Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Clin Proteomics ; 18(1): 8, 2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33602116

RESUMEN

BACKGROUND: Based on their potential to analyze aberrant cellular signaling in relation to biological function, kinase activity profiling in tumor biopsies by peptide microarrays and mass spectrometry-based phosphoproteomics may guide selection of protein kinase inhibitors in patients with cancer. Variable tissue handling procedures in clinical practice may influence protein phosphorylation status and kinase activity and therewith may hamper biomarker discovery. Here, the effect of cold ischemia time (CIT) on the stability of kinase activity and protein phosphorylation status in fresh-frozen clinical tissue samples was studied using peptide microarrays and mass spectrometry-based phosphoproteomics. METHODS: Biopsies of colorectal cancer resection specimens from five patients were collected and snap frozen immediately after surgery and at 6 additional time points between 0 and 180 min of CIT. Kinase activity profiling was performed for all samples using a peptide microarray. MS-based global phosphoproteomics was performed in tumors from 3 patients at 4 time points. Statistical and cluster analyses were performed to analyze changes in kinase activity and phosphoproteome resulting from CIT. RESULTS: Unsupervised cluster analysis of kinase activity and phosphoproteome data revealed that samples from the same patients cluster together. Continuous ANOVA analysis of all 7 time points for 5 patient samples resulted in 4 peptides out of 210 (2%) with significantly (p < 0.01 and fold change > 2) altered signal intensity in time. In 4 out of 5 patients tumor kinase activity was stable with CIT. MS-based phosphoproteomics resulted in the detection of 10,488 different phosphopeptides with on average 6044 phosphopeptides per tumor sample. 2715 phosphopeptides were detected in all samples at time point 0, of which 90 (3.3%) phosphopeptides showed significant changes in intensity with CIT (p < 0.01). Only two phosphopeptides were significantly changed in all time points, including one peptide (PKP3) with a fold change > 2. CONCLUSIONS: The vast majority of the phosphoproteome as well as the activity of protein kinases in colorectal cancer resection tissue is stable up to 180 min of CIT and reflects tumor characteristics. However, specific changes in kinase activity with increasing CIT were observed. Therefore, stringent tissue collection procedures are advised to minimize changes in kinase activity during CIT.

2.
Biochim Biophys Acta ; 1851(12): 1577-86, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26434697

RESUMEN

BACKGROUND: Liver X receptors (LXRs) are transcription factors activated by cholesterol metabolites containing an oxidized side chain. Due to their ability to regulate lipid metabolism and cholesterol transport, they have become attractive pharmacological targets. LXRs are closely related to DAF-12, a nuclear receptor involved in nematode lifespan and regulated by the binding of C-27 steroidal acids. Based on our recent finding that the lack of the C-25 methyl group does not abolish their DAF-12 activity, we evaluated the effect of removing it from the (25R)-cholestenoic acid, a LXR agonist. METHODS: The binding mode and the molecular basis of action of 27-nor-5-cholestenoic acid were evaluated using molecular dynamics simulations. The biological activity was investigated using reporter gene expression assays and determining the expression levels of endogenous target genes. The in vitro MARCoNI assay was used to analyze the interaction with cofactors. RESULTS: 27-Nor-5-cholestenoic acid behaves as an inverse agonist. This correlates with the capacity of the complex to better bind corepressors rather than coactivators. The C-25 methyl moiety would be necessary for the maintenance of a torsioned conformation of the steroid side chain that stabilizes an active LXRß state. CONCLUSION: We found that a 27-nor analog is able to act as a LXR ligand. Interestingly, this minimal structural change on the steroid triggered a drastic change in the LXR response. GENERAL SIGNIFICANCE: Results contribute to improve our understanding on the molecular basis of LXRß mechanisms of action and provide a new scaffold in the quest for selective LXR modulators.


Asunto(s)
Colestenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Receptores Nucleares Huérfanos/antagonistas & inhibidores , Receptores Nucleares Huérfanos/metabolismo , Sitios de Unión , Células HEK293 , Células Hep G2 , Humanos , Ligandos , Receptores X del Hígado , Receptores Nucleares Huérfanos/genética
3.
Nucleic Acids Res ; 32(15): e123, 2004 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-15333674

RESUMEN

A novel microarray system that utilizes a porous aluminum-oxide substrate and flow-through incubation has been developed for rapid molecular biological testing. To assess its utility in gene expression analysis, we determined hybridization kinetics, variability, sensitivity and dynamic range of the system using amplified RNA. To show the feasibility with complex biological RNA, we subjected Jurkat cells to heat-shock treatment and analyzed the transcriptional regulation of 23 genes. We found that trends (regulation or no change) acquired on this platform are in good agreement with data obtained from real-time quantitative PCR and Affymetrix GeneChips. Additionally, the system demonstrates a linear dynamic range of 3 orders of magnitude and at least 10-fold decreased hybridization time compared to conventional microarrays. The minimum amount of transcript that could be detected in 20 microl volume is 2-5 amol, which enables the detection of 1 in 300,000 copies of a transcript in 1 microg of amplified RNA. Hybridization and subsequent analysis are completed within 2 h. Replicate hybridizations on 24 identical arrays with two complex biological samples revealed a mean coefficient of variation of 11.6%. This study shows the potential of flow-through porous microarrays for the rapid analysis of gene expression profiles in clinical applications.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Óxido de Aluminio/química , Humanos , Células Jurkat , Cinética , Reproducibilidad de los Resultados , Factores de Tiempo
4.
Methods Mol Biol ; 1204: 83-94, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25182763

RESUMEN

The Microarray Assay for Realtime Coregulator-Nuclear receptor Interaction (MARCoNI) technology allows the identification of nuclear receptor-coregulator interactions via flow-through microarrays. As such, differences in the coregulator profile between distinct nuclear receptors or of a single receptor in agonist or antagonist mode can be investigated, even in a single run. In this chapter, the method how to perform these peptide microarrays with cell lysates containing the overexpressed glucocorticoid receptor is described, as well as the influence of assay parameters, variations to the protocol, and data analysis.


Asunto(s)
Análisis por Matrices de Proteínas/métodos , Receptores de Glucocorticoides/metabolismo , Animales , Células HEK293 , Humanos , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA