Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(27): E6291-E6300, 2018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29915044

RESUMEN

Cells respond to iron deficiency by activating iron-regulatory proteins to increase cellular iron uptake and availability. However, it is not clear how cells adapt to conditions when cellular iron uptake does not fully match iron demand. Here, we show that the mRNA-binding protein tristetraprolin (TTP) is induced by iron deficiency and degrades mRNAs of mitochondrial Fe/S-cluster-containing proteins, specifically Ndufs1 in complex I and Uqcrfs1 in complex III, to match the decrease in Fe/S-cluster availability. In the absence of TTP, Uqcrfs1 levels are not decreased in iron deficiency, resulting in nonfunctional complex III, electron leakage, and oxidative damage. Mice with deletion of Ttp display cardiac dysfunction with iron deficiency, demonstrating that TTP is necessary for maintaining cardiac function in the setting of low cellular iron. Altogether, our results describe a pathway that is activated in iron deficiency to regulate mitochondrial function to match the availability of Fe/S clusters.


Asunto(s)
Deficiencias de Hierro , Proteínas Hierro-Azufre/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocardio/metabolismo , NADH Deshidrogenasa/metabolismo , Tristetraprolina/metabolismo , Animales , Línea Celular , Complejo III de Transporte de Electrones/genética , Complejo III de Transporte de Electrones/metabolismo , Proteínas Hierro-Azufre/genética , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/enzimología , NADH Deshidrogenasa/genética , Oxidación-Reducción , Tristetraprolina/genética
2.
Circ Res ; 113(3): 279-87, 2013 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-23720443

RESUMEN

RATIONALE: Heme plays a critical role in gas exchange, mitochondrial energy production, and antioxidant defense in cardiovascular system. The mitochondrial transporter ATP-binding cassette (ABC) B10 has been suggested to export heme out of the mitochondria and is required for normal hemoglobinization of erythropoietic cells and protection against ischemia-reperfusion injury in the heart; however, its primary function has not been established. OBJECTIVE: The aim of this study was to identify the function of ABCB10 in heme synthesis in cardiac cells. METHODS AND RESULTS: Knockdown of ABCB10 in cardiac myoblasts significantly reduced heme levels and the activities of heme-containing proteins, whereas supplementation with δ-aminolevulinic acid reversed these defects. Overexpression of mitochondrial δ-aminolevulinic acid synthase 2, the rate-limiting enzyme upstream of δ-aminolevulinic acid export, failed to restore heme levels in cells with ABCB10 downregulation. ABCB10 and heme levels were increased by hypoxia, and reversal of ABCB10 upregulation caused oxidative stress and cell death. Furthermore, ABCB10 knockdown in neonatal rat cardiomyocytes resulted in a significant delay of calcium removal from the cytoplasm, suggesting a relaxation defect. Finally, ABCB10 expression and heme levels were altered in failing human hearts and mice with ischemic cardiomyopathy. CONCLUSIONS: ABCB10 plays a critical role in heme synthesis pathway by facilitating δ-aminolevulinic acid production or export from the mitochondria. In contrast to previous reports, we show that ABCB10 is not a heme exporter and instead is required for the early mitochondrial steps of heme biosynthesis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Hemo/biosíntesis , Mitocondrias Cardíacas/fisiología , Miocitos Cardíacos/fisiología , Animales , Células Cultivadas , Hemo/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratas
3.
Proc Natl Acad Sci U S A ; 109(11): 4152-7, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22375032

RESUMEN

Mitochondrial iron levels are tightly regulated, as iron is essential for the synthesis of Fe/S clusters and heme in the mitochondria, but high levels can cause oxidative stress. The ATP-binding cassette (ABC) transporter ABCB8 is a mitochondrial inner membrane protein with an unknown function. Here, we show that ABCB8 is involved in mitochondrial iron export and is essential for baseline cardiac function. Induced genetic deletion of ABCB8 in mouse hearts resulted in mitochondrial iron accumulation and cardiomyopathy, as assessed by echocardiography and invasive hemodynamics. Mice with ABCB8 deletion in the heart also displayed mitochondrial damage, and higher levels of reactive oxygen species and cell death. Down-regulation of ABCB8 in vitro resulted in decreased iron export from isolated mitochondria, whereas its overexpression had the opposite effect. Furthermore, ABCB8 is needed for the maturation of the cytosolic Fe/S proteins, as its deletion in vitro and in vivo led to decreased activity of cytosolic, but not mitochondrial, iron-sulfur-containing enzymes. These results indicate that ABCB8 is essential for normal cardiac function, maintenance of mitochondrial iron homeostasis and maturation of cytosolic Fe/S proteins. In summary, this report provides characterization of a protein involved in mitochondrial iron export.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Eliminación de Gen , Hierro/metabolismo , Mitocondrias/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico , Cardiomiopatías/complicaciones , Cardiomiopatías/fisiopatología , Citosol/metabolismo , Regulación hacia Abajo/genética , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/fisiopatología , Pruebas de Función Cardíaca , Proteínas Hierro-Azufre/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/patología , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas
4.
Curr Hypertens Rep ; 12(6): 426-32, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20865351

RESUMEN

Hypertension is an important risk factor for the development of heart failure. Increased production of reactive oxygen species (ROS) contributes to cardiac dysfunction by activating numerous pro-hypertrophic signaling cascades and damaging the mitochondria, thus setting off a vicious cycle of ROS generation. The way in which oxidative stress leads to exacerbation of systolic and diastolic dysfunction is still unclear, however. In skeletal muscle and ischemic myocardium, increased ROS production causes preferential oxidation of myofibrillar proteins and provides a mechanistic link between oxidative damage and impaired contractility through disruption of actin-myosin interactions, enzymatic functions, calcium sensitivity, and efficiency of cross-bridge cycling. In this review, we summarize recent findings in the fields of heart failure and sarcomere biology and speculate that oxidative damage to myofibrils may contribute to the development of heart failure.


Asunto(s)
Mitocondrias Cardíacas , Contracción Miocárdica , Isquemia Miocárdica , Estrés Oxidativo , Sarcómeros , Animales , Humanos , Hipertensión/complicaciones , Hipertensión/metabolismo , Hipertensión/patología , Ratones , Mitocondrias Cardíacas/fisiología , Mitocondrias Cardíacas/ultraestructura , Proteínas Musculares/metabolismo , Isquemia Miocárdica/etiología , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Sarcómeros/metabolismo , Sarcómeros/patología , Sarcómeros/ultraestructura
6.
JCI Insight ; 3(13)2018 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-29997282

RESUMEN

The role of posttranscriptional metabolic gene regulatory programs in diabetes is not well understood. Here, we show that the RNA-binding protein tristetraprolin (TTP) is reduced in the livers of diabetic mice and humans and is transcriptionally induced in response to insulin treatment in murine livers in vitro and in vivo. Liver-specific Ttp-KO (lsTtp-KO) mice challenged with high-fat diet (HFD) have improved glucose tolerance and peripheral insulin sensitivity compared with littermate controls. Analysis of secreted hepatic factors demonstrated that fibroblast growth factor 21 (FGF21) is posttranscriptionally repressed by TTP. Consistent with increased FGF21, lsTtp-KO mice fed HFD have increased brown fat activation, peripheral tissue glucose uptake, and adiponectin production compared with littermate controls. Downregulation of hepatic Fgf21 via an adeno-associated virus-driven shRNA in mice fed HFD reverses the insulin-sensitizing effects of hepatic Ttp deletion. Thus, hepatic TTP posttranscriptionally regulates systemic insulin sensitivity in diabetes through liver-derived FGF21.


Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Resistencia a la Insulina , Tristetraprolina/genética , Tejido Adiposo Pardo/metabolismo , Animales , Diabetes Mellitus Experimental , Dieta Alta en Grasa , Factores de Crecimiento de Fibroblastos/sangre , Eliminación de Gen , Regulación de la Expresión Génica , Humanos , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Procesamiento Postranscripcional del ARN , Tristetraprolina/metabolismo
7.
BMC Cell Biol ; 6: 46, 2005 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-16343335

RESUMEN

BACKGROUND: Copines are soluble, calcium-dependent membrane binding proteins found in a variety of organisms. Copines are characterized as having two C2 domains at the N-terminal region followed by an "A domain" at the C-terminal region. The "A domain" is similar in sequence to the von Willebrand A (VWA) domain found in integrins. The presence of C2 domains suggests that copines may be involved in cell signaling and/or membrane trafficking pathways. RESULTS: We have identified six copines genes in the Dictyostelium discoideum genome, cpnA-cpnF, and have focused our studies on cpnA. CpnA is expressed throughout development and was shown to be capable of binding to membranes in a calcium-dependent manner in vitro. A GFP-tagged CpnA was also capable of binding to membranes in a calcium-dependent manner in vitro. In live wildtype Dictyostelium cells expressing GFP-CpnA, GFP-CpnA was typically found in the cytoplasm without any specific localization to membranes. However, in a small subset of starved cells, GFP-CpnA was observed to bind transiently (typically approximately 1-10 s) to the plasma membrane and intracellular vacuoles. In some cells, the transient membrane localization of GFP-CpnA was observed to occur multiple times in an oscillatory manner over several minutes. In plasma membrane disrupted cells, GFP-CpnA was observed to associate with the plasma membrane and intracellular vacuoles in a calcium-dependent manner. In fixed cells, GFP-CpnA labeled the plasma membrane and intracellular vacuoles, including contractile vacuoles, organelles of the endolysosomal pathway, and phagosomes. CONCLUSION: Our results show that Dictyostelium has multiple copine homologs and provides an excellent system in which to study copine function. The localization of a GFP-tagged CpnA to the plasma membrane, contractile vacuoles, organelles of the endolysosomal pathway, and phagosomes suggests that CpnA may have a role in the function of these organelles or the trafficking to and from them. In addition, we hypothesize that the observed transient oscillatory membrane localization of GFP-CpnA in a small subset of starved cells is caused by fast calcium waves and speculate that CpnA may have a role in development, particularly in the differentiation of stalk cells.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Dictyostelium/citología , Dictyostelium/metabolismo , Vacuolas/metabolismo , Animales , Calcio/metabolismo , Proteínas Portadoras/genética , Endosomas/metabolismo , Genes Reporteros , Lisosomas/metabolismo , Fagosomas/metabolismo , Unión Proteica , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
AIDS Res Hum Retroviruses ; 31(3): 305-12, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25291189

RESUMEN

HIV is a pandemic disease, and many cellular and systemic factors are known to alter its infectivity and replication. Earlier studies had suggested that anemia is common in HIV-infected patients; however, higher iron was also observed in AIDS patients prior to the introduction of antiretroviral therapy (ART). Therefore, the relationship between iron and viral infection is not well delineated. To address this issue, we altered the levels of cellular iron in primary CD4(+) T cells and showed that higher iron is associated with increased HIV infection and replication. In addition, HIV infection alone leads to increased cellular iron, and several ART drugs increase cellular iron independent of HIV infection. Finally, HIV infection is associated with increased serum iron in HIV-positive patients regardless of treatment with ART. These results establish a relationship between iron and HIV infection and suggest that iron homeostasis may be a viable therapeutic target for HIV.


Asunto(s)
Linfocitos T CD4-Positivos/química , Linfocitos T CD4-Positivos/virología , Citosol/química , VIH/crecimiento & desarrollo , Hierro/análisis , Replicación Viral , Células Cultivadas , Humanos
9.
J Clin Invest ; 124(2): 617-30, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24382354

RESUMEN

Doxorubicin is an effective anticancer drug with known cardiotoxic side effects. It has been hypothesized that doxorubicin-dependent cardiotoxicity occurs through ROS production and possibly cellular iron accumulation. Here, we found that cardiotoxicity develops through the preferential accumulation of iron inside the mitochondria following doxorubicin treatment. In isolated cardiomyocytes, doxorubicin became concentrated in the mitochondria and increased both mitochondrial iron and cellular ROS levels. Overexpression of ABCB8, a mitochondrial protein that facilitates iron export, in vitro and in the hearts of transgenic mice decreased mitochondrial iron and cellular ROS and protected against doxorubicin-induced cardiomyopathy. Dexrazoxane, a drug that attenuates doxorubicin-induced cardiotoxicity, decreased mitochondrial iron levels and reversed doxorubicin-induced cardiac damage. Finally, hearts from patients with doxorubicin-induced cardiomyopathy had markedly higher mitochondrial iron levels than hearts from patients with other types of cardiomyopathies or normal cardiac function. These results suggest that the cardiotoxic effects of doxorubicin develop from mitochondrial iron accumulation and that reducing mitochondrial iron levels protects against doxorubicin-induced cardiomyopathy.


Asunto(s)
Antineoplásicos/efectos adversos , Doxorrubicina/efectos adversos , Corazón/efectos de los fármacos , Hierro/metabolismo , Mitocondrias/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Cardiotónicos/química , Cruzamientos Genéticos , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Deferoxamina/química , Dexrazoxano/química , Relación Dosis-Respuesta a Droga , Ecocardiografía , Hemodinámica , Humanos , Peroxidación de Lípido , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Miocitos Cardíacos/efectos de los fármacos , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno , Inhibidores de Topoisomerasa II/química
10.
J Clin Invest ; 124(11): 4795-806, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25329697

RESUMEN

Patients with type 2 diabetes often present with cardiovascular complications; however, it is not clear how diabetes promotes cardiac dysfunction. In murine models, deletion of the gene encoding aryl hydrocarbon nuclear translocator (ARNT, also known as HIF1ß) in the liver or pancreas leads to a diabetic phenotype; however, the role of ARNT in cardiac metabolism is unknown. Here, we determined that cardiac-specific deletion of Arnt in adult mice results in rapid development of cardiomyopathy (CM) that is characterized by accumulation of lipid droplets. Compared with hearts from ARNT-expressing mice, ex vivo analysis of ARNT-deficient hearts revealed a 2-fold increase in fatty acid (FA) oxidation as well as a substantial increase in the expression of PPARα and its target genes. Furthermore, deletion of both Arnt and Ppara preserved cardiac function, improved survival, and completely reversed the FA accumulation phenotype, indicating that PPARα mediates the detrimental effects of Arnt deletion in the heart. Finally, we determined that ARNT directly regulates Ppara expression by binding to its promoter and forming a complex with HIF2α. Together, these findings suggest that ARNT is a critical regulator of myocardial FA metabolism and that its deletion leads to CM and an increase in triglyceride accumulation through PPARα.


Asunto(s)
Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Cardiomiopatías Diabéticas/genética , Metabolismo de los Lípidos , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Ratones Noqueados , Ratones Obesos , Miocardio/metabolismo , Oxidación-Reducción , PPAR alfa/genética , PPAR alfa/metabolismo , Ratas Sprague-Dawley , Transcripción Genética , Triglicéridos/metabolismo , Remodelación Ventricular
11.
J Am Coll Cardiol ; 61(6): 599-610, 2013 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-23219298

RESUMEN

Heart failure is a pressing public health problem with no curative treatment currently available. The existing therapies provide symptomatic relief, but are unable to reverse molecular changes that occur in cardiomyocytes. The mechanisms of heart failure are complex and multiple, but mitochondrial dysfunction appears to be a critical factor in the development of this disease. Thus, it is important to focus research efforts on targeting mitochondrial dysfunction in the failing heart to revive the myocardium and its contractile function. This review highlights the 3 promising areas for the development of heart failure therapies, including mitochondrial biogenesis, mitochondrial oxidative stress, and mitochondrial iron handling. Moreover, the translational potential of compounds targeting these pathways is discussed.


Asunto(s)
Cardiotónicos/farmacología , Diseño de Fármacos , Insuficiencia Cardíaca/tratamiento farmacológico , Mitocondrias Cardíacas , Terapia Molecular Dirigida/métodos , Animales , Metabolismo Energético , Genes Mitocondriales , Corazón/fisiopatología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/fisiopatología , Humanos , Hierro/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Terapia Molecular Dirigida/tendencias , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/ultraestructura , Estrés Oxidativo/efectos de los fármacos , Investigación Biomédica Traslacional/métodos , Investigación Biomédica Traslacional/tendencias
12.
J Am Coll Cardiol ; 61(18): 1884-93, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23500306

RESUMEN

OBJECTIVES: The goal of this study was to characterize the regulation of heme and non-heme iron in human failing hearts. BACKGROUND: Iron is an essential molecule for cellular physiology, but in excess it facilitates oxidative stress. Mitochondria are the key regulators of iron homeostasis through heme and iron-sulfur cluster synthesis. Because mitochondrial function is depressed in failing hearts and iron accumulation can lead to oxidative stress, we hypothesized that iron regulation may also be impaired in heart failure (HF). METHODS: We measured mitochondrial and cytosolic heme and non-heme iron levels in failing human hearts retrieved during cardiac transplantation surgery. In addition, we examined the expression of genes regulating cellular iron homeostasis, the heme biosynthetic pathway, and micro-RNAs that may potentially target iron regulatory networks. RESULTS: Although cytosolic non-heme iron levels were reduced in HF, mitochondrial iron content was maintained. Moreover, we observed a significant increase in heme levels in failing hearts, with corresponding feedback inhibition of the heme synthetic enzymes and no change in heme degradation. The rate-limiting enzyme in heme synthesis, delta-aminolevulinic acid synthase 2 (ALAS2), was significantly upregulated in HF. Overexpression of ALAS2 in H9c2 cardiac myoblasts resulted in increased heme levels, and hypoxia and erythropoietin treatment increased heme production through upregulation of ALAS2. Finally, increased heme levels in cardiac myoblasts were associated with excess production of reactive oxygen species and cell death, suggesting a maladaptive role for increased heme in HF. CONCLUSIONS: Despite global mitochondrial dysfunction, heme levels are maintained above baseline in human failing hearts.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Hemo/biosíntesis , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , 5-Aminolevulinato Sintetasa/biosíntesis , 5-Aminolevulinato Sintetasa/genética , Apoptosis , Western Blotting , Células Cultivadas , Citosol/metabolismo , Citosol/patología , Regulación de la Expresión Génica , Insuficiencia Cardíaca/patología , Humanos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Miocitos Cardíacos/patología , ARN/genética , Especies Reactivas de Oxígeno , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Trends Endocrinol Metab ; 24(11): 569-77, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23948590

RESUMEN

Disorders of iron homeostasis are very common, yet the molecular mechanisms of iron regulation remain understudied. Over 20 years have passed since the first characterization of iron-regulatory proteins (IRP) as mediators of cellular iron-deficiency response in mammals through iron acquisition. However, little is known about other mechanisms necessary for adaptation to low-iron states. In this review, we present recent evidence that establishes the existence of a new iron-regulatory pathway aimed at iron conservation and optimization of iron use through suppression of nonessential iron-consuming processes. Moreover, we discuss the possible links between iron homeostasis and energy metabolism uncovered by studies of iron-deficiency response.


Asunto(s)
Hierro/metabolismo , Animales , Diabetes Mellitus/metabolismo , Humanos , Deficiencias de Hierro , Proteínas Reguladoras del Hierro/metabolismo , Tristetraprolina/metabolismo
14.
Cell Metab ; 16(5): 645-57, 2012 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-23102618

RESUMEN

Iron is an essential cofactor with unique redox properties. Iron-regulatory proteins 1 and 2 (IRP1/2) have been established as important regulators of cellular iron homeostasis, but little is known about the role of other pathways in this process. Here we report that the mammalian target of rapamycin (mTOR) regulates iron homeostasis by modulating transferrin receptor 1 (TfR1) stability and altering cellular iron flux. Mechanistic studies identify tristetraprolin (TTP), a protein involved in anti-inflammatory response, as the downstream target of mTOR that binds to and enhances degradation of TfR1 mRNA. We also show that TTP is strongly induced by iron chelation, promotes downregulation of iron-requiring genes in both mammalian and yeast cells, and modulates survival in low-iron states. Taken together, our data uncover a link between metabolic, inflammatory, and iron-regulatory pathways, and point toward the existence of a yeast-like TTP-mediated iron conservation program in mammals.


Asunto(s)
Hierro/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Tristetraprolina/metabolismo , Animales , Línea Celular , Proteínas de Unión al ADN/metabolismo , Expresión Génica/efectos de los fármacos , Ratones , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Receptores de Transferrina/genética , Receptores de Transferrina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirolimus/farmacología , Factores de Transcripción/metabolismo , Proteína 2 del Complejo de la Esclerosis Tuberosa , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
17.
Eukaryot Cell ; 6(3): 430-42, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17259548

RESUMEN

Copines make up a family of soluble, calcium-dependent, membrane binding proteins found in a variety of eukaryotic organisms. In an earlier study, we identified six copine genes in the Dictyostelium discoideum genome and focused our studies on cpnA. Our previous localization studies of green fluorescent protein-tagged CpnA in Dictyostelium suggested that CpnA may have roles in contractile vacuole function, endolysosomal trafficking, and development. To test these hypotheses, we created a cpnA- knockout strain, and here we report the initial characterization of the mutant phenotype. The cpnA- cells exhibited normal growth rates and a slight cytokinesis defect. When placed in starvation conditions, cpnA- cells appeared to aggregate into mounds and form fingers with normal timing; however, they were delayed or arrested in the finger stage. When placed in water, cpnA- cells formed unusually large contractile vacuoles, indicating a defect in contractile vacuole function, while endocytosis and phagocytosis rates for the cpnA- cells were similar to those seen for wild-type cells. These studies indicate that CpnA plays a role in cytokinesis and contractile vacuole function and is required for normal development, specifically in the later stages prior to culmination. We also used real-time reverse transcription-PCR to determine the expression patterns of all six copine genes during development. The six copine genes were expressed in vegetative cells, with each gene exhibiting a distinct pattern of expression throughout development. All of the copine genes except cpnF showed an upregulation of mRNA expression at one or two developmental transitions, suggesting that copines may be important regulators of Dictyostelium development.


Asunto(s)
Proteínas de Unión al Calcio/fisiología , División Celular/fisiología , Citocinesis/fisiología , Dictyostelium/citología , Dictyostelium/fisiología , Proteínas de la Membrana/fisiología , Vacuolas/metabolismo , Animales , Endocitosis/fisiología , Silenciador del Gen , Transporte de Proteínas , Proteínas Protozoarias , Vacuolas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA