiotic-induced microbiota depletion during critical developmental windows and how this may be related to neurodevelopmental outcomes. Here, we addressed this gap by administering a broad-spectrum oral antibiotic cocktail (ampicillin, gentamicin, vancomycin, and imipenem) to mice during one of three putative critical windows: the postnatal (PN; P2-9), pre-weaning (PreWean; P12-18), or post-weaning (Wean; P21-27) developmental periods and assessed the effects on physiology and behaviour in later life. Our results demonstrate that targeted microbiota disruption during early life has enduring effects into adolescence on the structure and function of the caecal microbiome, especially for antibiotic exposure during the weaning period. Further, we show that microbial disruption in early life selectively alters circulating immune cells and modifies neurophysiology in adolescence, including altered myelin-related gene expression in the prefrontal cortex and altered microglial morphology in the basolateral amygdala. We also observed sex and time-dependent effects of microbiota depletion on anxiety-related behavioural outcomes in adolescence and adulthood. Antibiotic-induced microbial disruption had limited and subtle effects on social behaviour and did not have any significant effects on depressive-like behaviour, short-term working, or recognition memory. Overall, this study highlights the importance of the gut microbiota during critical windows of development and the subtle but long-term effects that microbiota-targeted perturbations can have on brain physiology and behaviour.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Ratones , Antibacterianos/farmacología , Conducta Social , Microbioma Gastrointestinal/fisiología , AnsiedadRESUMEN
The bed nucleus of the stria terminalis (BNST) is a focal point for the convergence of inputs from canonical stress-sensitive structures to fine-tune the response to stress. However, its role in mediating phenotypes of stress resilience or susceptibility is yet to be fully defined. In this study, we carried out unbiased RNA-sequencing to analyse the BNST transcriptomes of adult male mice, which were classified as resilient or susceptible following a 10-day chronic psychosocial defeat stress paradigm. Pairwise comparisons revealed 20 differentially expressed genes in resilience (6) and susceptible (14) mice compared with controls. An in silico validation of our data against an earlier study revealed significant concordance in gene expression profiles associated with resilience to chronic stress. Enrichment analysis revealed that resilience is linked to functions including retinoic acid hydrolase activity, phospholipase inhibitor and tumour necrosis factor (TNF)-receptor activities, whereas susceptibility is linked to alterations in amino acid transporter activity. We also identified differential usage of 134 exons across 103 genes associated with resilience and susceptibility; enrichment analysis for genes with differential exon usage in resilient mice was linked to functions including adrenergic receptor binding mice and oxysterol binding in susceptible mice. Our findings highlight the important and underappreciated role of the BNST in stress resilience and susceptibility and reveal research avenues for follow-up investigations.
Asunto(s)
Núcleos Septales , Animales , Masculino , Ratones , Núcleos Septales/metabolismo , Transducción de Señal , Estrés Psicológico/metabolismo , TranscriptomaRESUMEN
BACKGROUND AND AIM: Relative to men, women present with pain conditions more commonly. Although consistent differences exist between men and women in terms of physiological pain sensitivity, the underlying mechanisms are incompletely understood and yet could inform the development of effective sex specific treatments for pain. The gut microbiota can modulate nervous system functioning, including pain signaling pathways. We hypothesized that the gut microbiota and critical components of the gut-brain axis might influence electrical pain thresholds. Further, we hypothesized that sex, menstrual cycle, and hormonal contraceptive use might account for inter-sex differences in pain perception. METHODS: Healthy, non-obese males (N = 15) and females (N = 16), (nine of whom were using hormonal contraceptives), were recruited. Male subjects were invited to undergo testing once, whereas females were invited three times across the menstrual cycle, based on self-reported early follicular (EF), late follicular (LF), or mid-luteal (ML) phase. On test days, electrical stimulation on the right ankle was performed; salivary cortisol levels were measured in the morning; levels of lipopolysaccharide-binding protein (LBP), soluble CD14 (sCD14), pro-inflammatory cytokines were assessed in plasma, and microbiota composition and short-chain fatty acids (SCFAs) levels were determined in fecal samples. RESULTS: We observed that the pain tolerance threshold/pain sensation threshold (PTT/PST) ratio was significantly lesser in women than men, but not PST or PTT alone. Further, hormonal contraceptive use was associated with increased LBP levels (LF & ML phase), whilst sCD14 levels or inflammatory cytokines were not affected. Interestingly, in women, hormonal contraceptive use was associated with an increase in the relative abundance of Erysipelatoclostridium, and the relative abundances of certain bacterial genera correlated positively with pain sensation thresholds (Prevotella and Megasphera) during the LF phase and cortisol awakening response (Anaerofustis) during the ML phase. In comparison with men, women displayed overall stronger associations between i) SCFAs data, ii) cortisol data, iii) inflammatory cytokines and PTT and PST. DISCUSSION AND CONCLUSION: Our findings support the hypothesis that the gut microbiota may be one of the factors determining the physiological inter-sex differences in pain perception. Further research is needed to investigate the molecular mechanisms by which specific sex hormones and gut microbes modulate pain signaling pathways, but this study highlights the possibilities for innovative individual targeted therapies for pain management.
RESUMEN
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by deficits in social behaviour, increased repetitive behaviour, anxiety and gastrointestinal symptoms. The aetiology of ASD is complex and involves an interplay of genetic and environmental factors. Emerging pre-clinical and clinical studies have documented a potential role for the gut microbiome in ASD, and consequently, the microbiota represents a potential target in the development of novel therapeutics for this neurodevelopmental disorder. In this study, we investigate the efficacy of the live biotherapeutic strain, Blautia stercoris MRx0006, in attenuating some of the behavioural deficits in the autism-relevant, genetic mouse model, BTBR T+ Itpr3tf/J (BTBR). We demonstrate that daily oral administration with MRx0006 attenuates social deficits while also decreasing repetitive and anxiety-like behaviour. MRx0006 administration increases the gene expression of oxytocin and its receptor in hypothalamic cells in vitro and increases the expression of hypothalamic arginine vasopressin and oxytocin mRNA in BTBR mice. Additionally at the microbiome level, we observed that MRx0006 administration decreases the abundance of Alistipes putredinis, and modulates the faecal microbial metabolite profile. This alteration in the metabolite profile possibly underlies the observed increase in expression of oxytocin, arginine vasopressin and its receptors, and the consequent improvements in behavioural outcomes. Taken together, these findings suggest that the live biotherapeutic MRx0006 may represent a viable and efficacious treatment option for the management of physiological and behavioural deficits associated with ASD.
Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Animales , Ansiedad , Arginina Vasopresina , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/metabolismo , Clostridiales , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos , Oxitocina , ARN Mensajero/metabolismoRESUMEN
Psychological stress during adolescence may cause enduring cognitive deficits and anxiety in both humans and animals, accompanied by rearrangement of numerous brain structures and functions. A healthy diet is essential for proper brain development and maintenance of optimal cognitive functions during adulthood. Furthermore, nutritional components profoundly affect the intestinal community of microbes that may affect gut-brain communication. We adopted a relatively mild stress protocol, social instability stress, which when repeatedly administered to juvenile rats modifies cognitive behaviors and plasticity markers in the brain. We then tested the preventive effect of a prolonged diet enriched with the ω-3 polyunsaturated fatty acids eicosapentaenoic acid, docosahexaenoic acid, and docosapentaenoic acid and vitamin A. Our findings highlight the beneficial effects of this enriched diet on cognitive memory impairment induced by social instability stress, as stressed rats fed the enriched diet exhibited performance undistinguishable from that of nonstressed rats on both emotional and reference memory tests. Furthermore, in stressed rats, the decline in brain-derived neurotrophic factor expression in the hippocampus and shifts in the microbiota composition were normalized by the enriched diet. The detrimental behavioral and neurochemical effects of adolescent stress, as well as the protective effect of the enriched diet, were maintained throughout adulthood, long after the exposure to the stressful environment was terminated. Taken together, our results strongly suggest a beneficial role of nutritional components in ameliorating stress-related behaviors and associated neurochemical and microbiota changes, opening possible new venues in the field of nutritional neuropsychopharmacology.
Asunto(s)
Cognición/efectos de los fármacos , Dieta , Ácidos Grasos Omega-3/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Hipocampo/fisiopatología , Estrés Psicológico , Animales , Ansiedad/microbiología , Ansiedad/fisiopatología , Ansiedad/prevención & control , Conducta Animal/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Estrés Psicológico/microbiología , Estrés Psicológico/fisiopatología , Estrés Psicológico/prevención & controlRESUMEN
Exposure to repeated social stress may cause maladaptive emotional reactions that can be reduced by healthy nutritional supplementation. Histaminergic neurotransmission has a central role in orchestrating specific behavioural responses depending on the homeostatic state of a subject, but it remains to be established if it participates in the protective effects against the insults of chronic stress afforded by a healthy diet. By using C57BL/6J male mice that do not synthesize histamine (Hdc-/-) and their wild type (Hdc+/+) congeners we evaluated if the histaminergic system participates in the protective action of a diet enriched with polyunsaturated fatty acids and vitamin A on the deleterious effect of chronic stress. Behavioural tests across domains relevant to cognition and anxiety were performed. Hippocampal synaptic plasticity, cytokine expression, hippocampal fatty acids, oxylipins and microbiota composition were also assessed. Chronic stress induced social avoidance, poor recognition memory, affected hippocampal long-term potentiation, changed the microbiota profile, brain cytokines, fatty acid and oxylipins composition of both Hdc-/- and Hdc+/+ mice. Dietary enrichment counteracted stress-induced deficits only in Hdc+/+ mice as histamine deficiency prevented almost all the diet-related beneficial effects. Interpretation: Our results reveal a previously unexplored and novel role for brain histamine as a mediator of many favorable effects of the enriched diet. These data present long-reaching perspectives in the field of nutritional neuropsychopharmacology.
Asunto(s)
Dieta , Disbiosis , Microbioma Gastrointestinal , Histamina/metabolismo , Conducta Social , Estrés Psicológico , Animales , Conducta Animal , Biomarcadores , Peso Corporal , Citocinas/metabolismo , Ácidos Grasos/metabolismo , Expresión Génica , Hipocampo/metabolismo , Hipocampo/fisiopatología , Locomoción , Masculino , Metagenoma , Metagenómica , Ratones , Ratones Noqueados , Modelos AnimalesRESUMEN
There is increasing evidence for the role of the microbiome in various mental health disorders. Moreover, there has been a growing understanding of the importance of the microbiome in mediating both the efficacy and side effects of various medications, including psychotropics. In this issue, Tomizawa and colleagues report on the effect of psychotropic drugs on the gut microbiome of 40 patients with depression and/or anxiety disorders. In their longitudinal cohort, the authors find that antipsychotics, but not anxiolytics, decrease microbiome alpha diversity. They further find that antipsychotics dosage was negatively correlated with alpha diversity in these patients. The health consequences of these microbiome alterations remain to be fully understood. In this commentary, we will discuss such findings through the lens of several recent studies on the microbiota-gut-brain axis. We also use the paper as a backdrop to discuss directionality and, by extension, causality in relation to microbiota-gut-brain-brain signaling.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , Trastornos de Ansiedad , Encéfalo , Eje Cerebro-Intestino , Humanos , Salud MentalRESUMEN
Male middle age is a transitional period where many physiological and psychological changes occur leading to cognitive and behavioural alterations, and a deterioration of brain function. However, the mechanisms underpinning such changes are unclear. The gut microbiome has been implicated as a key mediator in the communication between the gut and the brain, and in the regulation of brain homeostasis, including brain immune cell function. Thus, we tested whether targeting the gut microbiome by prebiotic supplementation may alter microglia activation and brain function in ageing. Male young adult (8 weeks) and middle-aged (10 months) C57BL/6 mice received diet enriched with a prebiotic (10% oligofructose-enriched inulin) or control chow for 14 weeks. Prebiotic supplementation differentially altered the gut microbiota profile in young and middle-aged mice with changes correlating with faecal metabolites. Functionally, this translated into a reversal of stress-induced immune priming in middle-aged mice. In addition, a reduction in ageing-induced infiltration of Ly-6Chi monocytes into the brain coupled with a reversal in ageing-related increases in a subset of activated microglia (Ly-6C+) was observed. Taken together, these data highlight a potential pathway by which targeting the gut microbiome with prebiotics can modulate the peripheral immune response and alter neuroinflammation in middle age. Our data highlight a novel strategy for the amelioration of age-related neuroinflammatory pathologies and brain function.
Asunto(s)
Envejecimiento/inmunología , Encéfalo/inmunología , Microbioma Gastrointestinal/fisiología , Prebióticos , Animales , Heces/química , Heces/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/inmunologíaRESUMEN
Obsessive-compulsive disorder (OCD) is a psychiatric illness that significantly impacts affected patients and available treatments yield suboptimal therapeutic response. Recently, the role of the gut-brain axis (GBA) in psychiatric illness has emerged as a potential target for therapeutic exploration. However, studies concerning the role of the GBA in OCD are limited. To investigate whether a naturally occurring obsessive-compulsive-like phenotype in a rodent model, that is large nest building in deer mice, is associated with perturbations in the gut microbiome, we investigated and characterised the gut microbiota in specific-pathogen-free bred and housed large (LNB) and normal (NNB) nest-building deer mice of both sexes (n = 11 per group, including three males and eight females). Following baseline characterisation of nest-building behaviour, a single faecal sample was collected from each animal and the gut microbiota analysed. Our results reveal the overall microbial composition of LNB animals to be distinctly different compared to controls (PERMANOVA p < .05). While no genera were found to be significantly differentially abundant after correcting for multiple comparisons, the normal phenotype showed a higher loading of Prevotella and Anaeroplasma, while the OC phenotype demonstrated a higher loading of Desulfovermiculus, Aestuariispira, Peptococcus and Holdemanella (cut-off threshold for loading at 0.2 in either the first or second component of the PCA). These findings not only provide proof-of-concept for continued investigation of the GBA in OCD, but also highlight a potential underlying aetiological association between alterations in the gut microbiota and the natural development of obsessive-compulsive-like behaviours.
Asunto(s)
Microbioma Gastrointestinal , Trastorno Obsesivo Compulsivo , Animales , Encéfalo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , PeromyscusRESUMEN
Adolescence is a critical developmental period that is characterised by growth spurts and specific neurobiological, neuroimmune and behavioural changes. In tandem the gut microbiota, which is a key player in the regulation of health and disease, is shaped during this time period. Diet is one of the most important regulators of microbiota composition. Thus, we hypothesised that dietary disturbances of the microbiota during this critical time window result in long-lasting changes in immunity, brain and behaviour. C57BL/6 male mice were exposed to either high fat diet or cafeteria diet during the adolescent period from postnatal day 28 to 49 and were tested for anxiety-related and social behaviour in adulthood. Our results show long-lasting effects of dietary interventions during the adolescent period on microbiota composition and the expression of genes related to neuroinflammation or neurotransmission. Interestingly, changes in myelination-related gene expression in the prefrontal cortex following high fat diet exposure were also observed. However, these effects did not translate into overt behavioural changes in adulthood. Taken together, these data highlight the importance of diet-microbiota interactions during the adolescent period in shaping specific outputs of the microbiota-gut-brain axis in later life.
Asunto(s)
Microbioma Gastrointestinal , Amígdala del Cerebelo , Animales , Ansiedad , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Microorganisms can be found almost anywhere, including in and on the human body. The collection of microorganisms associated with a certain location is called a microbiota, with its collective genetic material referred to as the microbiome. The largest population of microorganisms on the human body resides in the gastrointestinal tract; thus, it is not surprising that the most investigated human microbiome is the human gut microbiome. On average, the gut hosts microbes from more than 60 genera and contains more cells than the human body. The human gut microbiome has been shown to influence many aspects of host health, including more recently the brain.Several modes of interaction between the gut and the brain have been discovered, including via the synthesis of metabolites and neurotransmitters, activation of the vagus nerve, and activation of the immune system. A growing body of work is implicating the microbiome in a variety of psychological processes and neuropsychiatric disorders. These include mood and anxiety disorders, neurodevelopmental disorders such as autism spectrum disorder and schizophrenia, and even neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Moreover, it is probable that most psychotropic medications have an impact on the microbiome.Here, an overview will be provided for the bidirectional role of the microbiome in brain health, age-associated cognitive decline, and neurological and psychiatric disorders. Furthermore, a primer on the common microbiological and bioinformatics techniques used to interrogate the microbiome will be provided. This review is meant to equip the reader with a primer to this exciting research area that is permeating all areas of biological psychiatry research.