Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Dairy Sci ; 105(12): 9623-9638, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36241431

RESUMEN

A simulation study was conducted to examine accuracy of estimating daily O2 consumption, CO2 and CH4 emissions, and heat production (HP) using a spot sampling technique and to determine optimal spot sampling frequency (FQ). Data were obtained from 3 experiments where daily O2 consumption, emissions of CO2 and CH4, and HP were measured using indirect calorimetry (respiration chamber or headbox system). Experiment 1 used 8 beef heifers (ad libitum feeding; gaseous exchanges measured every 30 min over 3 d in respiration chambers); Experiment 2 used 56 lactating Holstein-Friesian cows (restricted feeding; gaseous exchanges measured every 12 min over 3 d in respiration chambers); Experiment 3 used 12 lactating Jersey cows (ad libitum feeding; gaseous exchanges measured every hour for 1 d using headbox style chambers). Within experiment, averages of all measurements (FQALL) and averages of measurements selected at time points with 12, 8, 6, or 4 spot sampling FQ (i.e., sampling every 2, 3, 4, and 6 h in a 24-h cycle, respectively; FQ12, FQ8, FQ6, and FQ4, respectively) were compared. Within study a mixed model was used to compare gaseous exchanges and HP among FQALL, FQ12, FQ8, FQ6, and FQ4, and an interaction of dietary treatment by FQ was examined. A regression model was used to evaluate accuracy of spot sampling within study [i.e., FQALL (observed) vs. FQ12, FQ8, FQ6, or FQ4 (estimated)]. No interaction of diet by FQ was observed for any variables except for CH4 production in experiment 1. No FQ effect was observed for gaseous exchanges and HP except in experiment 2 where CO2 production was less (5,411 vs. 5,563 L/d) for FQ4 compared with FQALL, FQ12, and FQ8. A regression analysis between FQALL and each FQ within study showed that slopes and intercepts became farther from 1 and 0, respectively, for almost all variables as FQ decreased. Most variables for FQ12 and FQ8 had root mean square prediction error (RMSPE) less than 10% of the mean and concordance correlation coefficient (CCC) greater than 0.80, and RMSPE increased and CCC decreased as FQ decreased. When a regression analysis was conducted with combined data from the 3 experiments (mixed model with study as a random effect), results agreed with those from the analysis for the individual studies. Prediction errors increased and CCC decreased as FQ decreased. Generally, all the estimates from FQ12, FQ8, FQ6, and FQ4 had RMSPE less than 10% of the means and CCC greater than 0.90 except for FQ6 and FQ4 for O2 consumption and CH4 production. In conclusion, the spot sampling simulation with 3 indirect calorimetry experiments indicated that FQ of at least 8 samples (every 3 h in a 24-h cycle) was required to estimate daily O2 consumption, CO2 and CH4 production, and HP and to detect changes in those in response to dietary treatments. This sampling FQ may be considered when using techniques that measure spot gas exchanges such as the GreenFeed and face mask systems.


Asunto(s)
Dióxido de Carbono , Metano , Bovinos , Femenino , Animales , Dióxido de Carbono/análisis , Lactancia , Leche/química , Dieta/veterinaria , Consumo de Oxígeno , Termogénesis
2.
J Dairy Sci ; 104(9): 9645-9663, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34176624

RESUMEN

The objective of this study was to examine the effect of isonitrogenous substitution of solvent-extracted soybean meal (SBM) with solvent-extracted canola meal (CM) on enteric CH4 production, ruminal fermentation characteristics (including protozoa), digestion (in situ and apparent total-tract digestibility), N excretion, and milk production of dairy cows. For this purpose, 16 lactating Holstein cows, of which 12 were ruminally cannulated, were used in a replicated 4 × 4 Latin square (35-d periods; 14-d adaptation). The cows averaged (mean ± SD) 116 ± 23 d in milk, 692 ± 60 kg of body weight, and 47.5 ± 4.9 kg/d of milk production. The experimental treatments were control diet (no CM; 0%CM) and diets supplemented [dry matter (DM) basis] with 7.9% CM (8%CM), 15.8% CM (16%CM), or 23.7% CM (24%CM) on a DM basis. The forage:concentrate ratio was 52:48 (DM basis) and was similar among the experimental diets. Canola meal was included in the diet at the expense of SBM and soybean hulls, whereas the percentages of the other diet ingredients were the same. Intake of DM increased linearly, whereas apparent total-tract digestibility of DM, crude protein, neutral detergent fiber, and gross energy (GE) declined linearly as CM inclusion in the diet increased. Total volatile fatty acids concentration and butyrate molar proportion decreased linearly, whereas molar proportion of propionate increased linearly, and that of acetate was unaffected by CM inclusion in the diet. Ruminal ammonia concentration was not affected by inclusion of CM in the diet. Energy-corrected milk (ECM) yield increased linearly (up to 2.2 kg/d) with increasing CM percentage in the diet, whereas milk production efficiency averaged 1.63 kg of ECM/kg of DM intake and was unaffected by CM inclusion in the diet. Daily CH4 production decreased linearly with increasing CM percentage in the diet (489, 475, 463, and 461 g/d for 0%CM, 8%CM, 16%CM and 24%CM diets, respectively). As a consequence, CH4 emission intensity (g of CH4/kg of ECM) also declined linearly by up to 10% as the amount of CM increased in the diet. Methane production also decreased linearly when expressed relative to GE intake (5.7, 5.2, 5.1, and 4.9% for 0%CM, 8%CM, 16%CM and 24%CM diet, respectively). Quantity of manure N excretion was not affected by replacing SBM with CM; however, N excretion shifted from urine to feces as dietary percentage of CM increased, suggesting reduced potential for N volatilization. Results from this study show that replacing SBM with CM as a protein source in dairy cow diets reduced enteric CH4 emissions (g/d, % of GE intake, and adjusted for milk production) and increased milk production. The study indicates that CM can successfully, partially or fully, replace SBM in lactating dairy cow diets, with positive effects on animal productivity and the environment (i.e., less enteric CH4 emission and urinary N excreted). We conclude that compared with SBM, inclusion of CM meal in dairy cow diets can play a key role in reducing the environmental footprint of milk production.


Asunto(s)
Metano , Leche , Animales , Bovinos , Dieta/veterinaria , Suplementos Dietéticos , Digestión , Heces , Femenino , Lactancia , Nitrógeno , Rumen , Ensilaje/análisis , Zea mays
3.
J Dairy Sci ; 104(12): 12600-12615, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34419272

RESUMEN

The objective of this study was to investigate the effects of partial substitution of corn silage (CS) with sweet sorghum silage (SS) in the diets of lactating dairy cows on dry matter (DM) intake, milk yield and composition, blood biochemistry, and ruminal fermentation and microbial community. Thirty mid-lactation Holstein dairy cows [mean ± standard deviation; 639 ± 42.0 kg of body weight; 112 ± 24.0 d in milk (DIM)] were assigned to 3 groups (n = 10/treatment) by considering parity, milk yield, and DIM. The cows were fed ad libitum total mixed rations containing 55% forage and 45% concentrate, with only the proportion of CS and SS varying in 3 treatments (DM basis): SS0 (0% substitution of CS), 40% CS and 0% SS; SS25 (25% substitution of CS), 30% CS and 10% SS; and SS50 (50% substitution of CS), 20% CS and 20% SS. Dry matter intake and milk protein concentration tended to linearly decrease with increasing proportion of SS in the diet. Yields of milk (mean ± standard deviation, 30.9 ± 1.12 kg/d), 4% fat-corrected milk (30.0 ± 0.81 kg/d), energy-corrected milk, milk protein, lactose, and total solids, concentrations of milk fat, lactose, somatic cell counts, and milk efficiency did not differ among diets. The concentrations in blood of urea nitrogen, phosphorus, aspartate aminotransferase, and malondialdehyde linearly increased with increasing SS proportion. Blood IgA decreased with increasing SS substitution rate, but blood IgG and IgM were not different among diets. Ruminal pH did not differ among diets, whereas ruminal NH3-N concentration quadratically changed such that it was greater for SS50 than for SS0 and SS25. Molar proportions of propionate and acetate to propionate ratio were less for SS25 than for SS0. Although the diversity and general ruminal microbial community structure were not altered by partially replacing CS with SS, the relative abundances of predominant bacteria were affected by diets at the phylum and genus levels. Firmicutes and Bacteroidetes were dominant phyla in the ruminal bacterial community for all diets, and their relative abundance linearly decreased and increased, respectively, with increasing SS substitution rate. Prevotella_1 and Ruminococcaceae_NK4A214_group were detected as the most and the second most abundant genera, with their relative abundance linearly increased and decreased, respectively, with increasing SS substitution rate. The relative abundance of Fibrobacter linearly increased with increasing dietary SS proportion, with greater abundance observed for SS25 and SS50 than for SS0. These results suggest that substitution of CS with SS altered the relative abundances of some predominant bacteria; however, these changes had little effect on ruminal fermentation and milk yield. Under the current experimental conditions, substituting up to 50% of CS with SS had no negative effects on milk yield, indicating that SS can partially replace CS in the diets of high-producing lactating dairy cows without adding extra grain, when diets are fed for a short time. As the effects of substituting CS with SS depend upon the chemical composition and digestibility of these silages and the nutrient requirements of the cows, additional grain may be required in some cases to compensate for the lower starch content of SS.


Asunto(s)
Alimentación Animal , Microbiota , Ensilaje , Sorghum , Zea mays , Animales , Bovinos , Industria Lechera , Dieta/veterinaria , Digestión , Ingestión de Alimentos , Femenino , Fermentación , Lactancia , Rumen/metabolismo , Ensilaje/análisis
4.
J Dairy Sci ; 104(2): 1794-1810, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33309382

RESUMEN

Kernel processing and theoretical length of cut (TLOC) of whole-plant corn silage (WPCS) can affect feed intake, digestibility, and performance of dairy cows. The objective of this study was to evaluate for lactating dairy cows the effects of kernel processing and TLOC of WPCS with vitreous endosperm. The treatments were a pull-type forage harvester without kernel processor set for a 6-mm TLOC (PT6) and a self-propelled forage harvester with kernel processor set for a 6-mm TLOC (SP6), 12-mm TLOC (SP12), and 18-mm TLOC (SP18). Processing scores of the WPCS were 32.1% (PT6), 53.9% (SP6), 49.0% (SP12), and 40.1% (SP18). Twenty-four Holstein cows (139 ± 63 d in milk) were blocked and assigned to six 4 × 4 Latin squares with 24-d periods (18 d of adaptation). Diets were formulated to contain 48.5% WPCS, 15.5% citrus pulp, 15.0% dry ground corn, 9.5% soybean meal, 6.8% low rumen degradability soybean meal, 1.8% calcium soap of palm fatty acids (FA), 1.7% mineral and vitamin mix, and 1% urea (dry matter basis). Nutrient composition of the diets (% of dry matter) was 16.5% crude protein, 28.9% neutral detergent fiber, and 25.4% starch. Three orthogonal contrasts were used to compare treatments: effect of kernel processing (PT6 vs. SP6) and effect of TLOC (particle size; SP6 vs. SP12 and SP12 vs. SP18). Cows fed SP6 produced 1.2 kg/d greater milk yield with no changes in dry matter intake, resulting in greater feed efficiency compared with PT6. Cows fed SP6 also produced more milk protein (+36 g/d), lactose (+61 g/d), and total solids (+94 g/d) than cows fed PT6. The mechanism for increased yield of milk and milk components involved greater kernel fragmentation, starch digestibility, and glucose availability for lactose synthesis by the mammary gland. However, cows fed SP6 had lower chewing time and tended to have greater levels of serum amyloid A compared with PT6. Milk yield was similar for SP6 and SP12, but SP12 cows tended to have less serum amyloid A with greater chewing time. Cows fed SP18 had lower total-tract starch digestibility and tended to have lower plasma glucose and produce less milk compared with cows fed SP12. Compared with PT6, feeding SP6 raised linear odd-chain FA concentration in milk. Similarly, a reduction of these same FA occurred for SP12 compared with SP6. Cows fed SP6 had greater proportion of milk C14:1 and C16:1 compared with PT6 and SP12. Lesser trans C18:1 followed by greater C18:0 concentrations were observed for SP12 and PT6 compared with SP6, which is an indication of more complete biohydrogenation in the rumen. Under the conditions of this study, the use of a self-propelled forage harvester with kernel processing set for a 12-mm TLOC is recommended for WPCS from hybrids with vitreous endosperm.


Asunto(s)
Bovinos/fisiología , Endospermo/metabolismo , Manipulación de Alimentos/métodos , Ensilaje/análisis , Zea mays/metabolismo , Animales , Fibras de la Dieta/metabolismo , Ingestión de Alimentos , Femenino , Lactancia/fisiología , Lactosa/metabolismo , Leche/química , Leche/metabolismo , Proteínas de la Leche/metabolismo , Tamaño de la Partícula , Rumen/metabolismo , Almidón/metabolismo
5.
J Dairy Sci ; 103(9): 8034-8047, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32684450

RESUMEN

Sugarcane bagasse (SB) is a low-quality roughage source that is often plentiful during times of forage shortage. It is generally less costly compared with other conventional sources of forage. We hypothesized that SB could be used as a source of roughage for dairy cattle by replacing wheat straw (WS), another low-quality forage. This study evaluated the effects of replacing WS with SB in diets offered to mid-lactation dairy cows on milk production and fatty acid profile, intake, digestibility, chewing activity, and ruminal fermentation. Nine multiparous Holstein cows averaging (mean ± standard deviation) 105 ± 12 d in milk, 42.1 ± 2.9 kg of milk/d, and 617 ± 59 kg of body weight were used in a replicated 3 × 3 Latin square with 21-d periods. Treatments were (% of dietary dry matter, DM): (1) 0SB, diet containing 0% SB and 27% WS, (2) 9SB, diet containing 9% SB and 18% WS, and (3) 18SB, diet containing 18% SB and 9% WS. Sugarcane bagasse had greater organic matter (OM; 94.1 vs. 85.1% of DM), neutral detergent fiber (NDF; 86.2 vs. 76.4% of DM), acid detergent fiber (ADF; 62.9 vs. 45.2% of DM), and lignin (19.9 vs. 10.3% of DM) concentration, but less crude protein (CP; 2.63 vs. 3.72% of DM) concentration than WS. Sugarcane bagasse also had greater physically effective NDF (total dietary NDF multiplied by % of TMR on the 8-mm + 19-mm sieves, peNDF8; 63.2 vs. 40.6% of DM) and undegraded NDF after 288 h of incubation (uNDF288; 35.5 vs. 21.2% of DM) contents than WS. The undegraded NDF after 30 h of incubation (uNDF30) content was similar for all diets; however, peNDF8 concentration and proportion of long particles (retained on a 19-mm sieve) increased linearly as SB inclusion in the diets increased. Cows increasingly sorted against long particles as SB replaced WS. Intakes of DM (26.53 kg/d) and NDF (8.58 kg/d) did not differ among the treatments, but intakes of OM and CP decreased, whereas ADF and uNDF288 intakes increased with SB inclusion level. Total-tract digestibilities of OM, CP, and NDF decreased linearly as SB replaced WS. Milk yield (37.0 kg/d), energy-corrected milk yield (ECM; 38.2 kg/d), feed efficiency (1.44 kg ECM yield/kg DM intake), and milk composition (fat, 3.89%; true protein, 2.90%) did not differ among diets. Increasing SB concentration of the diet linearly increased rumination time, but ruminal pH (ruminocentesis, 4 h after feeding) decreased. Total volatile fatty acid concentration increased linearly, whereas acetate:propionate decreased linearly, as SB replaced WS. The results indicate that replacement of WS with increasing levels of SB in low-forage diets with similar uNDF30 concentrations did not affect performance of mid-lactation dairy cows. We conclude that SB can be used as a fiber source in diets fed to dairy cows in mid-lactation; however, the decrease in total-tract digestibility of diets may decrease lactational performance when fed to high-producing dairy cows.


Asunto(s)
Celulosa/metabolismo , Dieta/veterinaria , Digestión/fisiología , Lactancia/fisiología , Masticación/fisiología , Animales , Bovinos , Fibras de la Dieta/metabolismo , Ácidos Grasos Volátiles/metabolismo , Femenino , Fermentación , Leche/química , Rumen/metabolismo , Saccharum/metabolismo , Triticum/metabolismo
6.
J Dairy Sci ; 103(5): 4355-4366, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32113766

RESUMEN

A study was conducted to evaluate the effects of forage-to-concentrate (F:C) ratio and forage particle length (FPL) on intake, duodenal flow, and digestibility of individual AA in the intestine of lactating dairy cows. The experiment was designed as a 4 × 4 Latin square with a 2 × 2 factorial arrangement of treatments using 4 lactating dairy cows (parity 2) with ruminal and duodenal cannulas. Low (35:65) and high (60:40) F:C ratios (dry matter basis) were combined with 2 FPL of alfalfa silage (short vs. long; 7.9 vs. 19.1 mm). Few interactions between F:C and FPL for duodenal flow and intestinal digestibility of AA occurred, but interactions were detected for intakes of several AA. Intake of essential AA and nonessential AA decreased with increasing F:C, and the intake of several individual AA increased or decreased with increasing FPL. Increasing F:C decreased duodenal flows of essential AA, nonessential AA, and microbial AA due to consistent decreased flows of most individual AA (except Glu). Degradability of most individual AA in the rumen was not affected by F:C ratio or FPL except that the degradability of His was greater with high than low F:C diets, and the degradability of Ser was greater with long versus short FPL diets. However, the degradability of individual AA within diet varied considerably. Overall, F:C ratio and FPL did not affect intestinal digestibility of AA and rumen undegradable protein AA, whereas the digestibility of individual AA in the intestine varied considerably regardless of dietary treatment. These results indicate that increasing F:C ratio decreased AA supply due to decreased flow of AA to the duodenum but altering FPL did not affect AA supply. The results also revealed the necessity to consider both the flows and digestibility of individual AA when optimizing ration formulation to meet AA requirements of dairy cows.


Asunto(s)
Aminoácidos/metabolismo , Alimentación Animal/análisis , Bovinos/fisiología , Dieta/veterinaria , Digestión , Intestinos/fisiología , Animales , Bovinos/microbiología , Duodeno/fisiología , Femenino
7.
J Dairy Sci ; 103(4): 3191-3203, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32008785

RESUMEN

Steam-flaked corn (SFC) and ground corn (GC) of different particle sizes were evaluated for their effects on dry matter intake (DMI), milk yield and components, chewing activity, ration sorting, ruminal fermentation, and digestibility in lactating dairy cows. Eight multiparous Holstein cows in mid-lactation (46.6 ± 3.5 kg/d milk production and 101 ± 10 d in milk) were used in a double 4 × 4 Latin square design with 21-d periods. Cows were fed diets (dry matter basis) containing 36.2% forage (alfalfa hay and corn silage), 37.4% corn grain, and 26.4% other ingredients. The corn grain was ground (coarse: 1.08 mm; medium: 0.84 mm; and fine: 0.73 mm) or steam-flaked (SFC; density = 0.40 kg/L). The dry matter proportion retained on an 8-mm sieve was greater for the SFC diet than for the GC diets. There were no treatment effects on DMI, milk yield, fat-corrected milk, energy-corrected milk, fat or lactose yield, protein or lactose content, or milk urea nitrogen concentration. However, digestibility of dry matter and organic matter were greater for fine GC and SFC than the other diets. In addition, cows fed SFC had lower total-tract starch digestibility than cows fed GC diets. Cows fed SFC tended to have lower propionate proportion (22.8 vs. 27.1 mM) and total volatile fatty acid concentration (88.6 vs. 99.8 mM) in ruminal fluid than those fed GC diets. Acetate and butyrate concentration, acetate to propionate ratio, and ruminal concentration of ammonia-nitrogen were not affected by treatments. Ruminal pH (6.46 vs. 6.01) as well as milk fat content (2.75 vs. 2.59%) and efficiencies (fat-corrected milk/DMI and energy-corrected milk/DMI) were greater for SFC than GC, regardless of its particle size. Milk fat content tended to increase linearly with increasing particle size of GC. Eating activity (min/d) tended to be less for SFC compared with GC, but rumination activity (min/d) and total chewing activity (min/d) were not affected by processing or particle size. The results of study indicate that, compared with GC, steam flaking of corn with 400 g/L density increased milk fat content and efficiency of high-producing dairy cows without any negative effect on milk yield. For GC, milk fat content tended to linearly increase and starch digestibility decreased linearly with increasing particle size.


Asunto(s)
Alimentación Animal , Bovinos , Conducta Alimentaria , Zea mays , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Femenino , Lactancia , Lactosa/análisis , Leche , Tamaño de la Partícula , Rumen/metabolismo , Ensilaje , Almidón/metabolismo , Zea mays/química
8.
J Dairy Sci ; 102(1): 672-677, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30343904

RESUMEN

Recent studies report considerable variation in ruminal pH for lactating dairy cows even when fed the same diet. We hypothesized that blood metabolites would be indicators of low ruminal pH, and hence could be used as predictors to help manage this variability. The objective of the study was to determine whether blood metabolite concentrations, body reserves, and feed efficiency were associated with ruminal pH in high-producing dairy cows fed a high-concentrate diet. Seventy-eight individually fed lactating dairy cows (days in milk = 103 ± 27; body weight = 638 ± 77 kg at the start; mean ± SD) were fed a diet consisting of 35% forage and 65% concentrate (dry matter basis). Cows were adapted for 14 d and then were sampled for 10 d. Ruminal pH was measured by rumenocentesis for all cows at the end of the study 4 h after feeding, and reticular pH was measured on a subsample of 14 cows via indwelling sensors for 5 consecutive days. Cows were classified according to rumenocentesis pH as high (pH ≥ 6.0; n = 26), medium (5.8 ≤ pH < 6; n = 21), and low (pH < 5.8; n = 31). Cows were also classified according to reticular pH as high if pH <5.8 persisted <330 min/d (an average of 78 min/d; n = 5) or low if duration of pH <5.8 was ≥330 min/d (an average of 920 min/d; n = 9). The classification based on rumenocentesis pH revealed that serum activity of aspartate aminotransferase (AST) was greater in cows with low ruminal pH (70.7 U/L) than cows with high (56.6 U/L) and medium (59.9 U/L) ruminal pH. Also, the blood urea nitrogen concentration was greater in cows with low ruminal pH (13.6 mg/dL) than cows with medium (12.2 mg/dL) and high (12.5 mg/dL) ruminal pH. Blood albumin concentration was greater for cows with low ruminal pH than for cows with medium and high ruminal pH. The classification based on reticular pH also resulted in a trend of greater AST activity and greater blood urea nitrogen concentration in the blood of cows with low pH. Regression analysis showed high serum concentration of AST was associated with high valerate concentration in ruminal fluid (R2 = 0.14), low rumenocentesis pH (R2 = 0.10), and low milk fat percentage (R2 = 0.06). Glucose, triglyceride, cholesterol, globulin, alkaline phosphates, and serum amyloid A did not differ among the different ruminal pH classes. Low pH cows (reticular and ruminal) had less backfat thickness measured via ultrasound, and cows with low ruminal pH tended to have greater milk:feed ratio. Results indicated that cows that differ in ruminal pH also had different concentrations of blood metabolites and backfat thickness, and AST activity in blood may be a plausible indicator of ruminal pH in dairy cows. Further studies on the applicability of AST in blood as a biomarker for detecting low ruminal pH in dairy cows are warranted.


Asunto(s)
Bovinos/fisiología , Dieta/veterinaria , Lactancia/fisiología , Rumen/química , Alimentación Animal/análisis , Animales , Aspartato Aminotransferasas/sangre , Nitrógeno de la Urea Sanguínea , Líquidos Corporales/química , Enfermedades de los Bovinos/metabolismo , Femenino , Concentración de Iones de Hidrógeno , Leche/química , Ácidos Pentanoicos/análisis , Rumen/metabolismo , Albúmina Sérica Bovina/análisis
9.
J Dairy Sci ; 102(12): 10903-10915, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31548057

RESUMEN

This study evaluated the effects of feeding diets that were formulated to contain similar proportions of undigested neutral detergent fiber (uNDF) from forage, with wheat straw (WS) substituted for corn silage (CS), alfalfa hay (AH), or both. The diets were fed to lactating dairy cows and intake, digestibility, blood metabolites, and milk production were examined. Thirty-two multiparous Holstein cows (body weight = 642 ± 50 kg; days in milk = 78 ± 11 d; milk production = 56 ± 6 kg/d; mean ± standard deviation) were used in a randomized block design with 6-wk periods after a 10-d covariate period. Each period consisted of 14 d of adaptation followed by 28 d of data collection. The control diet contained CS and AH as forage sources (CSAH) with 17% of dietary dry matter as uNDF after 30 h of incubation (uNDF30). Wheat straw was substituted for AH (WSCS), CS (WSAH), or both (WSCSAH) on an uNDF30 basis, and beet pulp was used to obtain similar concentrations of NDF digestibility after 30 h of incubation (NDFD30 = 44.5% of NDF) across all diets. The 4 diets also contained similar concentrations of net energy for lactation and metabolizable protein. Dry matter intake was greatest for WSCS (27.8 kg/d), followed by CSAH (25.7 kg/d), WSCSAH (25.2 kg/d), and WSAH (24.2 kg/d). However, yields of milk, 3.5% fat-corrected milk (FCM), and energy-corrected milk did not differ, resulting in higher FCM efficiency (kg of FCM yield/kg of dry matter intake) for WSAH (1.83) and WSCSAH (1.79), followed by CSAH (1.69) and WSCS (1.64). Milk protein percentage was greater for CSAH (2.84%) and WSCS (2.83%) than for WSAH (2.78%), and WSCSAH (2.81%) was intermediate. The opposite trend was observed for milk urea nitrogen, which was lower for CSAH (15.8 mg/dL), WSCS (15.8 mg/dL), and WSCSAH (17.0 mg/dL) than for WSAH (20 mg/dL). Total-tract NDF digestibility and ruminal pH were greater for diets containing WS than the diet without WS (CSAH), but digestibility of other nutrients was not affected by dietary treatments. Cows fed WSAH had less body reserves (body weight change = -13.5 kg/period) than the cows fed the other diets, whereas energy balance was greatest for those fed WSCS. The results showed that feeding high-producing dairy cows diets containing different forage sources but formulated to supply similar concentrations of uNDF30 while maintaining NDFD30, net energy for lactation, and metabolizable protein constant did not influence milk production. However, a combination of WS and CS (WSCS diet) compared with a diet with CS and AH improved feed intake, ruminal pH, total-tract NDF digestibility, and energy balance of dairy cows.


Asunto(s)
Alimentación Animal , Bovinos , Fibras de la Dieta , Medicago sativa , Ensilaje , Triticum , Zea mays , Animales , Beta vulgaris , Peso Corporal , Dieta/veterinaria , Digestión , Femenino , Fermentación , Lactancia , Leche/química , Proteínas de la Leche/análisis , Rumen/metabolismo
10.
J Dairy Sci ; 102(3): 2714-2723, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30660414

RESUMEN

Diets that contain high proportions of either wheat or supplementary fat have been individually reported to reduce enteric methane production. The objective of this research was to determine the effect of dietary fat supplementation on methane emissions and milk yield from cows fed diets containing either corn or wheat grains. It was hypothesized that cows fed a diet containing wheat would produce less methane and have lower methane yield (methane per kg of dry matter intake; MY) than cows fed a diet containing corn and that methane mitigation from fat supplementation would occur irrespective of the type of grain in the basal diet. The experiment involved 32 Holstein-Friesian dairy cows allocated to 1 of 4 treatment groups (n = 8) and individually fed different diets restricted to approximately 90% of their mean ad libitum intake measured during a covariate period. All animals were offered 11.5 kg of dry matter/d of alfalfa hay, 1.8 kg of dry matter/d of solvent-extracted canola meal, and 1 of 4 dietary supplements. Dietary supplements were 8 kg of dry matter/d of either corn or wheat, or these same treatments with the addition of 0.8 kg of canola oil. In this 5-wk experiment, d 1 to 7 served as the covariate period, d 8 to 14 as the transition period, d 15 to 28 as the adaptation period, and d 29 to 35 as the experimental period. Cows were fed their full treatment diets from d 15 to 35 during which time milk production and feed intake were measured daily. During d 29 to 35, methane production was measured for individual cows daily using the sulfur hexafluoride tracer method. The resulting averages for milk production and feed intake were analyzed by analysis of covariance with factorial grain by fat as treatment structure, animal as the unit within blocks, and the corresponding milk production or feed intake covariate averages as principal covariate. Data on milk fatty acids, ruminal fluid data on pH, ammonia, volatile fatty acids, protozoa, and methane were analyzed by ANOVA using the same treatment and blocking structures excluding the principal covariate. Cows fed a diet containing wheat had greater MY than cows fed a diet containing corn. Irrespective of the type of grain in the diet, increasing the fat concentration from 2 to 6% dry matter reduced MY. It is concluded that the grain component in the basal diet does not affect the mitigating effects of dietary fat supplements on MY.


Asunto(s)
Bovinos , Grasas de la Dieta/farmacología , Suplementos Dietéticos , Metano/metabolismo , Triticum , Zea mays , Animales , Industria Lechera , Dieta/veterinaria , Grano Comestible , Ácidos Grasos/análisis , Femenino , Lactancia , Leche/química , Poaceae
11.
J Dairy Sci ; 101(6): 4762-4784, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29627250

RESUMEN

Many early studies laid the foundation for our understanding of the mechanics of chewing, the physiological role of chewing for the cow, and how chewing behavior is affected by dietary characteristics. However, the dairy cow has changed significantly over the past decades, as have the types of diets fed and the production systems used. The plethora of literature published in recent years provides new insights on eating and ruminating activity of dairy cows. Lactating dairy cows spend about 4.5 h/d eating (range: 2.4-8.5 h/d) and 7 h/d ruminating (range: 2.5-10.5 h/d), with a maximum total chewing time of 16 h/d. Chewing time is affected by many factors, most importantly whether access to feed is restricted, intake of neutral detergent fiber from forages, and mean particle size of the diet. Feed restriction and long particles (≥19 mm) have a greater effect on eating time, whereas intake of forage neutral detergent fiber and medium particles (4-19 mm) affects rumination time. It is well entrenched in the literature that promoting chewing increases salivary secretion of dairy cows, which helps reduce the risk of acidosis. However, the net effect of a change in chewing time on rumen buffing is likely rather small; therefore, acidosis prevention strategies need to be broad. Damage to plant tissues during mastication creates sites that provide access to fungi, adhesion of bacteria, and formation of biofilms that progressively degrade carbohydrates. Rumination and eating are the main ways in which feed is reduced in particle size. Contractions of the rumen increase during eating and ruminating activity and help move small particles to the escapable pool and into the omasum. Use of recently developed low-cost sensors that monitor chewing activity of dairy cows in commercial facilities can provide information that is helpful in management decisions, especially when combined with other criteria. Although accuracy and precision can be somewhat variable depending on sensor and conditions of use, relative changes in cow behavior, such as a marked decrease in rumination time of a cow or sustained low rumination time compared with a contemporary group of cows, can be used to help detect estrus, parturition, and some illnesses. This review provides a comprehensive understanding of the dietary, animal, and management factors that affect eating and ruminating behavior in dairy cows and presents an overview of the physiological importance of chewing with emphasis on recent developments and practical implications for feeding and managing the modern housed dairy cow.


Asunto(s)
Bovinos/fisiología , Rumen/fisiología , Alimentación Animal/análisis , Animales , Digestión , Ingestión de Alimentos , Femenino , Lactancia
12.
J Dairy Sci ; 101(8): 7117-7132, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29729908

RESUMEN

Short-term studies have shown that feeding dairy cows diets containing a high proportion (>40%) of wheat may result in reduced milk fat concentration and reduced CH4 emissions (g of CH4/cow per d), but no long-term studies have been done on these responses. This study compared the milk production and CH4 responses when 24 dairy cows were fed diets containing high proportions of either wheat or corn over 16 wk. Cows were assigned to 2 groups and offered a diet (CRN) containing 10.0 kg of dry matter/d of crushed corn grain, 1.8 kg of dry matter/d of canola meal, 0.2 kg of dry matter/d of minerals, and 11.0 kg of dry matter/d of chopped alfalfa hay or a similar diet (WHT) in which wheat replaced the corn. Dry matter intake and milk yields of individual cows were measured daily. Methane emissions from individual cows were measured using controlled climate respiration chambers over 2 consecutive days during each of wk 4, 10, and 16. Milk composition was measured on the 2 d when cows were in chambers during wk 4, 10, and 16. Over the 16-wk experimental period, total dry matter intake remained relatively constant and similar for the 2 dietary treatment groups. At wk 4, CH4 emission, CH4 yield (g of CH4/kg of dry matter intake), milk fat yield, and milk fat concentration were substantially less in cows fed the WHT diet compared with the same metrics in cows fed the CRN diet; but these differences were not apparent at wk 10 and 16. The responses over time in these metrics were not similar in all cows. In 4 cows fed the WHT diet, CH4 yield, milk fat concentration, and milk fat yield remained relatively constant from wk 4 to 16, whereas for 5 fed the WHT diet, their CH4 emissions, milk fat yields, and milk fat concentrations almost doubled between wk 4 and 16. In the short term (4 wk), the inclusion of approximately 45% wheat instead of corn in the diet of cows resulted in reductions of 39% in CH4 yield, 35% in milk fat concentration, and 40% in milk fat yield. However, these reductions did not persist to wk 10 or beyond. Our data indicate that cows do not all respond in the same way with some "adaptive" cows showing a marked increase in CH4 yield, milk fat concentration, and milk fat yield after wk 4, whereas in other "nonadaptive" cows, these metrics were persistently inhibited to 16 wk. This research shows that short-term studies on dietary interventions to mitigate enteric CH4 emissions may not always predict the long-term effects of such interventions.


Asunto(s)
Bovinos/metabolismo , Metano/biosíntesis , Leche/química , Triticum , Animales , Dieta , Femenino , Lactancia , Rumen/metabolismo , Zea mays
13.
J Appl Microbiol ; 122(6): 1483-1496, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28317285

RESUMEN

AIMS: To characterize the changes in the relative population size (RPS) of select ruminal bacteria and rumen fermentation variables in beef heifers supplemented with a strain of Saccharomyces cerevisiae as viable active dried (ADY) or killed dried (KDY) yeast following an induced episode of ruminal acidosis. METHODS AND RESULTS: Six ruminally cannulated beef heifers fed a diet consisting of 50% forage and 50% grain (dry matter basis) were used in a replicated 3 × 3 Latin square design with three 28-day periods. Treatments were: (i) control (CTRL; no yeast); (ii) ADY (4 g day-1 providing 1010  CFU per g; AB Vista, UK); and (iii) KDY (4 g day-1 autoclaved ADY). The acidosis challenge was induced on day 22 and rumen samples were collected on day 15 (baseline; BASE), day 22 (challenge day; CHAL), and on day 29 (168th hour post acid challenge or recovery, REC) of each period. Over the study, duration of pH <5·8 (indicative of subacute ruminal acidosis) was less for ADY and KDY than CTRL, with ADY less than KDY. No treatment effects were observed on relative abundance of ruminal bacteria, but the day effect was significant. The RPS of lactate producers and utilizers was greater while RPS of fibrolytic bacteria was lower during CHAL than BASE and REC. Yeast supplementation, irrespective of its viability, showed beneficial effects on ruminal pH variables in animals more susceptible to acidosis. CONCLUSIONS: Rumen microbial population was altered with the induction of severe acidosis. Most of the changes reverted back to baseline values during the recovery phase. Yeast supplementation reduced subacute rumen acidosis in the most susceptible cattle, but failed to attenuate severe acidosis induced by a grain challenge. SIGNIFICANCE AND IMPACT OF THE STUDY: The study provided valuable insight into the mechanism by which acidosis affects cattle performance. Individual animal variation in ruminal fermentation partly explained the variability in response to yeast supplementation in the study.


Asunto(s)
Acidosis/veterinaria , Rumen/microbiología , Acidosis/dietoterapia , Alimentación Animal/microbiología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bovinos , Enfermedades de los Bovinos/dietoterapia , Dieta/veterinaria , Suplementos Dietéticos , Femenino , Fermentación , Concentración de Iones de Hidrógeno , Levadura Seca
14.
J Dairy Sci ; 100(9): 7139-7153, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28711244

RESUMEN

Wheat is the most common concentrate fed to dairy cows in Australia, but few studies have examined the effects of wheat feeding on enteric methane emissions, and no studies have compared the relative potencies of wheat, corn, and barley for their effects on enteric methane production. In this 35-d experiment, 32 Holstein dairy cows were offered 1 of 4 diets: a corn diet (CRN) of 10.0 kg of dry matter (DM)/d of single-rolled corn grain, 1.8 kg of DM/d of canola meal, 0.2 kg of DM/d of minerals, and 11.0 kg of DM/d of chopped alfalfa hay; a wheat diet (WHT) similar to the CRN diet but with the corn replaced by single-rolled wheat; a barley diet (SRB) similar to the CRN diet but with the corn replaced by single-rolled barley; and a barley diet (DRB) similar to the CRN diet but with the corn replaced by double-rolled barley. Individual cow feed intakes, milk yields, and milk compositions were measured daily but reported for the last 5 d of the experiment. During the last 5 d of the experiment, individual cow methane emissions were measured using the SF6 tracer technique for all cows, and ruminal fluid pH was continuously measured by intraruminal sensors for 3 cows in each treatment group. The average DM intake of cows offered the CRN, WHT, SRB, and DRB diets was 22.2, 21.1, 22.6, and 22.6 kg/d. The mean energy-corrected milk of cows fed the WHT diet was less than that of cows fed the other diets. This occurred because the milk fat percentage of cows fed the WHT diet was significantly less than that of cows fed the other diets. The mean methane emissions and methane yields of cows fed the WHT diet were also significantly less than those of cows fed the other diets. Indeed, the CRN, SRB, and DRB diets were associated with 49, 73, and 78% greater methane emissions, respectively, compared with the emissions from the WHT diet. Methane yield was found to be most strongly related to the minimum daily ruminal fluid pH. This study showed that although the inclusion of wheat in the diet of dairy cows could be an effective strategy for substantially reducing their methane emissions, it also reduced their milk fat percentage and production of milk fat and energy-corrected milk.


Asunto(s)
Gases/metabolismo , Hordeum/metabolismo , Metano/metabolismo , Triticum/metabolismo , Zea mays/metabolismo , Animales , Australia , Bovinos , Dieta , Femenino , Fermentación , Lactancia , Leche/metabolismo , Rumen/metabolismo
15.
J Dairy Sci ; 99(11): 8847-8857, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27592434

RESUMEN

The effects of substituting increasing concentrations of dried, shredded beet pulp for corn silage on dry matter intake, nutrient digestibility, rumen fermentation, blood metabolites, and milk production of lactating dairy cows was evaluated under conditions of ambient heat stress. Four multiparous (126±13d in milk) and 4 primiparous (121±11d in milk) Holstein cows were used in a 4×4 Latin square design experiment with 4 periods of 21d. Each period had 14d of adaptation and 7d of sampling, and parity was the square. Dietary treatments were (dry matter basis): 16% of dietary dry matter as corn silage without BP (0BP, control diet); 8% corn silage and 8% beet pulp (8BP); 4% corn silage and 12% beet pulp (12BP); and 0% corn silage and 16% beet pulp (16BP). Alfalfa hay was included in all diets (24% dietary dry matter). Dietary concentrations of forage neutral detergent fiber and nonfiber carbohydrates were 21.3 and 39.2% (0BP), 16.5 and 40.9% (8BP), 14.1 and 42.2% (12BP), and 11.7 and 43.4% (16BP), respectively (dry matter basis). The ambient temperature-humidity index indicated that the cows were in heat stress for almost the entire duration of the study. Dry matter intake and nutrient digestibilities were similar across treatments and between multi- and primiparous cows. Mean rumen pH tended to decrease with increasing proportions of beet pulp in the diet. Also, increasing proportions of beet pulp in the diet linearly decreased acetate and butyrate concentrations in the rumen and increased propionate concentrations, leading to a linear decrease in acetate:propionate ratio. Milk yield linearly increased (38.5, 39.3, 40.9, and 39.6kg/d for 0BP, 8BP, 12BP, and 16BP, respectively), but fat content linearly decreased (3.46, 3.47, 3.27, and 2.99), such that we observed no effect on fat-corrected milk. Substituting beet pulp for corn silage increased the neutral detergent insoluble crude protein content of the diet, leading to a decrease in rumen concentration of ammonia-nitrogen and milk concentration of urea, corresponding to an increase in percentage of protein in milk. Compared with multiparous cows, primiparous cows had greater rumen pH, metabolite concentrations in plasma (glucose, cholesterol, urea nitrogen, total protein, and globulins), milk production, and concentrations of milk components. Substituting beet pulp for corn silage at up to 12% of dietary dry matter can be beneficial during heat stress conditions.


Asunto(s)
Ensilaje , Zea mays/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Beta vulgaris , Bovinos , Dieta/veterinaria , Fibras de la Dieta/metabolismo , Digestión , Femenino , Fermentación , Calor , Lactancia/efectos de los fármacos , Leche/química , Rumen/metabolismo
16.
J Dairy Sci ; 99(5): 3486-3496, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26947292

RESUMEN

The objective of this experiment was to examine effects of adding 2 exogenous fibrolytic enzymes (EFE) to the total mixed ration (TMR) on the performance of lactating dairy cows (experiment 1) and the kinetics of ruminal degradation of the diet (experiment 2). Twelve EFE had been screened in a series of in vitro assays that identified the most potent EFE and their optimal doses for increasing the digestibility of bermudagrass. In experiment 1, 66 Holstein cows (21±5 d in milk) were grouped by previous milk production and parity (45 multiparous and 21 primiparous) and assigned randomly to 1 of the following 3 treatments: (1) control (CON, untreated), (2) Xylanase Plus [2A, 1mL/kg of TMR dry matter (DM); Dyadic International, Jupiter, FL], and (3) a 75:25 (vol/vol) mixture of Cellulase Plus and Xylanase Plus EFE (3A, 3.4mL/kg of TMR DM; Dyadic International). The EFE were sprayed twice daily onto a TMR (10% bermudagrass silage, 35% corn silage, 5% alfalfa-orchardgrass hay mixture, and 50% concentrates; DM basis) and fed for a 14-d training and covariate period and a 70-d measurement period. Experiment 2 aimed to examine the in situ DM ruminal degradability and ruminal fermentation measurements of the diets fed in experiment 1. Three ruminally fistulated lactating Holstein cows were assigned to the diets. The experiment had a 3×3 Latin square design with 23-d periods. In experiment 1, application of 2A increased intakes (kg/d) of DM (23.5 vs. 22.6), organic matter (21.9 vs. 20.9), and crude protein (3.9 vs. 3.7) and tended to increase yields (kg/d) of fat-corrected milk (41.8 vs. 40.7) and milk fat (1.48 vs. 1.44). In particular, 2A increased milk yield (kg/d) during wk 3 (41.2 vs. 39.8, tendency), 6 (41.9 vs. 40.1), and 7 (42.1 vs. 40.4), whereas 3A increased milk yield (kg/d) during wk 6 (41.5 vs. 40.1, tendency), 8 (41.8 vs. 40.0), and 9 (40.9 vs. 39.5, tendency). In experiment 2, EFE treatment did not affect ruminal DM degradation kinetics or ruminal pH, ammonia-N, and volatile fatty acid concentration. Application of 2A to the bermudagrass-based TMR increased DM intake and milk production, implying that this EFE could be used to increase the performance of lactating dairy cows fed diets containing up to 10% bermudagrass.


Asunto(s)
Bovinos/fisiología , Celulasa/metabolismo , Digestión/efectos de los fármacos , Endo-1,4-beta Xilanasas/metabolismo , Conducta Alimentaria/efectos de los fármacos , Leche/metabolismo , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Animales , Celulasa/administración & dosificación , Dieta/veterinaria , Suplementos Dietéticos/análisis , Endo-1,4-beta Xilanasas/administración & dosificación , Femenino , Fermentación/efectos de los fármacos , Cinética , Lactancia/efectos de los fármacos , Distribución Aleatoria , Rumen/efectos de los fármacos , Rumen/metabolismo
17.
J Environ Qual ; 45(4): 1178-85, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27380065

RESUMEN

Ammonia (NH) volatized from livestock manure is affiliated with ecosystem and human health concerns and decreased fertilizer value of manure and can also be an indirect source of greenhouse gas. Beef cattle feedlots, where thousands of cattle are grouped together to enable greater control of feed management and production, are hot spots in the agricultural landscape for NH emissions. Quantifying the feedlot NH emissions is a difficult task, partly due to the reactive nature of NH within and surrounding the feedlot. Our study used a dispersion model coupled to field measurements to derive NH emissions from a feedlot in southern Alberta, Canada. The average feedlot NH emission was 50 µg m s (85 g animal d), which coincides with a low dietary crude protein content. At a location 165 m east of the feedlot, a flux gradient (FG) technique measured an average NH deposition of 12.0 µg m s (west wind) and 5.3 µg m s (east wind). Ammonia FG emission averaged 1 µg m s with east winds, whereas no NH emission was found for west wind. Using soil-captured NH, there was a decrease in deposition with distance from the feedlot (50% over 200 m). Collectively, the results of this study provide insight into the dynamics of NH in the agricultural landscape and illustrate the need for NH mitigation to improve the environmental and economic sustainability of cattle feedlots.


Asunto(s)
Amoníaco/análisis , Crianza de Animales Domésticos , Animales , Canadá , Bovinos , Estiércol , Carne Roja
18.
J Dairy Sci ; 98(2): 1214-24, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25483202

RESUMEN

The aim of this study was to determine the effects of the use of a fibrolytic enzyme product, applied at ensiling either alone or in combination with a ferulic acid esterase-producing bacterial additive, on the chemical composition, conservation characteristics, and in vitro degradability of corn silage harvested at either conventional or high cutting height. Triplicate samples of corn were harvested to leave stubble of either a conventional (15cm; NC) or high (45cm; HC) height above ground. Sub-samples of chopped herbage were ensiled untreated or with a fibrolytic enzyme product containing xylanases and cellulases applied either alone (ENZ) or in combination with a ferulic acid esterase-producing silage inoculant (ENZ+FAEI). The fibrolytic enzyme treatment was applied at 2mL of enzyme product/kg of herbage dry matter (DM), and the inoculant was applied at 1.3×10(5) cfu/g of fresh herbage. Samples were packed into laboratory-scale silos, stored for 7, 28, or 70 d, and analyzed for fermentation characteristics, and samples ensiled for 70 d were also analyzed for DM losses, chemical composition, and in vitro ruminal degradability. After 70 d of ensiling, the fermentation characteristics of corn silages were generally unaffected by cutting height, whereas the neutral detergent fiber, acid detergent fiber, and ash concentrations were lower and the starch concentration greater for silages made with crops harvested at HC compared with NC. After 70 d of ensiling, the acetic acid, ethanol concentrations, and the number of yeasts were greater, and the pH and neutral detergent fiber concentrations were lower, in silages produced using ENZ or ENZ+FAEI than the untreated silages, whereas ENZ+FAEI silages also incurred higher DM losses. No effect of additive treatment was observed on in vitro degradability indices after 48h ruminal incubation. The use of a fibrolytic enzyme product, either alone or in combination with a ferulic acid esterase-producing inoculant, at ensiling did not improve corn silage fermentation or its nutritive value and resulted in some negative effects on these parameters. The effects of using a fibrolytic enzyme product at ensiling, either alone or in combination with a ferulic acid esterase-producing inoculant, did not differ between corn harvested at either NC or HC. Silage made from HC had a greater starch content and lower fiber content than NC silage, whereas cutting height did not affect the in vitro digestibility indices.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Fibras de la Dieta/metabolismo , Digestión , Valor Nutritivo , Zea mays , Animales , Bacterias/enzimología , Celulasas/metabolismo , Fibras de la Dieta/análisis , Endo-1,4-beta Xilanasas/metabolismo , Fermentación , Concentración de Iones de Hidrógeno , Ensilaje/análisis , Ensilaje/microbiología , Almidón/análisis , Levaduras/aislamiento & purificación , Zea mays/química , Zea mays/crecimiento & desarrollo , Zea mays/metabolismo
19.
J Dairy Sci ; 97(5): 3110-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24630651

RESUMEN

The objective of the current study was to determine the effects of adding 3-nitrooxypropanol to the diet of lactating Holstein cows on methane emissions, rumen fermentation, ruminal microbial profile, and milk production. Twelve ruminally cannulated Holstein cows in midlactation were used in a crossover design study with 28-d periods. Cows were fed a diet containing 38% forage on a dry matter basis with either 2,500 mg/d of 3-nitrooxypropanol (fed as 25 g of 10% 3-nitrooxypropanol on silicon dioxide) or 25 g/d of silicon dioxide (control). After a 21-d diet adaptation period, dry matter intake (DMI) and milk yield were recorded daily. Rumen fluid and digesta were collected on d 22 and 28 for volatile fatty acid analysis and microbial profiling. Enteric methane emissions were measured on d 23 to 27 using the sulfur hexafluoride tracer gas technique. Feeding 3-nitrooxypropanol did not affect DMI; however, methane production was reduced from 17.8 to 7.18 g/kg of DMI. No change in milk or milk component yields was observed, but cows fed 3-nitrooxypropanol gained more body weight than control cows (1.06 vs. 0.39 kg/d). Concentrations of total volatile fatty acids in ruminal fluid were not affected by treatment, but a reduction in acetate proportion and a tendency for an increase in propionate proportion was noted. As such, a reduction in the acetate-to-propionate ratio was observed (2.02 vs. 2.36). Protozoa counts were not affected by treatment; however, a reduction in methanogen copy count number was observed when 3-nitrooxypropanol was fed (0.95 vs. 2.69 × 10(8)/g of rumen digesta). The data showed that feeding 3-nitrooxypropanol to lactating dairy cows at 2,500 mg/d can reduce methane emissions without compromising DMI or milk production.


Asunto(s)
Bovinos/fisiología , Suplementos Dietéticos , Lactancia/efectos de los fármacos , Metano/metabolismo , Propanoles , Animales , Peso Corporal , Dieta/veterinaria , Ácidos Grasos Volátiles/metabolismo , Femenino , Fermentación , Lactancia/fisiología , Rumen/metabolismo
20.
J Environ Qual ; 43(3): 820-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-25602811

RESUMEN

Grasslands constitute a major land use globally and are a potential sink of atmospheric carbon dioxide (CO). They are also an important habitat for wildlife and a source of feed that supports ruminant livestock production. However, the presence of ruminants grazing these grasslands is also a source of methane (CH) that contributes to buildup of greenhouse gases in the atmosphere. Our study measured enteric CH from 40 confined heifers in 1-ha paddocks using a dispersion model and CO exchange from an adjacent grassland site using a micrometeorological technique. The study was conducted at a mixed prairie grassland located in southern Alberta, Canada. The mean (standard error) CH emission was 189 (± 6) g animal d over four campaigns (over a 3-yr period). The daily averaged CO exchange from the grassland peaked at +2.2 g m h (sink) in early July and declined to negative values (source) in mid-August. Annually, the grazed grassland was either a net sink for carbon (C) at +40 kg C ha or a small source at -7 kg C ha depending on a cattle stocking density of 0.1 or 0.2 animals ha, respectively. However, in basing the exchange on CO equivalence (CO), both stocking densities resulted in the grazed grassland being a source of greenhouse gas of -9 or -338 kg CO ha y. This study illustrates the need to consider the cattle CH emissions and the stocking density when evaluating the environmental sustainability of grazed grasslands.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA