Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Environ Microbiol ; 24(7): 3051-3062, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35099107

RESUMEN

Developing transfection protocols for marine protists is an emerging field that will allow the functional characterization of protist genes and their roles in organism responses to the environment. We developed a CRISPR/Cas9 editing protocol for Bodo saltans, a free-living kinetoplastid with tolerance to both marine and freshwater conditions and a close non-parasitic relative of trypanosomatids. Our results show that SaCas9/single-guide RNA (sgRNA) ribonucleoprotein (RNP) complex-mediated disruption of the paraflagellar rod 2 gene (BsPFR2) was achieved using electroporation-mediated transfection. The use of CRISPR/Cas9 genome editing can increase the efficiency of targeted homologous recombination when a repair DNA template is provided. Our sequence analysis suggests two mechanisms for repairing double-strand breaks in B. saltans are active; homologous-directed repair (HDR) utilizing an exogenous DNA template that carries an antibiotic resistance gene and likley non-homologous end joining (NHEJ). However, HDR was only achieved when a single (vs. multiple) SaCas9 RNP complex was provided. Furthermore, the biallelic knockout of BsPFR2 was detrimental for the cell, highlighting its essential role for cell survival because it facilitates the movement of food particles into the cytostome. Our Cas9/sgRNA RNP complex protocol provides a new tool for assessing gene functions in B. saltans and perhaps similar protists with polycistronic transcription.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Supervivencia Celular , ADN , Recombinación Homóloga
2.
Environ Microbiol ; 22(2): 629-645, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31782207

RESUMEN

Diatom blooms are important features of productive marine ecosystems and are known to support higher trophic levels. However, when stressed or wounded, diatoms can produce oxylipin molecules known to inhibit the reproduction and development of copepods and decrease microzooplankton growth rates. Using oxylipin chemical treatments, lipidomic analysis and functional genomic approaches, we provide evidence that nitric oxide (NO) and oxylipin signalling pathways in diatoms respond to protist grazers, resulting in increased defence fitness and survival. Exposure of the diatom Phaeodactylum tricornutum to the dinoflagellate Oxyrrhis marina resulted in NO production by P. tricornutum and pronounced change in its dissolved oxylipin profile. Experimentally elevating levels of NO also resulted in increased oxylipin production, and lower overall grazing rates. Furthermore, O. marina preferentially grazed on P. tricornutum prey with lower levels of NO, suggesting that this molecule and its effect on oxylipin pathways play a key role in prey selection. Exposure of O. marina grazing on P. tricornutum to exogenous oxylipins also decreased grazing rates, which is consistent with a grazing deterrence role for these molecules. These results suggest that NO and oxylipin production help to structure diatom communities, in part by modulating interactions with microzooplankton predators.


Asunto(s)
Diatomeas/metabolismo , Dinoflagelados/metabolismo , Conducta Alimentaria/fisiología , Óxido Nítrico/metabolismo , Oxilipinas/metabolismo , Animales , Copépodos/crecimiento & desarrollo , Ecosistema , Oxilipinas/farmacología , Reproducción/fisiología , Transducción de Señal
3.
BMC Biol ; 13: 105, 2015 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-26652623

RESUMEN

BACKGROUND: The deep-sea hypersaline anoxic basins (DHABs) of the Mediterranean (water depth ~3500 m) are some of the most extreme oceanic habitats known. Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB haloclines and brines, loriciferans are the only metazoan reported to inhabit the anoxic DHAB brines. Our goal was to further investigate metazoan communities in DHAB haloclines and brines. RESULTS: We report observations from sediments of three DHAB (Urania, Discovery, L'Atalante) haloclines, comparing these to observations from sediments underlying normoxic waters of typical Mediterranean salinity. Due to technical difficulties, sampling of the brines was not possible. Morphotype analysis indicates nematodes are the most abundant taxon; crustaceans, loriciferans and bryozoans were also noted. Among nematodes, Daptonema was the most abundant genus; three morphotypes were noted with a degree of endemicity. The majority of rRNA sequences were from planktonic taxa, suggesting that at least some individual metazoans were preserved and inactive. Nematode abundance data, in some cases determined from direct counts of sediments incubated in situ with CellTracker(TM) Green, was patchy but generally indicates the highest abundances in either normoxic control samples or in upper halocline samples; nematodes were absent or very rare in lower halocline samples. Ultrastructural analysis indicates the nematodes in L'Atalante normoxic control sediments were fit, while specimens from L'Atalante upper halocline were healthy or had only recently died and those from the lower halocline had no identifiable organelles. Loriciferans, which were only rarely encountered, were found in both normoxic control samples as well as in Discovery and L'Atalante haloclines. It is not clear how a metazoan taxon could remain viable under this wide range of conditions. CONCLUSIONS: We document a community of living nematodes in normoxic, normal saline deep-sea Mediterranean sediments and in the upper halocline portions of the DHABs. Occurrences of nematodes in mid-halocline and lower halocline samples did not provide compelling evidence of a living community in those zones. The possibility of a viable metazoan community in brines of DHABs is not supported by our data at this time.


Asunto(s)
Distribución Animal , Biodiversidad , Sedimentos Geológicos/química , Invertebrados/fisiología , Anaerobiosis , Animales , Invertebrados/clasificación , Mar Mediterráneo , Oxidación-Reducción , ARN Ribosómico/análisis , Salinidad , Análisis de Secuencia de ADN
4.
Microorganisms ; 11(12)2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-38138100

RESUMEN

The Guaymas Basin in the Gulf of California is characterized by active seafloor spreading, the rapid deposition of organic-rich sediments, steep geothermal gradients, and abundant methane of mixed thermogenic and microbial origin. Subsurface sediment samples from eight drilling sites with distinct geochemical and thermal profiles were selected for DNA extraction and PCR amplification to explore the diversity of methane-cycling archaea in the Guaymas Basin subsurface. We performed PCR amplifications with general (mcrIRD), and ANME-1 specific primers that target the alpha (α) subunit of methyl coenzyme M reductase (mcrA). Diverse ANME-1 lineages associated with anaerobic methane oxidation were detected in seven out of the eight drilling sites, preferentially around the methane-sulfate interface, and in several cases, showed preferences for specific sampling sites. Phylogenetically, most ANME-1 sequences from the Guaymas Basin subsurface were related to marine mud volcanoes, seep sites, and the shallow marine subsurface. The most frequently recovered methanogenic phylotypes were closely affiliated with the hyperthermophilic Methanocaldococcaceae, and found at the hydrothermally influenced Ringvent site. The coolest drilling site, in the northern axial trough of Guaymas Basin, yielded the greatest diversity in methanogen lineages. Our survey indicates the potential for extensive microbial methane cycling within subsurface sediments of Guaymas Basin.

5.
Sci Adv ; 7(22)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34039603

RESUMEN

Oceanic deoxygenation is increasingly affecting marine ecosystems; many taxa will be severely challenged, yet certain nominally aerobic foraminifera (rhizarian protists) thrive in oxygen-depleted to anoxic, sometimes sulfidic, sediments uninhabitable to most eukaryotes. Gene expression analyses of foraminifera common to severely hypoxic or anoxic sediments identified metabolic strategies used by this abundant taxon. In field-collected and laboratory-incubated samples, foraminifera expressed denitrification genes regardless of oxygen regime with a putative nitric oxide dismutase, a characteristic enzyme of oxygenic denitrification. A pyruvate:ferredoxin oxidoreductase was highly expressed, indicating the capability for anaerobic energy generation during exposure to hypoxia and anoxia. Near-complete expression of a diatom's plastid genome in one foraminiferal species suggests kleptoplasty or sequestration of functional plastids, conferring a metabolic advantage despite the host living far below the euphotic zone. Through a unique integration of functions largely unrecognized among "typical" eukaryotes, benthic foraminifera represent winning microeukaryotes in the face of ongoing oceanic deoxygenation.

6.
Front Microbiol ; 7: 846, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27375571

RESUMEN

The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere.

7.
Front Microbiol ; 7: 2017, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28066344

RESUMEN

Ciliates from the genus Mesodinium are globally distributed in marine and freshwater ecosystems and may possess either heterotrophic or mixotrophic nutritional modes. Members of the Mesodinium major/rubrum species complex photosynthesize by sequestering and maintaining organelles from cryptophyte prey, and under certain conditions form periodic or recurrent blooms (= red tides). Here, we present an analysis of the genetic diversity of Mesodinium and cryptophyte populations from 10 environmental samples (eight globally dispersed habitats including five Mesodinium blooms), using group-specific primers for Mesodinium partial 18S, ITS, and partial 28S rRNA genes as well as cryptophyte large subunit RuBisCO genes (rbcL). In addition, 22 new cryptophyte and four new M. rubrum cultures were used to extract DNA and sequence rbcL and 18S-ITS-28S genes, respectively, in order to provide a stronger phylogenetic context for our environmental sequences. Bloom samples were analyzed from coastal Brazil, Chile, two Northeastern locations in the United States, and the Pribilof Islands within the Bering Sea. Additionally, samples were also analyzed from the Baltic and Barents Seas and coastal California under non-bloom conditions. Most blooms were dominated by a single Mesodinium genotype, with coastal Brazil and Chile blooms composed of M. major and the Eastern USA blooms dominated by M. rubrum variant B. Sequences from all four blooms were dominated by Teleaulax amphioxeia-like cryptophytes. Non-bloom communities revealed more diverse assemblages of Mesodinium spp., including heterotrophic species and the mixotrophic Mesodinium chamaeleon. Similarly, cryptophyte diversity was also higher in non-bloom samples. Our results confirm that Mesodinium blooms may be caused by M. major, as well as multiple variants of M. rubrum, and further implicate T. amphioxeia as the key cryptophyte species linked to these phenomena in temperate and subtropical regions.

8.
Biol Bull ; 204(2): 210-4, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12700156

RESUMEN

Symbiotic associations are fundamental to the survival of many organisms on Earth. The ability of the symbiont to perform key biochemical functions often allows the host to occupy environments that it would otherwise find inhospitable. This can have profound impacts upon the diversification and distribution of the host. Cellular organelles (chloroplasts and mitochondria) represent the final stages of integration of endosymbionts. These organelles were of critical importance to the evolution and success of eukaryotic lineages on our planet because they allowed the host cells to harness light energy and to thrive in the presence of oxygen. The marine photosymbiotic associations that we study represent an earlier stage in the process of symbiont integration-one in which the photobiont can still be removed from the host and exist on its own. These systems are of interest to us for two reasons. First, they are ecologically important in the marine environment where they occur. These organisms form zones of photosynthetic production in oceanic regions typically low in nutrients. Second, investigation of these interactions may shed light on the molecular and evolutionary mechanisms involved in the integration of cells and their genomes.


Asunto(s)
Dinoflagelados/genética , Eucariontes/microbiología , ARN/aislamiento & purificación , Simbiosis/genética , Animales , Dinoflagelados/fisiología , Expresión Génica/genética , Expresión Génica/fisiología , Genómica , Hibridación de Ácido Nucleico , ARN/genética
9.
Front Microbiol ; 5: 605, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25452749

RESUMEN

Some of the most extreme marine habitats known are the Mediterranean deep hypersaline anoxic basins (DHABs; water depth ∼3500 m). Brines of DHABs are nearly saturated with salt, leading many to suspect they are uninhabitable for eukaryotes. While diverse bacterial and protistan communities are reported from some DHAB water-column haloclines and brines, the existence and activity of benthic DHAB protists have rarely been explored. Here, we report findings regarding protists and fungi recovered from sediments of three DHAB (Discovery, Urania, L' Atalante) haloclines, and compare these to communities from sediments underlying normoxic waters of typical Mediterranean salinity. Halocline sediments, where the redoxcline impinges the seafloor, were studied from all three DHABs. Microscopic cell counts suggested that halocline sediments supported denser protist populations than those in adjacent control sediments. Pyrosequencing analysis based on ribosomal RNA detected eukaryotic ribotypes in the halocline sediments from each of the three DHABs, most of which were fungi. Sequences affiliated with Ustilaginomycotina Basidiomycota were the most abundant eukaryotic signatures detected. Benthic communities in these DHABs appeared to differ, as expected, due to differing brine chemistries. Microscopy indicated that only a low proportion of protists appeared to bear associated putative symbionts. In a considerable number of cases, when prokaryotes were associated with a protist, DAPI staining did not reveal presence of any nuclei, suggesting that at least some protists were carcasses inhabited by prokaryotic scavengers.

10.
ISME J ; 6(5): 951-60, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22134648

RESUMEN

Nitrogen can be a limiting macronutrient for carbon uptake by the marine biosphere. The process of denitrification (conversion of nitrate to gaseous compounds, including N(2) (nitrogen gas)) removes bioavailable nitrogen, particularly in marine sediments, making it a key factor in the marine nitrogen budget. Benthic foraminifera reportedly perform complete denitrification, a process previously considered nearly exclusively performed by bacteria and archaea. If the ability to denitrify is widespread among these diverse and abundant protists, a paradigm shift is required for biogeochemistry and marine microbial ecology. However, to date, the mechanisms of foraminiferal denitrification are unclear, and it is possible that the ability to perform complete denitrification is because of the symbiont metabolism in some foraminiferal species. Using sequence analysis and GeneFISH, we show that for a symbiont-bearing foraminifer, the potential for denitrification resides in the endobionts. Results also identify the endobionts as denitrifying pseudomonads and show that the allogromiid accumulates nitrate intracellularly, presumably for use in denitrification. Endobionts have been observed within many foraminiferal species, and in the case of associations with denitrifying bacteria, may provide fitness for survival in anoxic conditions. These associations may have been a driving force for early foraminiferal diversification, which is thought to have occurred in the Neoproterozoic era when anoxia was widespread.


Asunto(s)
Bacterias/metabolismo , Desnitrificación , Foraminíferos/microbiología , Nitratos/metabolismo , Bacterias/clasificación , ADN Bacteriano/genética , Sedimentos Geológicos/microbiología , Hibridación Fluorescente in Situ , Isótopos de Nitrógeno/metabolismo , Filogenia , Simbiosis
11.
Appl Environ Microbiol ; 68(12): 6292-9, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12450854

RESUMEN

Wood-boring bivalves of the family Teredinidae (commonly called shipworms) are known to harbor dense populations of gram-negative bacteria within specialized cells (bacteriocytes) in their gills. These symbionts are thought to provide enzymes, e.g., cellulase and dinitrogenase, which assist the host in utilizing wood as a primary food source. A cellulolytic, dinitrogen-fixing bacterium, Teredinibacter turnerae, has been isolated from the gill tissues of numerous teredinid bivalves and has been proposed to constitute the sole or predominant symbiont of this bivalve family. Here we demonstrate that one teredinid species, Lyrodus pedicellatus, contains at least four distinct bacterial 16S rRNA types within its gill bacteriocytes, one of which is identical to that of T. turnerae. Phylogenetic analyses indicate that the three newly detected ribotypes are derived from gamma proteobacteria that are related to but distinct (>6.5% sequence divergence) from T. turnerae. In situ hybridizations with 16S rRNA-directed probes demonstrated that the pattern of occurrence of symbiont ribotypes within bacteriocytes was predictable and specific, with some bacteriocytes containing two symbiont ribotypes. However, only two of the six possible pairwise combinations of the four ribotypes were observed to cooccur within the same host cells. The results presented here are consistent with the existence of a complex multiple symbiosis in this shipworm species.


Asunto(s)
Moluscos/microbiología , Proteobacteria/crecimiento & desarrollo , Simbiosis , Animales , Branquias/microbiología , Hibridación Fluorescente in Situ , Filogenia , Reacción en Cadena de la Polimerasa , Proteobacteria/clasificación , ARN Ribosómico 16S , Ribotipificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA