RESUMEN
BACKGROUND: How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum have long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. RESULTS: The final assembled and filtered Berghia genome is comparable to other high-quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes) and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. CONCLUSIONS: Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.
Asunto(s)
Gastrópodos , Animales , Gastrópodos/genética , Filogenia , Evolución Molecular , Moluscos/genética , Cromosomas , Fenotipo , Expresión GénicaRESUMEN
Mollusca is a morphologically diverse phylum, exhibiting an immense variety of calcium carbonate structures. Proteomic studies of adult shells often report high levels of rapidly-evolving, 'novel' shell matrix proteins (SMPs), which are hypothesized to drive shell diversification. However, relatively little is known about the phylogenetic distribution of SMPs, or about the function of individual SMPs in shell construction. To understand how SMPs contribute to shell diversification a thorough characterization of SMPs is required. Here, we build tools and a foundational understanding of SMPs in the marine gastropod species Crepidula fornicata and Crepidula atrasolea because they are genetically-enabled mollusc model organisms. First, we established a staging system of shell development in C. atrasolea for the first time. Next, we leveraged previous findings in C. fornicata combined with phylogenomic analyses of 95 metazoan species to determine the evolutionary lineage of its adult SMP repertoire. We found that 55% of C. fornicata's SMPs belong to molluscan orthogroups, with 27% restricted to Gastropoda, and only 5% restricted at the species level. The low percentage of species-restricted SMPs underscores the importance of broad-taxon sampling and orthology inference approaches when determining homology of SMPs. From our transcriptome analysis, we found that the majority of C. fornicata SMPs that were found conserved in C. atrasolea were expressed in both larval and adult stages. We then selected a subset of SMPs of varying evolutionary ages for spatial-temporal analysis using in situ hybridization chain reaction (HCR) during larval shell development in C. atrasolea. Out of the 18 SMPs analyzed, 12 were detected in the larval shell field. These results suggest overlapping larval vs. adult SMP repertoires. Using multiplexed HCR, we observed five SMP expression patterns and three distinct cell populations within the shell field. These patterns support the idea that modular expression of SMPs could facilitate divergence of shell morphological characteristics. Collectively, these data establish an evolutionary and developmental framework in Crepidula that enables future comparisons of molluscan biomineralization to reveal mechanisms of shell diversification.
Asunto(s)
Exoesqueleto , Larva , Filogenia , Caracoles , Animales , Exoesqueleto/metabolismo , Exoesqueleto/crecimiento & desarrollo , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Caracoles/genética , Caracoles/metabolismoRESUMEN
Molluscs are one of the most morphologically diverse clades of metazoans, exhibiting an immense diversification of calcium carbonate structures, such as the shell. Biomineralization of the calcified shell is dependent on shell matrix proteins (SMPs). While SMP diversity is hypothesized to drive molluscan shell diversity, we are just starting to unravel SMP evolutionary history and biology. Here we leveraged two complementary model mollusc systems, Crepidula fornicata and Crepidula atrasolea , to determine the lineage-specificity of 185 Crepidula SMPs. We found that 95% of the adult C. fornicata shell proteome belongs to conserved metazoan and molluscan orthogroups, with molluscan-restricted orthogroups containing half of all SMPs in the shell proteome. The low number of C. fornicata -restricted SMPs contradicts the generally-held notion that an animalâ™s biomineralization toolkit is dominated by mostly novel genes. Next, we selected a subset of lineage-restricted SMPs for spatial-temporal analysis using in situ hybridization chain reaction (HCR) during larval stages in C. atrasolea . We found that 12 out of 18 SMPs analyzed are expressed in the shell field. Notably, these genes are present in 5 expression patterns, which define at least three distinct cell populations within the shell field. These results represent the most comprehensive analysis of gastropod SMP evolutionary age and shell field expression patterns to date. Collectively, these data lay the foundation for future work to interrogate the molecular mechanisms and cell fate decisions underlying molluscan mantle specification and diversification.
RESUMEN
How novel phenotypes originate from conserved genes, processes, and tissues remains a major question in biology. Research that sets out to answer this question often focuses on the conserved genes and processes involved, an approach that explicitly excludes the impact of genetic elements that may be classified as clade-specific, even though many of these genes are known to be important for many novel, or clade-restricted, phenotypes. This is especially true for understudied phyla such as mollusks, where limited genomic and functional biology resources for members of this phylum has long hindered assessments of genetic homology and function. To address this gap, we constructed a chromosome-level genome for the gastropod Berghia stephanieae (Valdés, 2005) to investigate the expression of clade-specific genes across both novel and conserved tissue types in this species. The final assembled and filtered Berghia genome is comparable to other high quality mollusk genomes in terms of size (1.05 Gb) and number of predicted genes (24,960 genes), and is highly contiguous. The proportion of upregulated, clade-specific genes varied across tissues, but with no clear trend between the proportion of clade-specific genes and the novelty of the tissue. However, more complex tissue like the brain had the highest total number of upregulated, clade-specific genes, though the ratio of upregulated clade-specific genes to the total number of upregulated genes was low. Our results, when combined with previous research on the impact of novel genes on phenotypic evolution, highlight the fact that the complexity of the novel tissue or behavior, the type of novelty, and the developmental timing of evolutionary modifications will all influence how novel and conserved genes interact to generate diversity.