Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arterioscler Thromb Vasc Biol ; 43(10): 2042-2057, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37589138

RESUMEN

BACKGROUND: ADP-induced platelet activation leads to cell surface expression of several proteins, including TF (tissue factor). The role of ADP receptors in platelet TF modulation is still unknown. We aimed to assess the (1) involvement of P2Y1 and P2Y12 receptors in ADP-induced TF exposure; (2) modulation of TFpos-platelets in anti-P2Y12-treated patients with coronary artery disease. Based on the obtained results, we revisited the intracellular localization of TF in platelets. METHODS: The effects of P2Y1 or P2Y12 antagonists on ADP-induced TF expression and activity were analyzed in vitro by flow cytometry and thrombin generation assay in blood from healthy subjects, P2Y12-/-, and patients with gray platelet syndrome. Ex vivo, P2Y12 inhibition of TF expression by clopidogrel/prasugrel/ticagrelor, assessed by VASP (vasodilator-stimulated phosphoprotein) platelet reactivity index, was investigated in coronary artery disease (n=238). Inhibition of open canalicular system externalization and electron microscopy (TEM) were used for TF localization. RESULTS: In blood from healthy subjects, stimulated in vitro by ADP, the percentage of TFpos-platelets (17.3±5.5%) was significantly reduced in a concentration-dependent manner by P2Y12 inhibition only (-81.7±9.5% with 100 nM AR-C69931MX). In coronary artery disease, inhibition of P2Y12 is paralleled by reduction of ADP-induced platelet TF expression (VASP platelet reactivity index: 17.9±11%, 20.9±11.3%, 40.3±13%; TFpos-platelets: 10.5±4.8%, 9.8±5.9%, 13.6±6.3%, in prasugrel/ticagrelor/clopidogrel-treated patients, respectively). Despite this, 15% of clopidogrel good responders had a level of TFpos-platelets similar to the poor-responder group. Indeed, a stronger P2Y12 inhibition (130-fold) is required to inhibit TF than VASP. Thus, a VASP platelet reactivity index <20% (as in prasugrel/ticagrelor-treated patients) identifies patients with TFpos-platelets <20% (92% sensitivity). Finally, colchicine impaired in vitro ADP-induced TF expression but not α-granule release, suggesting that TF is open canalicular system stored as confirmed by TEM and platelet analysis of patients with gray platelet syndrome. CONCLUSIONS: Data show that TF expression is regulated by P2Y12 and not P2Y1; P2Y12 antagonists downregulate the percentage of TFpos-platelets. In clopidogrel good-responder patients, assessment of TFpos-platelets highlights those with residual platelet reactivity. TF is stored in open canalicular system, and its membrane exposure upon activation is prevented by colchicine.


Asunto(s)
Enfermedad de la Arteria Coronaria , Síndrome de Plaquetas Grises , Humanos , Plaquetas/metabolismo , Clopidogrel/farmacología , Enfermedad de la Arteria Coronaria/metabolismo , Síndrome de Plaquetas Grises/metabolismo , Agregación Plaquetaria , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Inhibidores de Agregación Plaquetaria/metabolismo , Pruebas de Función Plaquetaria/métodos , Clorhidrato de Prasugrel/metabolismo , Clorhidrato de Prasugrel/farmacología , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y12 , Tromboplastina/metabolismo , Ticagrelor
2.
Platelets ; 33(2): 192-199, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-34384321

RESUMEN

Coronavirus disease 2019 (COVID-19) is a pandemic syndrome caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. SARS-CoV-2 infection induces a process of inflammation and thrombosis supported by an altered platelet activation state. This platelet activation is peculiar being characterized by the formation of platelet-leukocytes rather than platelet-platelet aggregates and by an increased procoagulant potential supported by elevated levels of TF positive platelets and microvesicles.Therapeutic strategies targeting, beyond systemic inflammation (i.e. with tocilizumab, an anti interleukin-6 receptor), this state of platelet activation might therefore be beneficial. Among the antithrombotic drugs proposed as candidates to treat patients with SARS-CoV-2 infection, antiplatelet drugs, such as aspirin are showing promising results.


Asunto(s)
Plaquetas/metabolismo , COVID-19/sangre , Humanos , SARS-CoV-2
4.
Biology (Basel) ; 12(9)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37759632

RESUMEN

The relative contribution of small (sEVs) and large extracellular vesicles (lEVs) to the total plasma procoagulant potential is not yet well defined. Thus, we compared total and TFpos-sEVs and -lEVs isolated from healthy subjects and COVID-19 patients during the acute phase of the infection and after symptom remission in terms of (1) vesicle enumeration using nanoparticle tracking assay, imaging flow cytometry, and TF immunofluorescence localization in a single-vesicle analysis using microarrays; (2) cellular origin; and (3) TF-dependent Xa generation capacity, as well as assessing the contribution of the TF inhibitor, TFPI. In healthy subjects, the plasma concentration of CD9/CD63/CD81pos sEVs was 30 times greater than that of calceinpos lEVs, and both were mainly released by platelets. Compared to lEVs, the levels of TFpos-sEVs were 2-fold higher. The TF-dependent Xa generation capacity of lEVs was three times greater than that of sEVs, with the latter being hindered by TFPI. Compared to HSs, the amounts of total and TFpos-sEVs and -lEVs were significantly greater in acute COVID-19 patients, which reverted to the physiological values at the 6-month follow-up. Interestingly, the FXa generation of lEVs only significantly increased during acute infection, with that of sEV being similar to that of HSs. Thus, in both healthy subjects and COVID-19 patients, the TF-dependent procoagulant potential is mostly sustained by large vesicles.

5.
Thromb Res ; 223: 24-33, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702064

RESUMEN

INTRODUCTION: Studies exploring alterations in blood coagulation and platelet activation induced by COVID-19 vaccines are not concordant. We aimed to assess the impact of four COVID-19 vaccines on platelet activation, coagulation, and inflammation considering also the immunization dose and the history of SARS-CoV-2 infection. METHODS: TREASURE study enrolled 368 consecutive subjects (161 receiving viral vector vaccines -ChAdOx1-S/Vaxzevria or Janssen- and 207 receiving mRNA vaccines -Comirnaty/Pfizer-BioNTech or Spikevax/Moderna). Blood was collected the day before and 8 ± 2 days after the vaccination. Platelet activation markers (P-selectin, aGPIIbIIIa and Tissue Factor expression; number of platelet-monocyte and -granulocyte aggregates) and microvesicle release were analyzed by flow cytometry. Platelet thrombin generation (TG) capacity was measured using the Calibrated Automated Thrombogram. Plasma coagulation and inflammation markers and immune response were evaluated by ELISA. RESULTS: Vaccination did not induce platelet activation and microvesicle release. IL-6 and CRP levels (+30%), D-dimer, fibrinogen and F1+2 (+13%, +3.7%, +4.3%, respectively) but not TAT levels significantly increased upon immunization with all four vaccines, with no difference among them and between first and second dose. An overall minor post-vaccination reduction of aPC, TM and TFPI, all possibly related to endothelial function, was observed. No anti-PF4 seroconversion was observed. CONCLUSION: This study showed that the four COVID-19 vaccines administered to a large population sample induce a transient inflammatory response, with no onset of platelet activation. The minor changes in clotting activation and endothelial function might be potentially involved at a population level in explaining the very rare venous thromboembolic complications of COVID-19 vaccination.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Coagulación Sanguínea , Activación Plaquetaria , SARS-CoV-2
6.
JACC Basic Transl Sci ; 7(6): 525-540, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35818509

RESUMEN

The association between migraine and patent foramen ovale (PFO) has been documented. We aimed to investigate platelet activation, prothrombotic phenotype, and oxidative stress status of migraineurs with PFO on 100 mg/day aspirin, before and 6 months after PFO closure. Data show that, before PFO closure, expression of the classical platelet activation markers is comparable in patients and aspirin-treated healthy subjects. Conversely, MHA-PFO patients display an increased prothrombotic phenotype (higher tissue factorpos platelets and microvesicles and thrombin-generation potential), sustained by an altered oxidative stress status. This phenotype, which is more controlled by P2Y12-blockade than by aspirin, reverted after PFO closure together with a complete migraine remission. (pLatelEts And MigRaine iN patEnt foRamen Ovale [LEARNER]; NCT03521193).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA