RESUMEN
Leishmania parasites possess a unique and complex cytoskeletal structure termed flagellum attachment zone (FAZ) connecting the base of the flagellum to one side of the flagellar pocket (FP), an invagination of the cell body membrane and the sole site for endocytosis and exocytosis. This structure is involved in FP architecture and cell morphogenesis, but its precise role and molecular composition remain enigmatic. Here, we characterized Leishmania FAZ7, the only known FAZ protein containing a kinesin motor domain, and part of a clade of trypanosomatid-specific kinesins with unknown functions. The two paralogs of FAZ7, FAZ7A and FAZ7B, display different localizations and functions. FAZ7A localizes at the basal body, while FAZ7B localizes at the distal part of the FP, where the FAZ structure is present in Leishmania. While null mutants of FAZ7A displayed normal growth rates, the deletion of FAZ7B impaired cell growth in both promastigotes and amastigotes of Leishmania. The kinesin activity is crucial for its function. Deletion of FAZ7B resulted in altered cell division, cell morphogenesis (including flagellum length), and FP structure and function. Furthermore, knocking out FAZ7B induced a mis-localization of two of the FAZ proteins, and disrupted the molecular organization of the FP collar, affecting the localization of its components. Loss of the kinesin FAZ7B has important consequences in the insect vector and mammalian host by reducing proliferation in the sand fly and pathogenicity in mice. Our findings reveal the pivotal role of the only FAZ kinesin as part of the factors important for a successful life cycle of Leishmania.
Asunto(s)
Flagelos/metabolismo , Cinesinas/metabolismo , Leishmania mexicana/patogenicidad , Leishmaniasis/metabolismo , Virulencia/fisiología , Animales , Proliferación Celular , Leishmania mexicana/fisiología , Ratones , Morfogénesis , Proteínas Protozoarias/metabolismo , PsychodidaeRESUMEN
It is urgent to develop less toxic and more efficient treatments for leishmaniases and trypanosomiases. We explore the possibility to target the parasite mitochondrial HslVU protease, which is essential for growth and has no analogue in the human host. For this, we develop compounds potentially inhibiting the complex assembly by mimicking the C-terminal (C-ter) segment of the ATPase HslU. We previously showed that a dodecapeptide derived from Leishmania major HslU C-ter segment (LmC12-U2, Cpd 1) was able to bind to and activate the digestion of a fluorogenic substrate by LmHslV. Here, we present the study of its structure-activity relationships. By replacing each essential residue with related non-proteinogenic residues, we obtained more potent analogues. In particular, a cyclohexylglycine residue at position 11 (cpd 24) allowed a more than three-fold gain in potency while reducing the size of compound 24 from twelve to six residues (cpd 50) without significant loss of potency, opening the way toward short HslU C-ter peptidomimetics as potential inhibitors of HslV proteolytic function. Finally, conjugates constituted of LmC6-U2 analogues and a mitochondrial penetrating peptide were found to penetrate into the promastigote form of L. infantum and to inhibit the parasite growth without showing toxicity toward human THP-1 cells at the same concentration (i.e. 30 µM).
Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Adenosina Trifosfatasas/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Humanos , Leishmania major/enzimología , Estructura Molecular , Relación Estructura-Actividad , Células THP-1RESUMEN
Trypanosomatids are divergent eukaryotes of high medical and economical relevance. Their biology exhibits original features that remain poorly understood; particularly, Leishmania is known for its high degree of genomic plasticity that makes genomic manipulation challenging. CRISPR-Cas9 has been applied successfully to these parasites providing a robust tool to study non-essential gene functions. Here, we have developed a versatile inducible system combining Di-Cre recombinase and CRISPR-Cas9 advantages. Cas9 is used to integrate the LoxP sequences, and the Cre-recombinase catalyses the recombination between LoxP sites, thereby excising the target gene. We used a Leishmania mexicana cell line expressing Di-Cre, Cas9, and T7 polymerase and then transfected donor DNAs and single guide RNAs as polymerase chain reaction (PCR) products. Because the location of LoxP sequences in the genomic DNA can interfere with the function and localisation of certain proteins of interest, we proposed to target the least transcribed regions upstream and/or downstream the gene of interest. To do so, we developed "universal" template plasmids for donor DNA cassettes with or without a tag, where LoxP sequences may be located either immediately upstream the ATG and downstream the stop codon of the gene of interest, or in the least transcribed areas of intergenic regions. Our methodology is fast, PCR-based (molecular cloning-free), highly efficient, versatile, and able to overcome the problems posed by genomic plasticity in Leishmania.
Asunto(s)
Técnicas de Inactivación de Genes/métodos , Leishmania/genética , Sistemas CRISPR-Cas , Línea Celular , Edición Génica , Integrasas , Proteínas Proto-Oncogénicas c-crk/genética , Recombinación Genética , TransfecciónRESUMEN
BACKGROUND: Rapid diagnostic tests (RDTs) detecting the histidine-rich protein 2 (PfHRP2) have a central position for the management of Plasmodium falciparum infections. Yet, variable detection of certain targeted motifs, low parasitaemia, but also deletion of pfhrp2 gene or its homologue pfhrp3, may result in false-negative RDT leading to misdiagnosis and delayed treatment. This study aimed at investigating the prevalence, and understanding the possible causes, of P. falciparum RDT-negative infections at Montpellier Academic Hospital, France. METHODS: The prevalence of falsely-negative RDT results reported before and after the introduction of a loop-mediated isothermal amplification (LAMP) assay, as part as the malaria screening strategy in January 2017, was analysed. Negative P. falciparum RDT infections were screened for pfhrp2 or pfhrp3 deletion; and exons 2 were sequenced to show a putative genetic diversity impairing PfHRP2 detection. RESULTS: The overall prevalence of P. falciparum negative RDTs from January 2006 to December 2018 was low (3/446). Whereas no cases were reported from 2006 to 2016 (0/373), period during which the malaria diagnostic screen was based on microscopy and RDT, prevalence increased up to 4.1% (3/73) between 2017 and 2018, when molecular detection was implemented for primary screening. Neither pfhrp2/3 deletion nor major variation in the frequency of repetitive epitopes could explain these false-negative RDT results. CONCLUSION: This paper demonstrates the presence of pfhrp2 and pfhrp3 genes in three P. falciparum RDT-negative infections and reviews the possible reasons for non-detection of HRP2/3 antigens in a non-endemic setting. It highlights the emergence of falsely negative rapid diagnostic tests in a non-endemic setting and draws attention on the risk of missing malaria cases with low parasitaemia infections using the RDT plus microscopy-based strategy currently recommended by French authorities. The relevance of a novel diagnostic scheme based upon a LAMP assay is discussed.
Asunto(s)
Antígenos de Protozoos/análisis , Pruebas Diagnósticas de Rutina/estadística & datos numéricos , Plasmodium falciparum/aislamiento & purificación , Proteínas Protozoarias/análisis , Reacciones Falso Negativas , Francia/epidemiología , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , PrevalenciaRESUMEN
Leishmania affects millions of people worldwide. Its genome undergoes constitutive mosaic aneuploidy, a type of genomic plasticity that may serve as an adaptive strategy to survive distinct host environments. We previously found high rates of asymmetric chromosome allotments during mitosis that lead to the generation of such ploidy. However, the underlying molecular events remain elusive. Centromeres and kinetochores most likely play a key role in this process, yet their identification has failed using classical methods. Our analysis of the unconventional kinetochore complex recently discovered in Trypanosoma brucei (KKTs) leads to the identification of a Leishmania KKT gene candidate (LmKKT1). The GFP-tagged LmKKT1 displays "kinetochore-like" dynamics of intranuclear localization throughout the cell cycle. By ChIP-Seq assay, one major peak per chromosome is revealed, covering a region of 4 ±2 kb. We find two largely conserved motifs mapping to 14 of 36 chromosomes while a higher density of retroposons are observed in 27 of 36 centromeres. The identification of centromeres and of a kinetochore component of Leishmania chromosomes opens avenues to explore their role in mosaic aneuploidy.
Asunto(s)
Centrómero/metabolismo , Cromosomas/química , Genoma de Protozoos , Cinetocoros/metabolismo , Leishmania major/genética , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Aneuploidia , Secuencia de Bases , Centrómero/ultraestructura , Inmunoprecipitación de Cromatina , Mapeo Cromosómico , Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Cinetocoros/ultraestructura , Leishmania major/metabolismo , Mitosis , Mosaicismo , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
HslVU is an ATP-dependent proteolytic complex present in certain bacteria and in the mitochondrion of some primordial eukaryotes, including deadly parasites such as Leishmania. It is formed by the dodecameric protease HslV and the hexameric ATPase HslU, which binds via the C-terminal end of its subunits to HslV and activates it by a yet unclear allosteric mechanism. We undertook the characterization of HslV from Leishmania major (LmHslV), a trypanosomatid that expresses two isoforms for HslU, LmHslU1 and LmHslU2. Using a novel and sensitive peptide substrate, we found that LmHslV can be activated by peptides derived from the C-termini of both LmHslU1 and LmHslU2. Truncations, Ala- and D-scans of the C-terminal dodecapeptide of LmHslU2 (LmC12-U2) showed that five out of the six C-terminal residues of LmHslU2 are essential for binding to and activating HslV. Peptide cyclisation with a lactam bridge allowed shortening of the peptide without loss of potency. Finally, we found that dodecapeptides derived from HslU of other parasites and bacteria are able to activate LmHslV with similar or even higher efficiency. Importantly, using electron microscopy approaches, we observed that the activation of LmHslV was accompanied by a large conformational remodeling, which represents a yet unidentified layer of control of HslV activation.
Asunto(s)
Leishmania major/enzimología , Péptidos/farmacología , Serina Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Activación Enzimática/efectos de los fármacos , Péptidos/química , Estructura Secundaria de Proteína , Proteínas Recombinantes/aislamiento & purificación , Serina Endopeptidasas/química , Especificidad por SustratoRESUMEN
Molecular diagnosis of congenital toxoplasmosis or disseminated toxoplasmosis is based mainly on PCR. The repeated DNA element rep529 has become the main DNA target used in most PCR methods, whether laboratory developed or commercial. In this multicenter study, we evaluated the Toxoplasma ELITe MGB (Elitech) commercial kit by comparison with three reference quantitative PCR assays (RAs) used routinely in three proficient laboratories of the French National Reference Center for Toxoplasmosis network, using Toxoplasma calibrated suspensions diluted to obtain a range of concentrations from 0.1 to 10,000 parasites/ml. These suspensions were extracted with either the DNA extraction kit (EXTRAblood; Elitech) recommended by the manufacturer or the QIAamp DNA minikit (Qiagen). The Toxoplasma ELITe MGB assay was also evaluated on a panel of 128 clinical samples, including 56 amniotic fluid samples, 55 placenta samples, and various other samples, of which 95 originated from patients with proven toxoplasmosis. The ELITe MGB assay amplified low-concentration replicates (<10 parasites/ml) of calibrated suspensions less frequently than the RAs of 2/3 laboratories. Additionally, the combination of EXTRAblood and Toxoplasma ELITe MGB yielded poorer sensitivity than the combination of QIAamp DNA minikit and ELITe MGB for low parasite concentrations (P < 0.001 for 1 parasite/ml). On clinical samples, the sensitivity and the specificity of the commercial assay were 89% and 100%, respectively. The sensitivity ranged from 79% (placenta samples) to 100% (amniotic fluid samples). Overall, this study shows that the Toxoplasma ELITe MGB assay is suitable for the diagnosis of toxoplasmosis from non-cell-rich or non-hemoglobin-rich samples and that the EXTRAblood kit is not optimal.
Asunto(s)
ADN Protozoario/genética , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Toxoplasma/genética , Toxoplasmosis Congénita/diagnóstico , Líquido Amniótico/parasitología , Femenino , Humanos , Placenta/parasitología , Embarazo , Sensibilidad y Especificidad , Toxoplasma/aislamiento & purificación , Toxoplasmosis Congénita/parasitologíaRESUMEN
Human leishmaniases are widespread diseases with different clinical forms caused by about 20 species within the Leishmania genus. Leishmania species identification is relevant for therapeutic management and prognosis, especially for cutaneous and mucocutaneous forms. Several methods are available to identify Leishmania species from culture, but they have not been standardized for the majority of the currently described species, with the exception of multilocus enzyme electrophoresis. Moreover, these techniques are expensive, time-consuming, and not available in all laboratories. Within the last decade, mass spectrometry (MS) has been adapted for the identification of microorganisms, including Leishmania However, no commercial reference mass-spectral database is available. In this study, a reference mass-spectral library (MSL) for Leishmania isolates, accessible through a free Web-based application (mass-spectral identification [MSI]), was constructed and tested. It includes mass-spectral data for 33 different Leishmania species, including species that infect humans, animals, and phlebotomine vectors. Four laboratories on two continents evaluated the performance of MSI using 268 samples, 231 of which were Leishmania strains. All Leishmania strains, but one, were correctly identified at least to the complex level. A risk of species misidentification within the Leishmania donovani, L. guyanensis, and L. braziliensis complexes was observed, as previously reported for other techniques. The tested application was reliable, with identification results being comparable to those obtained with reference methods but with a more favorable cost-efficiency ratio. This free online identification system relies on a scalable database and can be implemented directly in users' computers.
Asunto(s)
Bases de Datos Factuales , Leishmania/clasificación , Leishmaniasis/diagnóstico , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Biblioteca de Genes , Humanos , Internet , Leishmania/genética , Leishmaniasis/parasitologíaRESUMEN
Nucleoporins are evolutionary conserved proteins mainly involved in the constitution of the nuclear pores and trafficking between the nucleus and cytoplasm, but are also increasingly viewed as main actors in chromatin dynamics and intra-nuclear mitotic events. Here, we determined the cellular localization of the nucleoporin Mlp2 in the 'divergent' eukaryotes Leishmania major and Trypanosoma brucei. In both protozoa, Mlp2 displayed an atypical localization for a nucleoporin, essentially intranuclear, and preferentially in the periphery of the nucleolus during interphase; moreover, it relocated at the mitotic spindle poles during mitosis. In T. brucei, where most centromeres have been identified, TbMlp2 was found adjacent to the centromeric sequences, as well as to a recently described unconventional kinetochore protein, in the periphery of the nucleolus, during interphase and from the end of anaphase onwards. TbMlp2 and the centromeres/kinetochores exhibited a differential migration towards the poles during mitosis. RNAi knockdown of TbMlp2 disrupted the mitotic distribution of chromosomes, leading to a surprisingly well-tolerated aneuploidy. In addition, diploidy was restored in a complementation assay where LmMlp2, the orthologue of TbMlp2 in Leishmania, was expressed in TbMlp2-RNAi-knockdown parasites. Taken together, our results demonstrate that Mlp2 is involved in the distribution of chromosomes during mitosis in trypanosomatids.
Asunto(s)
Cromosomas , Leishmania major/genética , Mitosis/genética , Proteínas de Complejo Poro Nuclear/fisiología , Proteínas Protozoarias/fisiología , Trypanosoma brucei brucei/genética , Transporte Biológico , Centrómero/química , Centrómero/metabolismo , Cromosomas/química , Proteínas de Complejo Poro Nuclear/análisis , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Protozoarias/análisis , Proteínas Protozoarias/metabolismoRESUMEN
Protozoan pathogens that cause leishmaniasis in humans are relatively refractory to genetic manipulation. In this work, we implemented the CRISPR-Cas9 system in Leishmania parasites and demonstrated its efficient use for genome editing. The Cas9 endonuclease was expressed under the control of the Dihydrofolate Reductase-Thymidylate Synthase (DHFR-TS) promoter and the single guide RNA was produced under the control of the U6snRNA promoter and terminator. As a proof of concept, we chose to knockout a tandemly repeated gene family, the paraflagellar rod-2 locus. We were able to obtain null mutants in a single round of transfection. In addition, we confirmed the absence of off-target editions by whole genome sequencing of two independent clones. Our work demonstrates that CRISPR-Cas9-mediated gene knockout represents a major improvement in comparison with existing methods. Beyond gene knockout, this genome editing tool opens avenues for a multitude of functional studies to speed up research on leishmaniasis.
Asunto(s)
Sistemas CRISPR-Cas , Marcación de Gen/métodos , Genoma de Protozoos , Leishmania/genética , Biología Molecular/métodos , Parasitología/métodos , Eliminación de Gen , Recombinación GenéticaRESUMEN
OBJECTIVE: To report isolation of Leishmania major strains obtained from 18 Turkish autochthonous cutaneous leishmaniasis (CL) patients infected with L. major between 2011 and 2014. METHODS: Initial diagnosis relied on microscopy and culture in enriched medium, prepared by adding specific amounts of liver extract, protein and lipid sources to NNN medium. Promastigotes were then transferred to RPMI medium including 10% of foetal calf serum for mass culture. Species-specific real-time PCR targeting ITS1 region of Leishmania spp. was performed using both lesion aspiration samples and cultured promastigotes. Two of 18 isolates were identified by isoenzyme analysis in the Leishmaniasis Reference Center in Montpellier, France. Each isolate was inoculated into the footpads of six mice to observe the pathogenicity of L. major. Developing lesions were observed, and the thickening of footpads was measured weekly. RESULTS: Melting curve analyses of 18 isolates showed a peak concordant with L. major, and two of them were confirmed by isoenzyme analyses as L. major zymodeme MON103. In the mouse model, acute lesions seen on day 21 were accepted as an indication of heavy infection. Severe impairments were observed on all mouse footpads over 3 weeks, which even progressed to extremity amputation. CONCLUSION: Cutaneous leishmaniasis-causing L. major was recently identified in Adana province in southern Turkey, with PCR. Our study shows that such CL cases are not limited to Adana but currently present from western to Southeastern Anatolia, and along the Mediterranean coast. The role of small mammals, the main reservoirs of L. major in Anatolia, needs to be elucidated, as do the underlying factors that cause severe clinical manifestations in L. major infections in Turkey, contrary to the infections in neighbouring countries.
Asunto(s)
Leishmania major/aislamiento & purificación , Leishmaniasis Cutánea/parasitología , Piel/parasitología , Animales , Bovinos , Vectores de Enfermedades , Femenino , Isoenzimas/análisis , Leishmania major/genética , Leishmaniasis Cutánea/diagnóstico , Leishmaniasis Cutánea/patología , Masculino , Mamíferos/parasitología , Ratones Endogámicos BALB C , Reacción en Cadena en Tiempo Real de la Polimerasa , Índice de Severidad de la Enfermedad , Piel/patología , TurquíaRESUMEN
BACKGROUND: Blastocystis sp. is the most common intestinal parasite of humans. Despite its potential public health impact, epidemiological data regarding the prevalence and molecular subtype distribution of Blastocystis sp. in Europe are rarely reported. Therefore, the first multi-center epidemiological survey performed in Europe was conducted in France to diagnose and subtype Blastocystis sp. and to identify risk factors for infection. METHODS: Stool samples from 788 patients were collected either in summer or winter in 11 hospitals throughout France together with patient data. All stool samples were tested for the presence of Blastocystis sp. by quantitative PCR targeting the SSU rDNA gene. Positive samples were sequenced to determine the distribution of the subtypes in our cohort. Statistical analyses were performed to identify potential risk factors for infection. RESULTS: Using quantitative PCR, the overall prevalence of Blastocystis sp. was shown to reach 18.1 %. The prevalence was significantly higher in summer (23.2 %) than in winter (13.7 %). Travellers or subjects infected with other enteric parasites were significantly more infected by Blastocystis sp. than non-travellers or subjects free of other enteric parasites, respectively. Different age-related epidemiological patterns were also highlighted from our data. The prevalence of Blastocystis sp. was not significantly higher in patients with digestive symptoms or diagnosed with chronic bowel diseases. Among symptomatic patients, Blastocystis sp. infection was significantly associated with abdominal pain. Gender, socioeconomic status, and immune status were not identified as potential risk factors associated with infection. Among a total of 141 subtyped isolates, subtype 3 was predominant (43.3 %), followed by subtype 1 and subtype 4 (20 %), subtype 2 (12.8 %), subtype 6 and subtype 7 (2.1 %). No association between ST and clinical symptoms was statistically evidenced. CONCLUSIONS: A high prevalence of Blastocystis sp. infection was found in our French patient population. Seasonal impact on the prevalence of Blastocystis sp. was highlighted and recent travels and age were identified as main risk factors for infection. Most cases were caused by subtypes 1 to 4, with a predominance of subtype 3. Large variations in both prevalence and ST distribution between hospitals were also observed, suggesting distinct reservoirs and transmission sources of the parasite.
Asunto(s)
Infecciones por Blastocystis/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Blastocystis/clasificación , Blastocystis/aislamiento & purificación , Infecciones por Blastocystis/diagnóstico , Niño , Preescolar , Estudios Transversales , Heces/parasitología , Femenino , Francia , Humanos , Lactante , Masculino , Persona de Mediana Edad , Prevalencia , Factores de Riesgo , Adulto JovenRESUMEN
TbFlabarin is the Trypanosoma brucei orthologue of the Leishmania flagellar protein LdFlabarin but its sequence is 33% shorter than LdFlabarin, as it lacks a C-terminal domain that is indispensable for LdFlabarin to localize to the Leishmania flagellum. TbFlabarin is mainly expressed in the procyclic forms of the parasite and localized to the flagellum, but only when two palmitoylable cysteines at positions 3 and 4 are present. TbFlabarin is more strongly attached to the membrane fraction than its Leishmania counterpart, as it resists complete solubilization with as much as 0.5% NP-40. Expression ablation by RNA interference did not change parasite growth in culture, its morphology or apparent motility. Heterologous expression showed that neither TbFlabarin in L. amazonensis nor LdFlabarin in T. brucei localized to the flagellum, revealing non-cross-reacting targeting signals between the two species.
Asunto(s)
Flagelos/química , Proteínas Protozoarias/química , Trypanosoma brucei brucei/química , Secuencia de Aminoácidos , ADN Protozoario/aislamiento & purificación , Electroporación , Flagelina/química , Leishmania/química , Estructura Secundaria de Proteína , Proteínas Protozoarias/genética , Proteínas Protozoarias/fisiología , Interferencia de ARN , ARN Protozoario/aislamiento & purificación , Alineación de Secuencia , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/ultraestructuraRESUMEN
BACKGROUND: Trypanosomatid parasites possess a single mitochondrion which is classically involved in the energetic metabolism of the cell, but also, in a much more original way, through its single and complex DNA (termed kinetoplast), in the correct progress of cell division. In order to identify proteins potentially involved in the cell cycle, we performed RNAi knockdowns of 101 genes encoding mitochondrial proteins using procyclic cells of Trypanosoma brucei. RESULTS: A major cell growth reduction was observed in 10 cases and a moderate reduction in 29 other cases. These data are overall in agreement with those previously obtained by a case-by-case approach performed on chromosome 1 genes, and quantitatively with those obtained by "high-throughput phenotyping using parallel sequencing of RNA interference targets" (RIT-seq). Nevertheless, a detailed analysis revealed many qualitative discrepancies with the RIT-seq-based approach. Moreover, for 37 out of 39 mutants for which a moderate or severe growth defect was observed here, we noted abnormalities in the cell cycle progress, leading to increased proportions of abnormal cell cycle stages, such as cells containing more than 2 kinetoplasts (K) and/or more than 2 nuclei (N), and modified proportions of the normal phenotypes (1N1K, 1N2K and 2N2K). CONCLUSIONS: These data, together with the observation of other abnormal phenotypes, show that all the corresponding mitochondrial proteins are involved, directly or indirectly, in the correct progress or, less likely, in the regulation, of the cell cycle in T. brucei. They also show how post-genomics analyses performed on a case-by-case basis may yield discrepancies with global approaches.
Asunto(s)
Proteínas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Interferencia de ARN , Trypanosoma brucei brucei/metabolismo , División Celular/fisiología , Citocinesis/fisiología , Mitocondrias/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/genética , Oligonucleótidos/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Trypanosoma brucei brucei/crecimiento & desarrolloRESUMEN
BACKGROUND: The Leishmania (Viannia) braziliensis complex is responsible for most cases of New World tegumentary leishmaniasis. This complex includes two closely related species but with different geographic distribution and disease phenotypes, L. (V.) peruviana and L. (V.) braziliensis. However, the genetic basis of these differences is not well understood and the status of L. (V.) peruviana as distinct species has been questioned by some. Here we sequenced the genomes of two L. (V.) peruviana isolates (LEM1537 and PAB-4377) using Illumina high throughput sequencing and performed comparative analyses against the L. (V.) braziliensis M2904 reference genome. Comparisons were focused on the detection of Single Nucleotide Polymorphisms (SNPs), insertions and deletions (INDELs), aneuploidy and gene copy number variations. RESULTS: We found 94,070 variants shared by both L. (V.) peruviana isolates (144,079 in PAB-4377 and 136,946 in LEM1537) against the L. (V.) braziliensis M2904 reference genome while only 26,853 variants separated both L. (V.) peruviana genomes. Analysis in coding sequences detected 26,750 SNPs and 1,513 indels shared by both L. (V.) peruviana isolates against L. (V.) braziliensis M2904 and revealed two L. (V.) braziliensis pseudogenes that are likely to have coding potential in L. (V.) peruviana. Chromosomal read density and allele frequency profiling showed a heterogeneous pattern of aneuploidy with an overall disomic tendency in both L. (V.) peruviana isolates, in contrast with a trisomic pattern in the L. (V.) braziliensis M2904 reference. Read depth analysis allowed us to detect more than 368 gene expansions and 14 expanded gene arrays in L. (V.) peruviana, and the likely absence of expanded amastin gene arrays. CONCLUSIONS: The greater numbers of interspecific SNP/indel differences between L. (V.) peruviana and L. (V.) braziliensis and the presence of different gene and chromosome copy number variations support the classification of both organisms as closely related but distinct species. The extensive nucleotide polymorphisms and differences in gene and chromosome copy numbers in L. (V.) peruviana suggests the possibility that these may contribute to some of the unique features of its biology, including a lower pathology and lack of mucosal development.
Asunto(s)
Leishmania braziliensis/genética , Leishmania/genética , Variaciones en el Número de Copia de ADN/genética , Genómica , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
We evaluated the molecular diagnosis of congenital toxoplasmosis (CT) on neonatal amniotic fluid samples from 488 mother-child pairs. Maternal infection during pregnancy was diagnosed and dated or could not be ruled out. Forty-six cases of CT were defined according to the European Research Network on CT classification system and case definitions. Neonatal amniotic fluid testing had an overall sensitivity of 54% (95% confidence interval [95% CI], 39 to 69%) and a specificity of 100% (95% CI, 99 to 100%). Its sensitivity was 33% (95% CI, 13 to 59%) when antenatal diagnosis was positive and 68% (95% CI, 48 to 84%) when antenatal diagnosis was negative or lacking. This difference in sensitivity may have been due to treatment of antenatally diagnosed cases. Relative to postnatal serology, neonatal amniotic fluid testing allowed an earlier diagnosis to be made in 26% of the cases (95% CI, 9 to 51%).
Asunto(s)
Líquido Amniótico/parasitología , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena de la Polimerasa/métodos , Toxoplasmosis Congénita/diagnóstico , Femenino , Humanos , Recién Nacido , Embarazo , Sensibilidad y Especificidad , Factores de Tiempo , Toxoplasmosis Congénita/parasitologíaRESUMEN
The detection of Toxoplasma gondii in amniotic fluid is an essential tool for the prenatal diagnosis of congenital toxoplasmosis and is currently essentially based on the use of PCR. Although some consensus is emerging, this molecular diagnosis suffers from a lack of standardization and an extreme diversity of laboratory-developed methods. Commercial kits for the detection of T. gondii by PCR were recently developed and offer certain advantages; however, they must be assessed in comparison with optimized reference PCR assays. The present multicentric study aimed to compare the performances of the Bio-Evolution T. gondii detection kit and laboratory-developed PCR assays set up in eight proficient centers in France. The study compared 157 amniotic fluid samples and found concordances of 99% and 100% using 76 T. gondii-infected samples and 81 uninfected samples, respectively. Moreover, taking into account the classification of the European Research Network on Congenital Toxoplasmosis, the overall diagnostic sensitivity of all assays was identical and calculated to be 86% (54/63); specificity was 100% for all assays. Finally, the relative quantification results were in good agreement between the kit and the laboratory-developed assays. The good performances of this commercial kit are probably in part linked to the use of a number of good practices: detection in multiplicate, amplification of the repetitive DNA target rep529, and the use of an internal control for the detection of PCR inhibitors. The only drawbacks noted at the time of the study were the absence of uracil-N-glycosylase and small defects in the reliability of the production of different reagents.
Asunto(s)
Reacción en Cadena de la Polimerasa , Juego de Reactivos para Diagnóstico , Toxoplasma/genética , Toxoplasmosis Congénita/diagnóstico , Toxoplasmosis Congénita/parasitología , Líquido Amniótico/parasitología , Estudios de Cohortes , Femenino , Humanos , Ensayos de Aptitud de Laboratorios , Reacción en Cadena de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa/normas , Embarazo , Juego de Reactivos para Diagnóstico/normas , Reproducibilidad de los Resultados , Estudios Retrospectivos , Sensibilidad y EspecificidadRESUMEN
Toxoplasmosis is a life-threatening infection in immunocompromised patients (ICPs). The definitive diagnosis relies on parasite DNA detection, but little is known about the incidence and burden of disease in HIV-negative patients. A 3-year retrospective study was conducted in 15 reference laboratories from the network of the French National Reference Center for Toxoplasmosis, in order to record the frequency of Toxoplasma gondii DNA detection in ICPs and to review the molecular methods used for diagnosis and the prevention measures implemented in transplant patients. During the study period, of 31,640 PCRs performed on samples from ICPs, 610 were positive (323 patients). Blood (n = 337 samples), cerebrospinal fluid (n = 101 samples), and aqueous humor (n = 100 samples) were more frequently positive. Chemoprophylaxis schemes in transplant patients differed between centers. PCR follow-up of allogeneic hematopoietic stem cell transplant (allo-HSCT) patients was implemented in 8/15 centers. Data from 180 patients (13 centers) were further analyzed regarding clinical setting and outcome. Only 68/180 (38%) patients were HIV(+); the remaining 62% consisted of 72 HSCT, 14 solid organ transplant, and 26 miscellaneous immunodeficiency patients. Cerebral toxoplasmosis and disseminated toxoplasmosis were most frequently observed in HIV and transplant patients, respectively. Of 72 allo-HSCT patients with a positive PCR result, 23 were asymptomatic; all were diagnosed in centers performing systematic blood PCR follow-up, and they received specific treatment. Overall survival of allo-HSCT patients at 2 months was better in centers with PCR follow-up than in other centers (P < 0.01). This study provides updated data on the frequency of toxoplasmosis in HIV-negative ICPs and suggests that regular PCR follow-up of allo-HSCT patients could guide preemptive treatment and improve outcome.
Asunto(s)
Huésped Inmunocomprometido , Técnicas Microbiológicas , Técnicas de Diagnóstico Molecular , Reacción en Cadena de la Polimerasa , Toxoplasma/aislamiento & purificación , Toxoplasmosis/epidemiología , Francia/epidemiología , Humanos , Prevalencia , Estudios Retrospectivos , Análisis de Supervivencia , Toxoplasma/genética , Toxoplasmosis/diagnóstico , Toxoplasmosis/parasitología , Toxoplasmosis/patologíaRESUMEN
We have set up an assay to study the interactions of live pathogens with their hosts by using protein and glycosaminoglycan arrays probed by surface plasmon resonance imaging. We have used this assay to characterize the interactions of Leishmania promastigotes with ~70 mammalian host biomolecules (extracellular proteins, glycosaminoglycans, growth factors, cell surface receptors). We have identified, in total, 27 new partners (23 proteins, 4 glycosaminoglycans) of procyclic promastigotes of six Leishmania species and 18 partners (15 proteins, 3 glycosaminoglycans) of three species of stationary-phase promastigotes for all the strains tested. The diversity of the interaction repertoires of Leishmania parasites reflects their dynamic and complex interplay with their mammalian hosts, which depends mostly on the species and strains of Leishmania. Stationary-phase Leishmania parasites target extracellular matrix proteins and glycosaminoglycans, which are highly connected in the extracellular interaction network. Heparin and heparan sulfate bind to most Leishmania strains tested, and 6-O-sulfate groups play a crucial role in these interactions. Numerous Leishmania strains bind to tropoelastin, and some strains are even able to degrade it. Several strains interact with collagen VI, which is expressed by macrophages. Most Leishmania promastigotes interact with several regulators of angiogenesis, including antiangiogenic factors (endostatin, anastellin) and proangiogenic factors (ECM-1, VEGF, and TEM8 [also known as anthrax toxin receptor 1]), which are regulated by hypoxia. Since hypoxia modulates the infection of macrophages by the parasites, these interactions might influence the infection of host cells by Leishmania.
Asunto(s)
Adhesión Celular , Proteínas de la Matriz Extracelular/metabolismo , Interacciones Huésped-Patógeno , Leishmania/fisiología , Animales , Glicosaminoglicanos/metabolismo , Humanos , Unión Proteica , Resonancia por Plasmón de SuperficieRESUMEN
The molecular diagnosis of toxoplasmosis essentially relies upon laboratory-developed methods and suffers from lack of standardization, hence the large diversity of performances between laboratories. Moreover, quantifications of parasitic loads differ among centers, a fact which prevents the possible prediction of the severity of this disease as a function of parasitic loads. The objectives of this multicentric study performed in eight proficient laboratories of the Molecular Biology Pole of the French National Reference Center for Toxoplasmosis (NRC-T) were (i) to assess the suitability of a lyophilized preparation of Toxoplasma gondii as a common standard for use in this PCR-based molecular diagnosis and (ii) to make this standard available to the community. High-quality written procedures were used for the production and qualification of this standard. Three independent batches of this standard, containing concentrations ranging from 10(4) to 0.01 T. gondii genome equivalents per PCR, were first assessed: the linear dynamic range was ≥ 6 log, the intra-assay coefficients of variation (CV) from a sample containing 10 T. gondii organisms per PCR were 0.3% to 0.42%, and the interassay CV over a 2-week period was 0.76% to 1.47%. A further assessment in eight diagnostic centers showed that the standard is stable, robust, and reliable. These lyophilized standards can easily be produced at a larger scale when needed and can be made widely available at the national level. To our knowledge, this is the first quality control assessment of a common standard which is usable both for self-evaluation in laboratories and for accurate quantification of parasitic loads in T. gondii prenatal infections.