Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
BMC Genomics ; 21(1): 259, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32228451

RESUMEN

BACKGROUND: The olive fruit fly, Bactrocera oleae, is the most important pest in the olive fruit agribusiness industry. This is because female flies lay their eggs in the unripe fruits and upon hatching the larvae feed on the fruits thus destroying them. The lack of a high-quality genome and other genomic and transcriptomic data has hindered progress in understanding the fly's biology and proposing alternative control methods to pesticide use. RESULTS: Genomic DNA was sequenced from male and female Demokritos strain flies, maintained in the laboratory for over 45 years. We used short-, mate-pair-, and long-read sequencing technologies to generate a combined male-female genome assembly (GenBank accession GCA_001188975.2). Genomic DNA sequencing from male insects using 10x Genomics linked-reads technology followed by mate-pair and long-read scaffolding and gap-closing generated a highly contiguous 489 Mb genome with a scaffold N50 of 4.69 Mb and L50 of 30 scaffolds (GenBank accession GCA_001188975.4). RNA-seq data generated from 12 tissues and/or developmental stages allowed for genome annotation. Short reads from both males and females and the chromosome quotient method enabled identification of Y-chromosome scaffolds which were extensively validated by PCR. CONCLUSIONS: The high-quality genome generated represents a critical tool in olive fruit fly research. We provide an extensive RNA-seq data set, and genome annotation, critical towards gaining an insight into the biology of the olive fruit fly. In addition, elucidation of Y-chromosome sequences will advance our understanding of the Y-chromosome's organization, function and evolution and is poised to provide avenues for sterile insect technique approaches.


Asunto(s)
Tephritidae/genética , Cromosoma Y/genética , Cromosoma Y/metabolismo , Animales , Femenino , Genoma de los Insectos/genética , Masculino , Reacción en Cadena de la Polimerasa
2.
Blood ; 127(26): 3387-97, 2016 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-27121473

RESUMEN

Sézary syndrome (SS) is a leukemic variant of cutaneous T-cell lymphoma (CTCL) and represents an ideal model for study of T-cell transformation. We describe whole-exome and single-nucleotide polymorphism array-based copy number analyses of CD4(+) tumor cells from untreated patients at diagnosis and targeted resequencing of 101 SS cases. A total of 824 somatic nonsynonymous gene variants were identified including indels, stop-gain/loss, splice variants, and recurrent gene variants indicative of considerable molecular heterogeneity. Driver genes identified using MutSigCV include POT1, which has not been previously reported in CTCL; and TP53 and DNMT3A, which were also identified consistent with previous reports. Mutations in PLCG1 were detected in 11% of tumors including novel variants not previously described in SS. This study is also the first to show BRCA2 defects in a significant proportion (14%) of SS tumors. Aberrations in PRKCQ were found to occur in 20% of tumors highlighting selection for activation of T-cell receptor/NF-κB signaling. A complex but consistent pattern of copy number variants (CNVs) was detected and many CNVs involved genes identified as putative drivers. Frequent defects involving the POT1 and ATM genes responsible for telomere maintenance were detected and may contribute to genomic instability in SS. Genomic aberrations identified were enriched for genes implicated in cell survival and fate, specifically PDGFR, ERK, JAK STAT, MAPK, and TCR/NF-κB signaling; epigenetic regulation (DNMT3A, ASLX3, TET1-3); and homologous recombination (RAD51C, BRCA2, POLD1). This study now provides the basis for a detailed functional analysis of malignant transformation of mature T cells and improved patient stratification and treatment.


Asunto(s)
Reparación del ADN , Genoma Humano , Inestabilidad Genómica , Síndrome de Sézary/genética , Supervivencia Celular/genética , Epigénesis Genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Síndrome de Sézary/metabolismo , Transducción de Señal/genética
3.
Front Genet ; 13: 1031355, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36324505

RESUMEN

Full-length transcript sequencing remains a main goal of RNA sequencing. However, even the application of long-read sequencing technologies such as Oxford Nanopore Technologies still fail to yield full-length transcript sequencing for a significant portion of sequenced reads. Since these technologies can sequence reads that are far longer than the longest known processed transcripts, the lack of efficiency to obtain full-length transcripts from good quality RNAs stems from library preparation inefficiency rather than the presence of degraded RNA molecules. It has previously been shown that addition of inverted terminal repeats in cDNA during reverse transcription followed by single-primer PCR creates a PCR suppression effect that prevents amplification of short molecules thus enriching the library for longer transcripts. We adapted this method for Nanopore cDNA library preparation and show that not only is PCR efficiency increased but gene body coverage is dramatically improved. The results show that implementation of this simple strategy will result in better quality full-length RNA sequencing data and make full-length transcript sequencing possible for most of sequenced reads.

4.
Sci Rep ; 11(1): 7878, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846393

RESUMEN

The olive fruit fly, Bactrocera oleae, is the most important pest for the olive fruit but lacks adequate transcriptomic characterization that could aid in molecular control approaches. We apply nanopore long-read RNA-seq with internal RNA standards allowing absolute transcript quantification to analyze transcription dynamics during early embryo development for the first time in this organism. Sequencing on the MinION platform generated over 31 million reads. Over 50% of the expressed genes had at least one read covering its entire length validating our full-length approach. We generated a de novo transcriptome assembly and identified 1768 new genes and a total of 79,810 isoforms; a fourfold increase in transcriptome diversity compared to the current NCBI predicted transcriptome. Absolute transcript quantification per embryo allowed an insight into the dramatic re-organization of maternal transcripts. We further identified Zelda as a possible regulator of early zygotic genome activation in B. oleae and provide further insights into the maternal-to-zygotic transition. These data show the utility of long-read RNA in improving characterization of non-model organisms that lack a fully annotated genome, provide potential targets for sterile insect technic approaches, and provide the first insight into the transcriptome landscape of the developing olive fruit fly embryo.


Asunto(s)
Desarrollo Embrionario/genética , ARN/metabolismo , Tephritidae , Transcriptoma/genética , Animales , Tephritidae/embriología , Tephritidae/genética
5.
Front Genet ; 11: 606, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733532

RESUMEN

RNA sequencing using next-generation sequencing technologies (NGS) is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise high throughput, cost efficient short-read RNA-Seq, while emerging single molecule, long-read RNA-Seq technologies have enabled new approaches to study the transcriptome and its function. The emerging single molecule, long-read technologies are currently commercially available by Pacific Biosciences (PacBio) and Oxford Nanopore Technologies (ONT), while new methodologies based on short-read sequencing approaches are also being developed in order to provide long range single molecule level information-for example, the ones represented by the 10x Genomics linked read methodology. The shift toward long-read sequencing technologies for transcriptome characterization is based on current increases in throughput and decreases in cost, making these attractive for de novo transcriptome assembly, isoform expression quantification, and in-depth RNA species analysis. These types of analyses were challenging with standard short sequencing approaches, due to the complex nature of the transcriptome, which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes, as well as the high sequence similarity of highly abundant species of RNA, such as rRNAs. Here we aim to focus on single molecule level sequencing technologies and single-cell technologies that, combined with perturbation tools, allow the analysis of complete RNA species, whether short or long, at high resolution. In parallel, these tools have opened new ways in understanding gene functions at the tissue, network, and pathway levels, as well as their detailed functional characterization. Analysis of the epi-transcriptome, including RNA methylation and modification and the effects of such modifications on biological systems is now enabled through direct RNA sequencing instead of classical indirect approaches. However, many difficulties and challenges remain, such as methodologies to generate full-length RNA or cDNA libraries from all different species of RNAs, not only poly-A containing transcripts, and the identification of allele-specific transcripts due to current error rates of single molecule technologies, while the bioinformatics analysis on long-read data for accurate identification of 5' and 3' UTRs is still in development.

6.
Gigascience ; 9(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32520351

RESUMEN

BACKGROUND: Riverine ecosystems are biogeochemical powerhouses driven largely by microbial communities that inhabit water columns and sediments. Because rivers are used extensively for anthropogenic purposes (drinking water, recreation, agriculture, and industry), it is essential to understand how these activities affect the composition of river microbial consortia. Recent studies have shown that river metagenomes vary considerably, suggesting that microbial community data should be included in broad-scale river ecosystem models. But such ecogenomic studies have not been applied on a broad "aquascape" scale, and few if any have applied the newest nanopore technology. RESULTS: We investigated the metagenomes of 11 rivers across 3 continents using MinION nanopore sequencing, a portable platform that could be useful for future global river monitoring. Up to 10 Gb of data per run were generated with average read lengths of 3.4 kb. Diversity and diagnosis of river function potential was accomplished with 0.5-1.0 ⋅ 106 long reads. Our observations for 7 of the 11 rivers conformed to other river-omic findings, and we exposed previously unrecognized microbial biodiversity in the other 4 rivers. CONCLUSIONS: Deeper understanding that emerged is that river microbial consortia and the ecological functions they fulfil did not align with geographic location but instead implicated ecological responses of microbes to urban and other anthropogenic effects, and that changes in taxa manifested over a very short geographic space.


Asunto(s)
Metagenoma , Metagenómica/métodos , Consorcios Microbianos , Microbiota , Plancton/genética , Biodiversidad , Secuenciación de Nanoporos , Ríos/microbiología , Microbiología del Agua
7.
Methods Mol Biol ; 1783: 209-241, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29767365

RESUMEN

The transcriptome encompasses a range of species including messenger RNA, and other noncoding RNA such as rRNA, tRNA, and short and long noncoding RNAs. Due to the huge role played by mRNA in development and disease, several methods have been developed to sequence and characterize mRNA, with RNA sequencing (RNA-Seq) emerging as the current method of choice particularly for large high-throughput studies. Short-read RNA-Seq which involves sequencing of short cDNA fragments and computationally assembling them to reconstruct the transcriptome, or aligning them to a reference is the most widely used approach. However, due to inherent limitations of this approach in de novo transcriptome assembly and isoform quantification, long-read RNA-Seq approaches, which also happen to be single molecule sequencing approaches, are increasingly becoming the standard for de novo transcriptome assembly and isoform quantification. In this chapter, we review the technical aspects of the current methods of RNA-Seq, both short and long-read approaches, and data analysis methods available. We discuss recent advances in single-cell RNA-Seq and direct RNA-Seq approaches, which perhaps will dominate the future of RNA-Seq.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Mensajero/análisis , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Transcriptoma , Humanos , ARN Mensajero/genética
8.
Methods Mol Biol ; 1783: 121-147, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29767360

RESUMEN

RNA sequencing using next-generation sequencing (NGS, RNA-Seq) technologies is currently the standard approach for gene expression profiling, particularly for large-scale high-throughput studies. NGS technologies comprise short-read RNA-Seq (dominated by Illumina) and long-read RNA-Seq technologies provided by Pacific Bioscience (PacBio) and Oxford Nanopore Technologies (ONT). Although short-read sequencing technologies are the most widely used, long-read technologies are increasingly becoming the standard approach for de novo transcriptome assembly and isoform expression quantification due to the complex nature of the transcriptome which consists of variable lengths of transcripts and multiple alternatively spliced isoforms for most genes. In this chapter, we describe experimental procedures for library preparation, sequencing, and associated data analysis approaches for PacBio and ONT with a major focus on full length cDNA synthesis, de novo transcriptome assembly, and isoform quantification.


Asunto(s)
Empalme Alternativo , Biología Computacional/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Transcriptoma , Biblioteca de Genes , Humanos , Isoformas de Proteínas
9.
Virology ; 474: 41-51, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25463603

RESUMEN

Hepatitis C virus (HCV) induces cytopathic effects in the form of hepatocytes apoptosis thought to be resulted from the interaction between viral proteins and host factors. Using pathway specific PCR array, we identified 9 apoptosis-related genes that are dysregulated during HCV infection, of which the BH3-only pro-apoptotic Bcl-2 family protein, BIK, was consistently up-regulated at the mRNA and protein levels. Depletion of BIK protected host cells from HCV-induced caspase-3/7 activation but not the inhibitory effect of HCV on cell viability. Furthermore, viral RNA replication and release were significantly suppressed in BIK-depleted cells and over-expression of the RNA-dependent RNA polymerase, NS5B, was able to induce BIK expression. Immunofluorescence and co-immunoprecipitation assays showed co-localization and interaction of BIK and NS5B, suggesting that BIK may be interacting with the HCV replication complex through NS5B. These results imply that BIK is essential for HCV replication and that NS5B is able to induce BIK expression.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Hepacivirus/fisiología , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas no Estructurales Virales/fisiología , Apoptosis , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Línea Celular , Supervivencia Celular , Técnicas de Silenciamiento del Gen , Células HEK293 , Hepacivirus/genética , Hepacivirus/patogenicidad , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas Mitocondriales , ARN Interferente Pequeño/genética , ARN Viral/biosíntesis , Regulación hacia Arriba , Proteínas no Estructurales Virales/genética , Liberación del Virus/fisiología , Replicación Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA