Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 293(16): 6039-6051, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29487135

RESUMEN

Intestinal epithelial cells form a selectively permeable barrier to protect colon tissues from luminal microbiota and antigens and to mediate nutrient, fluid, and waste flux in the intestinal tract. Dysregulation of the epithelial cell barrier coincides with profound shifts in metabolic energy, especially in the colon, which exists in an energetically depleting state of physiological hypoxia. However, studies that systematically examine energy flux and adenylate metabolism during intestinal epithelial barrier development and restoration after disruption are lacking. Here, to delineate barrier-related energy flux, we developed an HPLC-based profiling method to track changes in energy flux and adenylate metabolites during barrier development and restoration. Cultured epithelia exhibited pooling of phosphocreatine and maintained ATP during barrier development. EDTA-induced epithelial barrier disruption revealed that hypoxanthine levels correlated with barrier resistance. Further studies uncovered that hypoxanthine supplementation improves barrier function and wound healing and that hypoxanthine appears to do so by increasing intracellular ATP, which improved cytoskeletal G- to F-actin polymerization. Hypoxanthine supplementation increased the adenylate energy charge in the murine colon, indicating potential to regulate adenylate energy charge-mediated metabolism in intestinal epithelial cells. Moreover, experiments in a murine colitis model disclosed that hypoxanthine loss during active inflammation correlates with markers of disease severity. In summary, our results indicate that hypoxanthine modulates energy metabolism in intestinal epithelial cells and is critical for intestinal barrier function.


Asunto(s)
Colitis/metabolismo , Colon/metabolismo , Metabolismo Energético , Hipoxantina/metabolismo , Mucosa Intestinal/metabolismo , Animales , Colitis/patología , Colon/patología , Femenino , Mucosa Intestinal/patología , Metaboloma , Ratones , Ratones Endogámicos C57BL , Consumo de Oxígeno , Permeabilidad , Uniones Estrechas/metabolismo , Uniones Estrechas/patología
2.
Am J Pathol ; 188(5): 1183-1194, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29454749

RESUMEN

Interactions between the gut microbiota and the host are important for health, where dysbiosis has emerged as a likely component of mucosal disease. The specific constituents of the microbiota that contribute to mucosal disease are not well defined. The authors sought to define microbial components that regulate homeostasis within the intestinal mucosa. Using an unbiased, metabolomic profiling approach, a selective depletion of indole and indole-derived metabolites was identified in murine and human colitis. Indole-3-propionic acid (IPA) was selectively diminished in circulating serum from human subjects with active colitis, and IPA served as a biomarker of disease remission. Administration of indole metabolites showed prominent induction of IL-10R1 on cultured intestinal epithelia that was explained by activation of the aryl hydrocarbon receptor. Colonization of germ-free mice with wild-type Escherichia coli, but not E. coli mutants unable to generate indole, induced colonic epithelial IL-10R1. Moreover, oral administration of IPA significantly ameliorated disease in a chemically induced murine colitis model. This work defines a novel role of indole metabolites in anti-inflammatory pathways mediated by epithelial IL-10 signaling and identifies possible avenues for utilizing indoles as novel therapeutics in mucosal disease.


Asunto(s)
Colitis/metabolismo , Indoles/metabolismo , Mucosa Intestinal/metabolismo , Microbiota/fisiología , Receptores de Interleucina-10/metabolismo , Animales , Línea Celular , Colitis/inducido químicamente , Sulfato de Dextran , Modelos Animales de Enfermedad , Homeostasis/fisiología , Humanos , Metabolómica , Ratones
3.
J Immunol ; 199(8): 2976-2984, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28893958

RESUMEN

Commensal interactions between the enteric microbiota and distal intestine play important roles in regulating human health. Short-chain fatty acids (SCFAs), such as butyrate, produced through anaerobic microbial metabolism represent a major energy source for the host colonic epithelium and enhance epithelial barrier function through unclear mechanisms. Separate studies revealed that the epithelial anti-inflammatory IL-10 receptor α subunit (IL-10RA) is also important for barrier formation. Based on these findings, we examined if SCFAs promote epithelial barrier through IL-10RA-dependent mechanisms. Using human intestinal epithelial cells (IECs), we discovered that SCFAs, particularly butyrate, enhanced IEC barrier formation, induced IL-10RA mRNA, IL-10RA protein, and transactivation through activated Stat3 and HDAC inhibition. Loss and gain of IL-10RA expression directly correlates with IEC barrier formation and butyrate represses permeability-promoting claudin-2 tight-junction protein expression through an IL-10RA-dependent mechanism. Our findings provide a novel mechanism by which microbial-derived butyrate promotes barrier through IL-10RA-dependent repression of claudin-2.


Asunto(s)
Bacterias Anaerobias/fisiología , Butiratos/metabolismo , Colon/patología , Microbioma Gastrointestinal/inmunología , Mucosa Intestinal/fisiología , Receptores de Interleucina-10/metabolismo , Uniones Estrechas/metabolismo , Butiratos/inmunología , Línea Celular , Células Cultivadas , Claudina-2/metabolismo , Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Humanos , Mucosa Intestinal/microbiología , Mucosa Intestinal/patología , Receptores de Interleucina-10/genética , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Simbiosis , Activación Transcripcional , Migración Transendotelial y Transepitelial , Regulación hacia Arriba
4.
Infect Immun ; 85(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28717030

RESUMEN

Ecto-5'-nucleotidase (CD73) is expressed abundantly on the apical surface of intestinal epithelial cells (IECs) and functions as the terminal enzyme in the generation of extracellular adenosine. Previous work demonstrated that adenosine signaling in IECs results in a number of tissue-protective effects during inflammation; however, a rationale for its apical expression has been lacking. We hypothesized that the highly polarized expression of CD73 is indicative of an important role for extracellular adenosine as a mediator of host-microbe interactions. We show that adenosine harbors bacteriostatic activity against Salmonella enterica serovar Typhimurium that is not shared by the related purine metabolite 5'-AMP, inosine, or hypoxanthine. Analysis of Salmonella colonization in IEC-specific CD73 knockout mice (CD73f/fVillinCre ) revealed a nearly 10-fold increase in colonization compared to that in controls. Despite the increased luminal colonization by Salmonella, CD73f/fVillinCre mice were protected against Salmonella colitis and showed reduced Salmonella burdens in viscera, suggesting that adenosine promotes dissemination. The knockdown of CD73 expression in cultured IECs resulted in dramatic defects in intraepithelial localization and replication as well as defective transepithelial translocation by Salmonella In conclusion, we define a novel antimicrobial activity of adenosine in the gastrointestinal tract and unveil an important role for adenosine as a regulator of host-microbe interactions. These findings have broad implications for the development of new therapeutic agents for infectious disease.


Asunto(s)
5'-Nucleotidasa/metabolismo , Adenosina/metabolismo , Interacciones Huésped-Patógeno , Mucosa Intestinal/microbiología , Salmonella enterica/crecimiento & desarrollo , 5'-Nucleotidasa/deficiencia , 5'-Nucleotidasa/genética , Adenosina/inmunología , Animales , Carga Bacteriana , Línea Celular , Células Epiteliales/microbiología , Inflamación , Ratones , Ratones Noqueados , Nucleotidasas/metabolismo , Salmonella enterica/fisiología , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/fisiología , Transducción de Señal
5.
Mucosal Immunol ; 14(2): 479-490, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33004979

RESUMEN

Primary sclerosing cholangitis (PSC) is a progressive fibrosing cholestatic liver disease that is strongly associated with inflammatory bowel disease (IBD). PSC-associated IBD (PSC-IBD) displays a unique phenotype characterized by right-side predominant colon inflammation and increased risk of colorectal cancer compared to non-PSC-IBD. The frequent association and unique phenotype of PSC-IBD suggest distinctive underlying disease mechanisms from other chronic liver diseases or IBD alone. Multidrug resistance protein 2 knockout (Mdr2-/-) mice develop spontaneous cholestatic liver injury and fibrosis mirroring human PSC. As a novel model of PSC-IBD, we treated Mdr2-/- mice with dextran sulfate sodium (DSS) to chemically induce colitis (Mdr2-/-/DSS). Mdr2-/- mice demonstrate alterations in fecal bile acid composition and enhanced colitis susceptibility with increased colonic adhesion molecule expression, particularly mucosal addressin-cell adhesion molecule 1 (MAdCAM-1). In vitro, ursodeoxycholic acid (UDCA) co-treatment resulted in a dose dependent attenuation of TNF-α-induced endothelial MAdCAM-1 expression. In the combined Mdr2-/-/DSS model, UDCA supplementation attenuated colitis severity and downregulated intestinal MAdCAM-1 expression. These findings suggest a potential mechanistic role for alterations in bile acid signaling in modulating MAdCAM-1 expression and colitis susceptibility in cholestasis-associated colitis. Together, our findings provide a novel model and new insight into the pathogenesis and potential treatment of PSC-IBD.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Moléculas de Adhesión Celular/metabolismo , Colangitis Esclerosante/metabolismo , Colestasis/metabolismo , Colitis/metabolismo , Colon/metabolismo , Enfermedades Inflamatorias del Intestino/metabolismo , Mucoproteínas/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Animales , Moléculas de Adhesión Celular/genética , Colon/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Ratones , Ratones Noqueados , Mucoproteínas/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ácido Ursodesoxicólico/metabolismo , Miembro 4 de la Subfamilia B de Casete de Unión a ATP
6.
Hypoxia (Auckl) ; 8: 1-12, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32104717

RESUMEN

BACKGROUND: Inflammation results in significant shifts in tissue metabolism. Recent studies indicate that inflammation and hypoxia occur concomitantly. We examined whether circulating and tissue markers of hypoxia could serve as surrogate indicators of disease severity in adult and pediatric patients with inflammatory bowel disease (IBD). METHODS: Serum and colonic biopsies were obtained from pediatric subjects with active IBD colitis and adult subjects with active and inactive ulcerative colitis, along with healthy non-colitis controls of all ages. Disease activity was evaluated by endoscopy and histopathology. Levels of serum hypoxia markers (macrophage inflammatory protein-3α [MIP-3α], vascular endothelial growth factor [VEGF], and erythropoietin [EPO]) were measured. RESULTS: Children with active IBD colitis had higher levels of serum MIP-3α and VEGF compared to non-colitis controls (p<0.01 and p<0.05, respectively). In adult subjects with endoscopically active ulcerative colitis, serum MIP-3α and EPO were significantly elevated compared to non-colitis controls (both p<0.01). In parallel, analysis of colon tissue MIP-3α mRNA and protein in pediatric subjects revealed increased expression in those with IBD colitis compared to controls (p<0.05 and p<0.01 for mRNA and protein, respectively). Serum MIP-3α and VEGF significantly increased with histology grade. CONCLUSION: Peripheral blood hypoxia markers may be useful indicators of disease activity for pediatric and adult IBD patients.

7.
Free Radic Biol Med ; 143: 101-114, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31377417

RESUMEN

Cholangiopathies such as primary sclerosing cholangitis (PSC) are chronic liver diseases characterized by increased cholestasis, biliary inflammation and oxidative stress. The objective of this study was to elucidate the impact of cholestatic injury on oxidative stress-related factors. Using hepatic tissue and whole cell liver extracts (LE) isolated from 11-week old C57BL/6J (WT) and Mdr2KO mice, inflammation and oxidative stress was assessed. Concurrently, specific targets of carbonylation were assessed in LE prepared from murine groups as well as from normal and human patients with end-stage PSC. Identified carbonylated proteins were further evaluated using bioinformatics analyses. Picrosirius red staining revealed extensive fibrosis in Mdr2KO liver, and fibrosis colocalized with increased periportal inflammatory cells and both acrolein and 4-HNE staining. Western blot analysis revealed elevated periportal expression of antioxidant proteins Cbr3, GSTµ, Prdx5, TrxR1 and HO-1 but not GCLC, GSTπ or catalase in the Mdr2KO group when compared to WT. From immunohistochemical analysis, increased periportal reactive aldehyde production colocalized with elevated staining of Cbr3, GSTµ and TrxR1 but surprisingly not with Nrf2. Mass spectrometric analysis revealed an increase in carbonylated proteins in the Mdr2KO and PSC groups compared to respective controls. Gene ontology and KEGG pathway analysis of carbonylated proteins revealed a propensity for increased carbonylation of proteins broadly involved in metabolic processes as well more specifically in Rab-mediated signal transduction, lysosomes and the large ribosomal subunit in human PSC. Western blot analysis of Rab-GTPase expression revealed no significant differences in Mdr2KO mice when compared to WT livers. In contrast, PSC tissue exhibited decreased levels of Rabs 4, 5 and increased abundance of Rabs 6 and 9a protein. Results herein reveal that cholestasis induces stage-dependent increases in periportal oxidative stress responses and protein carbonylation, potentially contributing to pathogenesis in Mdr2KO. Furthermore, during early stage cholestasis, there is cell-specific upregulation of some but not all, antioxidant proteins.


Asunto(s)
Aldehídos/metabolismo , Antioxidantes/farmacología , Colestasis/metabolismo , Hepatopatías/metabolismo , Hígado/metabolismo , Estrés Oxidativo , Adulto , Animales , Antioxidantes/metabolismo , Femenino , Glutatión Transferasa/metabolismo , Humanos , Inflamación , Hígado/fisiopatología , Lisosomas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , FN-kappa B/metabolismo , Oxidación-Reducción , Proteómica , Ribosomas/metabolismo , Transducción de Señal , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba
8.
Gut Microbes ; 10(6): 654-662, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31062653

RESUMEN

Vitamin B12 is a critical nutrient for humans as well as microbes. Due to saturable uptake, high dose oral B12 supplements are largely unabsorbed and reach the distal gut where they are available to interact with the microbiota. The aim of this study was to determine if oral B12 supplementation in mice alters 1) the concentration of B12 and related corrinoids in the distal gut, 2) the fecal microbiome, 3) short chain fatty acids (SCFA), and 4) susceptibility to experimental colitis. C57BL/6 mice (up to 24 animals/group) were supplemented with oral 3.94 µg/ml cyanocobalamin (B12), a dose selected to approximate a single 5 mg supplement for a human. Active vitamin B12 (cobalamin), and four B12-analogues ([ADE]CN-Cba, [2Me-ADE]CN-Cba, [2MeS-ADE]CN-Cba, CN-Cbi) were analyzed in cecal and fecal contents using liquid chromatography/mass spectrometry (LC/MS), in parallel with evaluation of fecal microbiota, cecal SCFA, and susceptibility to dextran sodium sulfate (DSS) colitis. At baseline, active B12 was a minor constituent of overall cecal (0.86%) and fecal (0.44%) corrinoid. Oral B12 supplementation increased active B12 at distal sites by >130-fold (cecal B12 increased from 0.08 to 10.60 ng/mg, fecal B12 increased from 0.06 to 7.81 ng/ml) and reduced microbe-derived fecal corrinoid analogues ([ADE]CN-Cba, [2Me-ADE]CN-Cba, [2MeS-ADE]CN-Cba). Oral B12 had no effect on cecal SCFA. Microbial diversity was unaffected by this intervention, however a selective decrease in Bacteroides was observed with B12 treatment. Lastly, no difference in markers of DSS-induced colitis were detected with B12 treatment.


Asunto(s)
Bacteroides/efectos de los fármacos , Corrinoides/análisis , Suplementos Dietéticos/análisis , Vitamina B 12/administración & dosificación , Complejo Vitamínico B/administración & dosificación , Administración Oral , Animales , Bacteroides/crecimiento & desarrollo , Ciego/química , Colitis/inducido químicamente , Colitis/dietoterapia , Sulfato de Dextran/toxicidad , Ácidos Grasos Volátiles/análisis , Heces/química , Heces/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones Endogámicos C57BL , Vitamina B 12/farmacología , Complejo Vitamínico B/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA