RESUMEN
BACKGROUND & AIMS: Tethered capsule endomicroscopy (TCE) involves swallowing a small tethered pill that implements optical coherence tomography (OCT) imaging, procuring high resolution images of the whole esophagus. Here, we demonstrate and evaluate the feasibility and safety of TCE and a portable OCT imaging system in patients with Barrett's esophagus (BE) in a multi-center (5-site) clinical study. METHODS: Untreated patients with BE as per endoscopic biopsy diagnosis were eligible to participate in the study. TCE procedures were performed in unsedated patients by either doctors or nurses. After the capsule was swallowed, the device continuously obtained 10-µm-resolution cross-sectional images as it traversed the esophagus. Following imaging, the device was withdrawn through mouth, and disinfected for subsequent reuse. BE lengths were compared to endoscopy findings when available. OCT-TCE images were compared to volumetric laser endomicroscopy (VLE) images from a patient who had undergone VLE on the same day as TCE. RESULTS: 147 patients with BE were enrolled across all sites. 116 swallowed the capsule (79%), 95/114 (83.3%) men and 21/33 (63.6%) women (P = .01). High-quality OCT images were obtained in 104/111 swallowers (93.7%) who completed the procedure. The average imaging duration was 5.55 ± 1.92 minutes. The mean length of esophagus imaged per patient was 21.69 ± 5.90 cm. A blinded comparison of maximum extent of BE measured by OCT-TCE and EGD showed a strong correlation (r = 0.77-0.79). OCT-TCE images were of similar quality to those obtained by OCT-VLE. CONCLUSIONS: The capabilities of TCE to be used across multiple sites, be administered to unsedated patients by either physicians or nurses who are not expert in OCT-TCE, and to rapidly and safely evaluate the microscopic structure of the esophagus make it an emerging tool for screening and surveillance of BE patients. Clinical trial registry website and trial number: NCT02994693 and NCT03459339.
Asunto(s)
Esófago de Barrett , Neoplasias Esofágicas , Esófago de Barrett/diagnóstico por imagen , Esófago de Barrett/patología , Biopsia , Neoplasias Esofágicas/patología , Esofagoscopía/métodos , Estudios de Factibilidad , Femenino , Humanos , Masculino , Tomografía de Coherencia Óptica/métodosRESUMEN
Protein acetylation is an important contributor to cancer initiation. Histone deacetylase 6 (HDAC6) controls JAK2 translation and protein stability and has been implicated in JAK2-driven diseases best exemplified by myeloproliferative neoplasms (MPNs). By using novel classes of highly selective HDAC inhibitors and genetically deficient mouse models, we discovered that HDAC11 rather than HDAC6 is necessary for the proliferation and survival of oncogenic JAK2-driven MPN cells and patient samples. Notably, HDAC11 is variably expressed in primitive stem cells and is expressed largely upon lineage commitment. Although Hdac11is dispensable for normal homeostatic hematopoietic stem and progenitor cell differentiation based on chimeric bone marrow reconstitution, Hdac11 deficiency significantly reduced the abnormal megakaryocyte population, improved splenic architecture, reduced fibrosis, and increased survival in the MPLW515L-MPN mouse model during primary and secondary transplantation. Therefore, inhibitors of HDAC11 are an attractive therapy for treating patients with MPN. Although JAK2 inhibitor therapy provides substantial clinical benefit in MPN patients, the identification of alternative therapeutic targets is needed to reverse MPN pathogenesis and control malignant hematopoiesis. This study establishes HDAC11 as a unique type of target molecule that has therapeutic potential in MPN.
Asunto(s)
Hematopoyesis , Histona Desacetilasas/fisiología , Mutación , Trastornos Mieloproliferativos/patología , Oncogenes , Animales , Apoptosis , Ciclo Celular , Proliferación Celular , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/química , Humanos , Janus Quinasa 1/genética , Janus Quinasa 1/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trastornos Mieloproliferativos/tratamiento farmacológico , Trastornos Mieloproliferativos/metabolismo , Factores de Transcripción STAT/genética , Factores de Transcripción STAT/metabolismo , Células Tumorales CultivadasRESUMEN
Immunomodulatory drugs, such as thalidomide and related compounds, potentiate T-cell effector functions. Cereblon (CRBN), a substrate receptor of the DDB1-cullin-RING E3 ubiquitin ligase complex, is the only molecular target for this drug class, where drug-induced, ubiquitin-dependent degradation of known "neosubstrates," such as IKAROS, AIOLOS, and CK1α, accounts for their biological activity. Far less clear is whether these CRBN E3 ligase-modulating compounds disrupt the endogenous functions of CRBN. We report that CRBN functions in a feedback loop that harnesses antigen-specific CD8+ T-cell effector responses. Specifically, Crbn deficiency in murine CD8+ T cells augments their central metabolism manifested as elevated bioenergetics, with supraphysiological levels of polyamines, secondary to enhanced glucose and amino acid transport, and with increased expression of metabolic enzymes, including the polyamine biosynthetic enzyme ornithine decarboxylase. Treatment with CRBN-modulating compounds similarly augments central metabolism of human CD8+ T cells. Notably, the metabolic control of CD8+ T cells by modulating compounds or Crbn deficiency is linked to increased and sustained expression of the master metabolic regulator MYC. Finally, Crbn-deficient T cells have augmented antigen-specific cytolytic activity vs melanoma tumor cells, ex vivo and in vivo, and drive accelerated and highly aggressive graft-versus-host disease. Therefore, CRBN functions to harness the activation of CD8+ T cells, and this phenotype can be exploited by treatment with drugs.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Linfocitos T CD8-positivos/fisiología , Metabolismo Energético/genética , Activación de Linfocitos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Linfocitos T CD8-positivos/metabolismo , Células Cultivadas , Inmunomodulación/genética , Melanoma Experimental/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones TransgénicosRESUMEN
BACKGROUND/OBJECTIVES: Optical coherence tomography (OCT) uses low coherence interferometry to obtain depth-resolved tissue reflectivity profiles (M-mode) and transverse beam scanning to create images of two-dimensional tissue morphology (B-mode). Endoscopic OCT imaging probes typically employ proximal or distal mechanical beam scanning mechanisms that increase cost, complexity, and size. Here, we demonstrate in the gastrointestinal (GI) tracts of unsedated human patients, that a passive, single-fiber probe can be used to guide device placement, conduct device-tissue physical contact sensing, and obtain two-dimensional OCT images via M-to-B-mode conversion. MATERIALS AND METHODS: We designed and developed ultrasmall, manually scannable, side- and forward-viewing single fiber-optic probes that can capture M-mode OCT data. Side-viewing M-mode OCT probes were incorporated into brush biopsy devices designed to harvest the microbiome and forward-viewing M-mode OCT probes were integrated into devices that measure intestinal potential difference (IPD). The M-mode OCT probe-coupled devices were utilized in the GI tract in six unsedated patients in vivo. M-mode data were converted into B-mode images using an M-to-B-mode conversion algorithm. The effectiveness of physical contact sensing by the M-mode OCT probes was assessed by comparing the variances of the IPD values when the probe was in physical contact with the tissue versus when it was not. The capacity of forward- and side-viewing M-mode OCT probes to produce high-quality B-mode images was compared by computing the percentages of the M-to-B-mode images that showed close contact between the probe and the luminal surface. Passively scanned M-to-B-mode images were qualitatively compared to B-mode images obtained by mechanical scanning OCT tethered capsule endomicroscopy (TCE) imaging devices. RESULTS: The incorporation of M-mode OCT probes in these nonendoscopic GI devices safely and effectively enabled M-mode OCT imaging, facilitating real-time device placement guidance and contact sensing in vivo. Results showed that M-mode OCT contact sensing improved the variance of IPD measurements threefold and side-viewing probes increased M-to-B-mode image visibility by 10%. Images of the esophagus, stomach, and duodenum generated by the passively scanned probes and M-to-B-mode conversion were qualitatively superior to B-mode images obtained by mechanically scanning OCT TCE devices. CONCLUSION: These results show that passive, single optical fiber OCT probes can be effectively utilized for nonendoscopic device placement guidance, device contact sensing, and two-dimensional morphologic imaging in the human GI tract in vivo. Due to their small size, lower cost, and reduced complexity, these M-mode OCT probes may provide an easier avenue for the incorporation of OCT functionality into endoscopic/nonendoscopic devices.
Asunto(s)
Tecnología de Fibra Óptica , Tomografía de Coherencia Óptica , Biopsia , Endoscopios , Endoscopía , HumanosRESUMEN
BACKGROUND: Chemotherapy regimens that include the utilization of gemcitabine are the standard of care in pancreatic cancer patients. However, most patients with advanced pancreatic cancer die within the first 2 years after diagnosis, even when treated with standard of care chemotherapy. This study aims to explore combination therapies that could boost the efficacy of standard of care regimens in pancreatic cancer patients. METHODS: In this study, we used PV-10, a 10% solution of rose bengal, to induce the death of human pancreatic tumor cells in vitro. Murine in vivo studies were carried out to examine the effectiveness of the direct injection of PV-10 into syngeneic pancreatic tumors in causing lesion-specific ablation. Intralesional PV-10 treatment was combined with systemic gemcitabine treatment in tumor-bearing mice to investigate the control of growth among treated tumors and distal uninjected tumors. The involvement of the immune-mediated clearance of tumors was examined in immunogenic tumor models that express ovalbumin (OVA). RESULTS: In this study, we demonstrate that the injection of PV-10 into mouse pancreatic tumors caused lesion-specific ablation. We show that the combination of intralesional PV-10 with the systemic administration of gemcitabine caused lesion-specific ablation and delayed the growth of distal uninjected tumors. We observed that this treatment strategy was markedly more successful in immunogenic tumors that express the neoantigen OVA, suggesting that the combination therapy enhanced the immune clearance of tumors. Moreover, the regression of tumors in mice that received PV-10 in combination with gemcitabine was associated with the depletion of splenic CD11b+Gr-1+ cells and increases in damage associated molecular patterns HMGB1, S100A8, and IL-1α. CONCLUSIONS: These results demonstrate that intralesional therapy with PV-10 in combination with gemcitabine can enhance anti-tumor activity against pancreatic tumors and raises the potential for this strategy to be used for the treatment of patients with pancreatic cancer.
Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamiento farmacológico , Rosa Bengala/uso terapéutico , Animales , Antimetabolitos Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Humanos , Ratones , Neoplasias Pancreáticas/patología , Rosa Bengala/farmacología , Gemcitabina , Neoplasias PancreáticasRESUMEN
Adoptive T cell therapy (ACT) in combination with lymphodepleting chemotherapy is an effective strategy to induce the eradication of tumors, providing long-term regression in cancer patients. Despite that lymphodepleting regimens condition the host for optimal engraftment and expansion of adoptively transferred T cells, lymphodepletion concomitantly promotes immunosuppression during the course of endogenous immune recovery. In this study, we have identified that lymphodepleting chemotherapy initiates the mobilization of hematopoietic progenitor cells that differentiate to immunosuppressive myeloid cells, leading to a dramatic increase of peripheral myeloid-derived suppressor cells (MDSCs). In melanoma and lung cancer patients, MDSCs rapidly expanded in the periphery within 1 week after completion of a lymphodepleting regimen and infusion of autologous tumor-infiltrating lymphocytes (TILs). This expansion was associated with disease progression, poor survival, and reduced TIL persistence in melanoma patients. We demonstrated that the interleukin 6 (IL-6)-driven differentiation of mobilized hematopoietic progenitor cells promoted the survival and immunosuppressive capacity of post-lymphodepletion MDSCs. Furthermore, the genetic abrogation or therapeutic inhibition of IL-6 in mouse models enhanced host survival and reduced tumor growth in mice that received ACT. Thus, the expansion of MDSCs in response to lymphodepleting chemotherapy may contribute to ACT failure, and targeting myeloid-mediated immunosuppression may support anti-tumor immune responses.
Asunto(s)
Antineoplásicos/uso terapéutico , Inmunoterapia Adoptiva , Depleción Linfocítica , Mielopoyesis , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos T/inmunología , Animales , Antineoplásicos/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Depleción Linfocítica/métodos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Ratones , Células Supresoras de Origen Mieloide/inmunología , Células Supresoras de Origen Mieloide/metabolismo , Neoplasias/diagnóstico , Neoplasias/mortalidad , Linfocitos T/metabolismo , Resultado del TratamientoRESUMEN
Upon binding to thalidomide and other immunomodulatory drugs, the E3 ligase substrate receptor cereblon (CRBN) promotes proteosomal destruction by engaging the DDB1-CUL4A-Roc1-RBX1 E3 ubiquitin ligase in human cells but not in mouse cells, suggesting that sequence variations in CRBN may cause its inactivation. Therapeutically, CRBN engagers have the potential for broad applications in cancer and immune therapy by specifically reducing protein expression through targeted ubiquitin-mediated degradation. To examine the effects of defined sequence changes on CRBN's activity, we performed a comprehensive study using complementary theoretical, biophysical, and biological assays aimed at understanding CRBN's nonprimate sequence variations. With a series of recombinant thalidomide-binding domain (TBD) proteins, we show that CRBN sequence variants retain their drug-binding properties to both classical immunomodulatory drugs and dBET1, a chemical compound and targeting ligand designed to degrade bromodomain-containing 4 (BRD4) via a CRBN-dependent mechanism. We further show that dBET1 stimulates CRBN's E3 ubiquitin-conjugating function and degrades BRD4 in both mouse and human cells. This insight paves the way for studies of CRBN-dependent proteasome-targeting molecules in nonprimate models and provides a new understanding of CRBN's substrate-recruiting function.
Asunto(s)
Proteínas Cullin/metabolismo , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Proteolisis , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Azepinas/farmacología , Proteínas de Ciclo Celular , Línea Celular Tumoral , Secuencia Conservada , Humanos , Factores Inmunológicos/metabolismo , Factores Inmunológicos/farmacología , Lenalidomida/farmacología , Ligandos , Ratones , Sondas Moleculares , Proteínas Nucleares/efectos de los fármacos , Proteínas Nucleares/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Linfocitos T/metabolismo , Talidomida/análogos & derivados , Talidomida/metabolismo , Talidomida/farmacología , Factores de Transcripción/efectos de los fármacos , Factores de Transcripción/metabolismo , Triazoles/farmacología , Ubiquitina/metabolismoRESUMEN
Acidosis is an important immunosuppressive mechanism that leads to tumor growth. Therefore, we investigated the neutralization of tumor acidity to improve immunotherapy response. L-DOS47, a new targeted urease immunoconjugate designed to neutralize tumor acidity, has been well tolerated in phase I/IIa trials. L-DOS47 binds to CEACAM6, a cell-surface protein that is highly expressed in gastrointestinal cancers, allowing urease to cleave endogenous urea into two NH4+ and one CO2, thereby raising local pH. To test the synergetic effect of neutralizing tumor acidity with immunotherapy, we developed a pancreatic orthotopic murine tumor model (KPC961) expressing human CEACAM6. Using chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) to measure the tumor extracellular pH (pHe), we confirmed that L-DOS47 raises the tumor pHe from 4 h to 96 h post injection in acidic tumors (average increase of 0.13 units). Additional studies showed that combining L-DOS47 with anti-PD1 significantly increases the efficacy of the anti-PD1 monotherapy, reducing tumor growth for up to 4 weeks.
RESUMEN
Major surgery carries high risks with comorbidities, frailty and health risk behaviours meaning patients are often unprepared for the physiological insult. Since 2018, the Prepwell programme at South Tees Hospitals NHS Foundation Trust has supported patients to improve their preoperative health and fitness. In April 2020, the face-to-face service was suspended due to the pandemic, leading to the team implementing a three-tiered remote digital support pathway, including digital health coaching via a mobile phone application. METHODS: Patients scheduled for elective lower limb arthroplasty were offered 8 weeks of digital health coaching preoperatively. Following consent, participants were assigned a personal health coach to set individual behaviour change goals supported by online resources, alongside a digitally delivered exercise programme. Participants completed self-assessment questionnaires at Entry to, and Exit from, the programme, with outcome data collected 21 days postoperatively. The primary outcome was the change in Patient Activation Measure (PAM). RESULTS: Fifty-seven of 189 patients (30.2%) consented to referral for digital health coaching. Forty participants completed the 8-week programme. Median PAM increased from 58.1 to 67.8 (p=0.002). Thirty-five per cent of participants were in a non-activated PAM level at Entry, reducing to 15% at Exit with no participants in PAM level 1 at completion. Seventy-one percent of non-activated participants improved their PAM by one level or more, compared with 45% for the whole cohort. Median LOS was 2 days, 1 day less than the Trust's arthroplasty patient population during the study period (unadjusted comparison). CONCLUSIONS: Digital health coaching was successfully implemented for patients awaiting elective lower limb arthroplasty. We observed significant improvements in participants' PAM scores after the programme, with the largest increase in participants with lower activation scores at Entry. Further study is needed to confirm the effects of digital health coaching in this and other perioperative groups.
Asunto(s)
Tutoría , Humanos , Mejoramiento de la Calidad , Promoción de la Salud , Extremidad InferiorRESUMEN
Background: New therapeutics in development for bladder cancer need to address the recalcitrant nature of the disease. Intravesical adoptive cell therapy (ACT) with tumor infiltrating lymphocytes (TIL) can potentially induce durable responses in bladder cancer while maximizing T cells at the tumor site. T cells infused into the bladder directly encounter immunosuppressive populations, such as myeloid derived suppressor cells (MDSCs), that can attenuate T cell responses. Intravesical instillation of gemcitabine can be used as a lymphodepleting agent to precondition the bladder microenvironment for infused T cell products. Methods: Urine samples from bladder cancer patients and healthy donors were analyzed by flow cytometry and cytometric bead array for immune profiling and cytokine quantification. MDSCs were isolated from the urine and cocultured with stimulated T cells to assess effects on proliferation. An orthotopic murine model of bladder cancer was established using the MB49-OVA cell line and immune profiling was performed. MDSCs from tumor-bearing mice were cocultured with OT-I splenocytes to assess T cell proliferation. Mice received intravesical instillation of gemcitabine and depletion of immune cells was measured via flow cytometry. Bladder tumor growth of mice treated with intravesical gemcitabine, OT-I transgenic T cells, or combination was monitored via ultrasound measurement. Results: In comparison to healthy donors, urine specimen from bladder cancer patients show high levels of MDSCs and cytokines associated with myeloid chemotaxis, T cell chemotaxis, and inflammation. T cells isolated from healthy donors were less proliferative when cocultured with MDSCs from the urine. Orthotopic murine bladder tumors also presented with high levels of MDSCs along with enrichment of cytokines found in the patient urine samples. MDSCs isolated from spleens of tumor-bearing mice exerted suppressive effects on the proliferation of OT-I T cells. Intravesical instillation of gemcitabine reduced overall immune cells, MDSCs, and T cells in orthotopic bladder tumors. Combination treatment with gemcitabine and OT-I T cells resulted in sustained anti-tumor responses in comparison to monotherapy treatments. Conclusion: MDSCs are enriched within the microenvironment of bladder tumors and are suppressive to T cells. Gemcitabine can be used to lymphodeplete bladder tumors and precondition the microenvironment for intravesical ACT.
Asunto(s)
Células Supresoras de Origen Mieloide , Neoplasias de la Vejiga Urinaria , Humanos , Ratones , Animales , Gemcitabina , Células Supresoras de Origen Mieloide/metabolismo , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Inmunoterapia Adoptiva , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Citocinas/metabolismo , Microambiente TumoralRESUMEN
Acidosis is an important immunosuppressive mechanism that leads to tumor growth. Therefore, we investigated the neutralization of tumor acidity to improve immunotherapy response. L-DOS47, a new targeted urease immunoconjugate designed to neutralize tumor acidity, has been well tolerated in phase I/IIa trials. L-DOS47 binds CEACAM6, a cell surface protein highly expressed in gastrointestinal cancers, allowing urease to cleave endogenous urea into two NH4+ and one CO2, thereby raising local pH. To test the synergetic effect of neutralizing tumor acidity with immunotherapy, we developed a pancreatic orthotopic murine tumor model (KPC961) expressing human CEACAM6. Our results demonstrate that combining L DOS47 with anti-PD1 significantly increases the efficacy of anti-PD1 monotherapy, reducing tumor growth for up to 4 weeks.
RESUMEN
BACKGROUND: Adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs) is a promising immunotherapeutic approach for patients with advanced solid tumors. While numerous advances have been made, the contribution of neoantigen-specific CD4+T cells within TIL infusion products remains underexplored and therefore offers a significant opportunity for progress. METHODS: We analyzed infused TIL products from metastatic melanoma patients previously treated with ACT for the presence of neoantigen-specific T cells. TILs were enriched on reactivity to neoantigen peptides derived and prioritized from patient sample-directed mutanome analysis. Enriched TILs were further investigated to establish the clonal neoantigen response with respect to function, transcriptomics, and persistence following ACT. RESULTS: We discovered that neoantigen-specific TIL clones were predominantly CD4+ T cells and were present in both therapeutic responders and non-responders. CD4+ TIL demonstrated an effector T cell response with cytotoxicity toward autologous tumor in a major histocompatibility complex class II-dependent manner. These results were validated by paired TCR and single cell RNA sequencing, which elucidated transcriptomic profiles distinct to neoantigen-specific CD4+ TIL. CONCLUSIONS: Despite methods which often focus on CD8+T cells, our study supports the importance of prospective identification of neoantigen-specific CD4+ T cells within TIL products as they are a potent source of tumor-specific effectors. We further advocate for the inclusion of neoantigen-specific CD4+ TIL in future ACT protocols as a strategy to improve antitumor immunity.
Asunto(s)
Linfocitos Infiltrantes de Tumor , Melanoma , Humanos , Inmunoterapia Adoptiva/métodos , Estudios Prospectivos , Linfocitos T CD4-PositivosRESUMEN
Background: The role of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) neutralizing antibody response from natural infection and vaccination, and the potential determinants of this response are poorly understood. Characterizing this antibody response and the factors associated with neutralization can help inform future prevention efforts and improve clinical outcomes in those infected. Objectives: The goals of this study were to prospectively evaluate SARS-CoV-2 antibody levels and the neutralizing antibody responses among naturally infected adults and to determine demographic and behavioral factors independently associated with these responses. Methods: Serum was collected from seropositive individuals at baseline, four-weeks, and three-months following their first study visit to be evaluated for antibody levels. Detection of neutralizing antibodies was performed at baseline. Participant demographic and behavioral information was collected via web questionnaire prior to their first visit. Results: At baseline, higher antibody levels were associated with better neutralization capacity, with 83% of participants having detectable neutralizing antibodies. We found an age-dependent effect on antibody level and neutralization capacity with participants over 65 years having significantly higher levels. Ethnicity, heart disease, autoimmune disease, and COVID symptoms were associated with higher antibody levels, but not with increased neutralization capacity. Work environment during the pandemic correlated with increased neutralization capacity, while kidney or liver disease and traveling out of state after February 2020 correlated with decreased neutralization capacity, however neither correlated with antibody levels. Conclusions: Our data show that natural infection by SARS-CoV-2 can induce a humoral response reflected by high antibody levels and neutralization capacity.
RESUMEN
Immunotherapy efficacy is limited in melanoma, and combinations of immunotherapies with other modalities have yielded limited improvements but also adverse events requiring cessation of treatment. In addition to ineffective patient stratification, efficacy is impaired by paucity of intratumoral immune cells (itICs); thus, effective strategies to safely increase itICs are needed. We report that dietary administration of L-fucose induces fucosylation and cell surface enrichment of the major histocompatibility complex (MHC)-II protein HLA-DRB1 in melanoma cells, triggering CD4+ T cell-mediated increases in itICs and anti-tumor immunity, enhancing immune checkpoint blockade responses. Melanoma fucosylation and fucosylated HLA-DRB1 associate with intratumoral T cell abundance and anti-programmed cell death protein 1 (PD1) responder status in patient melanoma specimens, suggesting the potential use of melanoma fucosylation as a strategy for stratifying patients for immunotherapies. Our findings demonstrate that fucosylation is a key mediator of anti-tumor immunity and, importantly, suggest that L-fucose is a powerful agent for safely increasing itICs and immunotherapy efficacy in melanoma.
Asunto(s)
Fucosa , Melanoma , Humanos , Cadenas HLA-DRB1/genética , Cadenas HLA-DRB1/metabolismo , Fucosa/metabolismo , Melanoma/tratamiento farmacológico , Inmunoterapia , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patologíaRESUMEN
Allogeneic hematopoietic cell transplantation (alloHCT) using haploidentical donors (haploHCT) with post-transplantation cyclophosphamide (PTCy) for augmented graft-versus-host disease (GVHD) prophylaxis has emerged as a robust platform to expand donor options with acceptable levels of GVHD and graft failure. The mechanism by which PTCy mitigates GVHD risk is partly explained by preferential cytotoxicity based on aldehyde dehydrogenase levels and up-regulation of regulatory T cells, but is incompletely understood. Myeloid-derived suppressor cells are important mediators of T-cell function and are up-regulated by cyclophosphamide exposure. We hypothesized that this cell type may play a role in GVHD protection in children undergoing haploHCT/PTCy. We prospectively collected samples in the first month after alloHCT from children undergoing standard of care (SOC) alloHCT with matched donors and tacrolimus-based GVHD prophylaxis (N = 11) and PTCy recipients (N = 11). MDSC recovery was compared using flow cytometry, and MDSC suppressive function was assessed at the peak of MDSC quantitative recovery post-alloHCT. Groups were well matched for conditioning regimen and stem cell source. PTCy recipients exhibited more robust MDSC recovery, particularly polymorphonuclear-MDSCs than SOC recipients, with preservation of T-cell suppressive function. This corresponded to significantly lower incidence of Grade II to IV acute GVHD (9.1% versus 27.3%) and moderate/severe chronic GVHD (0% versus 27.3%) in PTCy recipients. Patients who developed GVHD had decreased MDSC-mediated T-cell suppression, as well as higher levels of IL-10, a cytokine closely linked to GVHD biology. Overall, these findings provide support for the role of MDSCs in mediating GVHD protection after PTCy-based haploHCT. © 2022 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Células Supresoras de Origen Mieloide , Niño , Ciclofosfamida/farmacología , Enfermedad Injerto contra Huésped/prevención & control , Humanos , Acondicionamiento Pretrasplante , Estados UnidosRESUMEN
PURPOSE: Metastatic melanoma is a tumor amenable to immunotherapy in part due to the presence of antigen-specific tumor-infiltrating lymphocytes (TIL). These T cells can be activated and expanded for adoptive cell transfer (ACT), which has resulted in relatively high rates of clinical responses. Similarly, immune checkpoint inhibitors, specifically programmed cell death protein 1 (PD-1) blocking antibodies, augment antitumor immunity and increase the influx of T cells into tumors. Thus, we hypothesized that addition of PD-1 inhibition may improve the outcomes for patients undergoing ACT with TILs. PATIENTS AND METHODS: Patients with stage III/IV metastatic melanoma with unresectable disease who were anti-PD-1 treatment-naïve were enrolled. TILs were generated in the presence of anti-4-1BB antibody in vitro and expanded for ACT. Patients in cohort 1 received TIL infusion followed by nivolumab. Patients in cohort 2 also received nivolumab prior to surgical harvest and during TIL production. RESULTS: A total of 11 patients were enrolled, all of whom were evaluated for response, and nine completed ACT. Predominantly CD8+ TILs were successfully expanded from all ACT-treated patients and were tumor reactive in vitro. The trial met its safety endpoint, as there were no protocol-defined dose-limiting toxicity events. The objective response rate was 36%, and median progression-free survival was 5 months. Two nonresponders who developed new metastatic lesions were analyzed to determine potential mechanisms of therapeutic resistance, which included clonal divergence and intrinsic TIL dysfunction. CONCLUSIONS: Combination therapy with TILs and nivolumab was safe and feasible for patients with metastatic melanoma and provides important insights for future therapeutic developments in ACT with TILs.
Asunto(s)
Melanoma , Neoplasias Primarias Secundarias , Humanos , Tratamiento Basado en Trasplante de Células y Tejidos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Linfocitos Infiltrantes de Tumor , Melanoma/tratamiento farmacológico , Nivolumab , Melanoma Cutáneo MalignoRESUMEN
Tumor infiltrating lymphocytes (TIL) therapy was shown to provide durable objective response in patients with metastatic melanoma. As a fundamental first step to bring TIL therapy to clinical use, identification of patients whose tumors yield optimal numbers of reactive TIL is indispensable. We have previously shown that expansion of tumor reactive TIL from primary bladder tumors and lymph node metastases is feasible. Here, we performed TIL harvesting from additional surgical specimens (additional 31 primary tumors and 10 lymph nodes) to generate a heterogenous cohort of 53 patients with bladder cancer (BC) to evaluate the tumor characteristics that lead to tumor-reactive TIL expansion. Among a total of 53 patients, overall TIL growth from tumor samples were 37/53 (69.8%) and overall anti-tumor reactive TIL were 26/35 (74.3%). Mixed urothelial carcinoma is associated with higher anti-tumor reactivity of expanded TIL than pure urothelial carcinoma (89.5% vs. 56.3%, p=0.049). The anti-tumor reactivity of expanded TIL from primary tumors previously treated with BCG immunotherapy were lower (33.3% vs. 82.6%, p=0.027) although T-cell phenotype (CD3+, CD4+, CD8+, and CD56+) was similar regardless prior of BCG therapy. Addition of agonistic 4-1BB antibody in culture media with IL-2 improved the number of expanded TIL from primary tumors previously treated with BCG immunotherapy. There was no significant difference between basal and luminal subtype tumors in terms of viable and reactive TIL growth. Our study demonstrates that TIL expansion is feasible across all BC patients and BC subtypes, and we suggest that TIL therapy can be a reasonable treatment strategy for various manifestations of BC.
Asunto(s)
Vacunas contra el Cáncer/inmunología , Inmunoterapia Adoptiva/métodos , Linfocitos Infiltrantes de Tumor/fisiología , Neoplasias de la Vejiga Urinaria/inmunología , Urotelio/patología , Anciano , Proliferación Celular , Células Cultivadas , Estudios de Cohortes , Femenino , Humanos , Interleucina-2/metabolismo , Metástasis Linfática , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Mycobacterium bovis , Miembro 9 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/agonistas , Neoplasias de la Vejiga Urinaria/terapiaRESUMEN
Penile cancer is a rare but highly lethal cancer, and therapeutic options for patients presenting with lymph nodal disease are very limited. Adoptive cell therapy (ACT) using tumor-infiltrating lymphocytes (TIL) was shown to provide durable objective response in patients with metastatic melanoma and TIL have been expanded from solid tumors at rates between 70 and 90% depending on the specific diagnosis. We evaluated whether TIL could be expanded from surgical specimens of patients with penile cancer. Tumor samples from metastatic lymph nodes obtained at the time of inguinal lymph node dissection were collected, minced into fragments, placed in individual wells of a 24-well plate, and propagated in high dose IL-2 for four weeks. The phenotype of expanded TILs was assessed by flow cytometry and their anti-tumor reactivity was assessed by IFN-γ ELISA. TIL were expanded from 11 out of 12 (91.6%) samples of metastatic lymph nodes. Expanded TIL were predominantly CD3+ (mean 67.5%, SD 19.4%) with a mean of 46.8% CD8+ T cells (SD 21.1%). Five out of 11 samples (45.4%) from expanded TIL secreted IFN-γ in response to autologous tumor. TIL expansion and phenotype of expanded T cell lymphocytes were independent of previous HPV infection and treatment with neoadjuvant chemotherapy. This is the first report demonstrating successful expansion of tumor-reactive TIL from penile cancer patients, which support development of ACT strategies using TIL for the treatment of advanced and recurrent penile cancer.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Carcinoma de Células Escamosas/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Infecciones por Papillomavirus/inmunología , Neoplasias del Pene/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/virología , Humanos , Ganglios Linfáticos/inmunología , Metástasis Linfática/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante , Infecciones por Papillomavirus/terapia , Infecciones por Papillomavirus/virología , Neoplasias del Pene/terapia , Neoplasias del Pene/virologíaRESUMEN
BACKGROUND: Given the established links between an individual's behaviors and lifestyle factors and potentially adverse health outcomes, univariate or simple multivariate health metrics and scores have been developed to quantify general health at a given point in time and estimate risk of negative future outcomes. However, these health metrics may be challenging for widespread use and are unlikely to be successful at capturing the broader determinants of health in the general population. Hence, there is a need for a multidimensional yet widely employable and accessible way to obtain a comprehensive health metric. OBJECTIVE: The objective of the study was to develop and validate a novel, easily interpretable, points-based health score ("C-Score") derived from metrics measurable using smartphone components and iterations thereof that utilize statistical modeling and machine learning (ML) approaches. METHODS: A literature review was conducted to identify relevant predictor variables for inclusion in the first iteration of a points-based model. This was followed by a prospective cohort study in a UK Biobank population for the purposes of validating the C-Score and developing and comparatively validating variations of the score using statistical and ML models to assess the balance between expediency and ease of interpretability and model complexity. Primary and secondary outcome measures were discrimination of a points-based score for all-cause mortality within 10 years (Harrell c-statistic) and discrimination and calibration of Cox proportional hazards models and ML models that incorporate C-Score values (or raw data inputs) and other predictors to predict the risk of all-cause mortality within 10 years. RESULTS: The study cohort comprised 420,560 individuals. During a cohort follow-up of 4,526,452 person-years, there were 16,188 deaths from any cause (3.85%). The points-based model had good discrimination (c-statistic=0.66). There was a 31% relative reduction in risk of all-cause mortality per decile of increasing C-Score (hazard ratio of 0.69, 95% CI 0.663-0.675). A Cox model integrating age and C-Score had improved discrimination (8 percentage points; c-statistic=0.74) and good calibration. ML approaches did not offer improved discrimination over statistical modeling. CONCLUSIONS: The novel health metric ("C-Score") has good predictive capabilities for all-cause mortality within 10 years. Embedding the C-Score within a smartphone app may represent a useful tool for democratized, individualized health risk prediction. A simple Cox model using C-Score and age balances parsimony and accuracy of risk predictions and could be used to produce absolute risk estimations for app users.
Asunto(s)
Bancos de Muestras Biológicas , Aplicaciones Móviles , Estudios de Cohortes , Humanos , Estudios Prospectivos , Factores de Riesgo , Teléfono Inteligente , Reino Unido/epidemiologíaRESUMEN
Adoptive cell transfer (ACT) with tumor-infiltrating lymphocytes (TILs) can generate durable clinical responses in patients with metastatic melanoma and ongoing trials are evaluating efficacy in other advanced solid tumors. The aim of this study was to develop methods for the expansion of tumor-reactive TIL from resected soft tissue sarcoma to a degree required for the ACT. From 2015 to 2018, 70 patients were consented to an institutional review board-approved protocol, and fresh surgical specimens were taken directly from the operating room to the laboratory. Fragments of the tumor (1 mm3) or fresh tumor digest were placed in culture for a period of 4 weeks. Successfully propagated TIL from these cultures were collected and analyzed by flow cytometry. TIL were cocultured with autologous tumor and function was assessed by measurement of interferon-γ in the supernatant by enzyme-linked immunosorbent assay. Initial TIL cultures were further expanded using a rapid expansion protocol. Nearly all specimens generated an initial TIL culture (91% fragment method, 100% digest method). The phenotype of the TIL indicated a predominant CD3+ population after culture (43% fragment, 52% digest) and TIL were responsive to the autologous tumor (56% fragment, 40% digest). The cultured TIL expanded to a degree required for clinical use following rapid expansion protocol (median: 490-fold fragment, 403-fold digest). The data demonstrate the feasibility of TIL culture from fresh soft tissue sarcoma. The derived TIL have tumor-specific reactivity and can be expanded to clinically relevant numbers. An active ACT clinical trial using the methods described in this report is now approved for patients with metastatic soft tissue sarcoma.