Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
bioRxiv ; 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38464047

RESUMEN

Medulloblastoma, the most common pediatric brain malignancy, has Sonic Hedgehog (SHH) and non-SHH group3 subtypes. MAGMAS (Mitochondrial Associated Granulocyte Macrophage colony-stimulating factor Signaling molecules) encode for mitochondrial import inner membrane translocase subunit and is responsible for translocation of matrix proteins across the inner membrane. We previously reported that a small molecule MAGMAS inhibitor, BT9, decreases cell proliferation, migration, and oxidative phosphorylation in adult glioblastoma cell lines. The aim of our study was to investigate whether the chemotherapeutic effect of BT9 can be extended to pediatric medulloblastoma. Methods: Multiple in vitro assays were performed using human DAOY (SHH activated tp53 mutant) and D425 (non-SHH group 3) cells. The impact of BT9 on cellular growth, death, migration, invasion, and metabolic activity were quantified using MTT assay, TUNEL staining, scratch wound assay, Matrigel invasion chambers, and seahorse assay, respectively. Survival following 50mg/kg BT9 treatment was assessed in vivo in immunodeficient mice intracranially implanted with D425 cells. Results: Compared to control, BT9 treatment led to a significant reduction in medulloblastoma cell growth (DAOY, 24hrs IC50: 3.6uM, 48hrs IC50: 2.3uM, 72hrs IC50: 2.1uM; D425 24hrs IC50: 3.4uM, 48hrs IC50: 2.2uM, 72hrs IC50: 2.1uM) and a significant increase in cell death (DAOY, 24hrs p=0.0004, 48hrs p<0.0001; D425, 24hrs p=0.0001, 48hrs p=0.02). In DAOY cells, 3uM BT9 delayed migration, and significantly decreased DAOY and D425 cells invasion (p < 0.0001). Our in vivo study, however, did not extend survival in xenograft mouse model of group3 medulloblastoma compared to vehicle-treated controls. Conclusions: Our in vitro data showed BT9 antitumor efficacy in DAOY and D425 cell lines suggesting that BT9 may represent a promising targeted therapeutic in pediatric medulloblastoma. These data, however, need to be further validated in animal models.

2.
Neuropharmacology ; 190: 108568, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33878302

RESUMEN

The low sensitivity (α4)3(ß2)2 (LS) and high sensitivity (α4)2(ß2)3 (HS) nAChR isoforms may contribute to a variety of brain functions, pathophysiological processes, and pharmacological effects associated with nicotine use. In this study, we examined the contributions of the LS and HS α4ß2 nAChR isoforms in nicotine self-administration, withdrawal symptoms, antinociceptive and hypothermic effects. We utilized two nAChR positive allosteric modulators (PAMs): desformylflustrabromine (dFBr), a PAM of both the LS and HS α4ß2 nAChRs, and CMPI, a PAM selective for the LS nAChR. We found that dFBr, but not CMPI, decreased intravenous nicotine self-administration in male mice in a dose-dependent manner. Unlike dFBr, which fully reverses somatic and affective symptoms of nicotine withdrawal, CMPI at doses up to 15 mg/kg in male mice only partially reduced nicotine withdrawal-induced somatic signs, anxiety-like behavior and sucrose preference, but had no effects on nicotine withdrawal-induced hyperalgesia. These results indicate that potentiation of HS α4ß2 nAChRs is necessary to modulate nicotine's reinforcing properties that underlie nicotine intake and to reverse nicotine withdrawal symptoms that influence nicotine abstinence. In contrast, both dFBr and CMPI enhanced nicotine's hypothermic effect and reduced nicotine's antinociceptive effects in male mice. Therefore, these results indicate a more prevalent role of HS α4ß2 nAChR isoforms in mediating various behavioral effects associated with nicotine, whereas the LS α4ß2 nAChR isoform has a limited role in mediating body temperature and nociceptive responses. These findings will facilitate the development of more selective, efficacious, and safe nAChR-based therapeutics for nicotine addiction treatment.


Asunto(s)
Conducta Animal/efectos de los fármacos , Hidrocarburos Bromados/farmacología , Alcaloides Indólicos/farmacología , Isoxazoles/farmacología , Nicotina/efectos adversos , Agonistas Nicotínicos/efectos adversos , Pirazoles/farmacología , Receptores Nicotínicos/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/metabolismo , Tabaquismo/metabolismo , Regulación Alostérica , Animales , Ratones , Nicotina/administración & dosificación , Agonistas Nicotínicos/administración & dosificación , Isoformas de Proteínas , Receptores Nicotínicos/metabolismo , Autoadministración , Síndrome de Abstinencia a Sustancias/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA