Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biol Sex Differ ; 11(1): 40, 2020 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-32690098

RESUMEN

BACKGROUND: Individuals exposed to gestational stressors such as alcohol exhibit a spectrum of growth patterns, suggesting individualized responses to the stressors. We hypothesized that intrauterine growth responses to gestational alcohol are modified not only by the stressor's severity but by fetal sex and the placenta's adaptive capacity. METHODS: Pregnant C57BL/6J mice were assigned to one of three groups. Group 1 consumed a normal protein diet (18% protein by weight) and received 4.5 g alcohol/kg body weight (NP-Alc-8) or isocaloric maltodextrin (NP-MD-8) daily from embryonic day (E) 8.5-E17.5. Group 2 consumed the same diet but received alcohol (NP-Alc-13) or maltodextrin (NP-MD-13) daily from E13.5-E17.5. Group 3 consumed the same diet but containing a lower protein content (12% protein by weight) from E0.5 and also received alcohol (LP-Alc-8) or maltodextrin (LP-MD-8) daily from E8.5-E17.5. Maternal, placental, and fetal outcomes were assessed on E17.5 using 2-way ANOVA or mixed linear model. RESULTS: We found that intrauterine growth differed in the alcohol-exposed fetuses depending on sex and insult severity. Both NP-Alc-8 (vs. NP-MD-8) males and females had lower body weight and asymmetrical growth, but only NP-Alc-8 females had lower placental weight (P < 0.05). NP-Alc-13 (vs. NP-MD-13) females, but not their male littermates, had lower body weight (P = 0.019). Alcohol exposure beginning from E8.5 (vs. E13.5) decreased the ratio of fetal liver-to-body weight and increased the ratio of fetal brain-to-liver weight in both sexes (P < 0.05). LP-Alc-8 (vs. NP-MD-8) group had smaller litter size (P = 0.048), but the survivors had normal placental and body weight at E17.5. Nevertheless, LP-Alc-8 fetuses still showed asymmetrical growth. Correlation analyses reveal a relationship between litter size and placental outcomes, which were related to fetal outcomes in a sex-dependent manner, suggesting that the placenta may mediate the consequence of LP-Alc-altered litter size on fetal development. CONCLUSIONS: Our data indicate that the placenta is strongly involved in the fetal stress response and adapts in a sex-dependent fashion to support fetal development under the alcohol stressor. These variables may further influence the spectrum of intrauterine growth outcomes observed in those diagnosed with fetal alcohol spectrum disorder.


Asunto(s)
Proteínas en la Dieta/administración & dosificación , Etanol/administración & dosificación , Trastornos del Espectro Alcohólico Fetal/patología , Placenta/anatomía & histología , Animales , Esquema de Medicación , Femenino , Desarrollo Fetal , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Tamaño de los Órganos , Embarazo , Fenómenos Fisiologicos de la Nutrición Prenatal , Factores Sexuales
2.
Birth Defects Res ; 111(12): 686-699, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31021056

RESUMEN

BACKGROUND: Prenatal alcohol exposure causes distinctive craniofacial anomalies that arise, in part, from the apoptotic elimination of neural crest (NC) progenitors that form the face. This vulnerability of NC to alcohol is puzzling as they normally express the transcriptional repressor Snail1/2 (in chick Snai2), which suppresses apoptosis and promotes their migration. Here, we investigate alcohol's impact upon Snai2 function. METHODS: Chick cranial NC cells were treated with acute alcohol (52 mM, 2 hr). We evaluated NC migration, gene expression, proliferation, and apoptosis thereafter. RESULTS: Transient alcohol exposure induced Snai2 (191% ± 23%; p = .003) and stimulated NC migration (p = .0092). An alcohol-induced calcium transient mediated this Snai2 induction, and BAPTA-AM blocked whereas ionomycin mimicked these pro-migratory effects. Alcohol suppressed CyclinD1 protein content (59.1 ± 12%, p = .007) and NC proliferation (19.7 ± 5.8%, p < .001), but these Snai2-enriched cells still apoptosed in response to alcohol. This was explained because alcohol induced p53 (198 ± 29%, p = .023), and the p53 antagonist pifithrin-α prevented their apoptosis. Moreover, alcohol counteracted Snai2's pro-survival signals, and Bcl2 was repressed (68.5 ± 6.0% of controls, p = .016) and PUMA was not induced, while ATM (1.32-fold, p = .01) and PTEN (1.30-fold, p = .028) were elevated. CONCLUSIONS: Alcohol's calcium transient uncouples the Snai2/p53 regulatory loop that normally prevents apoptosis during EMT. This represents a novel pathway in alcohol's neurotoxicity, and complements demonstrations that alcohol suppresses PUMA in mouse NC. We propose that the NCs migratory behavior, and their requirement for Snai2/p53 co-expression, makes them vulnerable to stressors that dysregulate Snai2/p53 interactions, such as alcohol.


Asunto(s)
Apoptosis/efectos de los fármacos , Proteínas Aviares/metabolismo , Señalización del Calcio/efectos de los fármacos , Etanol/efectos adversos , Cresta Neural/metabolismo , Células-Madre Neurales/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Movimiento Celular/efectos de los fármacos , Embrión de Pollo , Etanol/farmacología , Cresta Neural/patología , Células-Madre Neurales/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA