Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 105(12): 5229-5239, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34143229

RESUMEN

Whilst the biosorption of metal ions by phototrophic (micro)organisms has been demonstrated in earlier and more recent research, the isolation of rare earth elements (REEs) from highly dilute aqueous solutions with this type of biomass remains largely unexplored. Therefore, the selective binding abilities of two microalgae (Calothrix brevissima, Chlorella kessleri) and one moss (Physcomitrella patens) were examined using Neodym and Europium as examples. The biomass of P. patens showed the highest sorption capacities for both REEs (Nd3+: 0.74 ± 0.05 mmol*g-1; Eu3+: 0.48 ± 0.05 mmol*g-1). A comparison with the sorption of precious metals (Au3+, Pt4+) and typical metal ions contained in wastewaters (Pb2+, Fe2+, Cu2+, Ni2+), which might compete for binding sites, revealed that the sorption capacities for Au3+ (1.59 ± 0.07 mmol*g-1) and Pb2+ (0.83 ± 0.02 mmol*g-1) are even higher. Although different patterns of maximum sorption capacities for the tested metal ions were observed for the microalgae, they too showed the highest affinities for Au3+, Pb2+, and Nd3+. Nd-sorption experiments in the pH range from 1 to 6 and the recorded adsorption isotherms for this element showed that the biomass of P. patens has favourable properties as biosorbent compared to the microalgae investigated here. Whilst the cultivation mode did not influence the sorption capacities for the target elements of the two algal species, it had a great impact on the properties of the moss. Thus, further studies are necessary to develop effective biosorption processes for the recovery of REEs from alternative and so far unexploited sources. KEY POINTS: • The highest binding capacity for selected REEs was registered for P. patens. • The highest biosorption was found for Au and the biomass of the examined moss. • Biosorption capacities of P. patens seem to depend on the cultivation mode.


Asunto(s)
Chlorella , Metales de Tierras Raras , Adsorción , Biomasa , Cianobacterias , Concentración de Iones de Hidrógeno , Aguas Residuales
2.
J Fish Dis ; 44(4): 379-390, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33319917

RESUMEN

Rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio) are the two most common species in traditional fish farming in Germany. Their aquaculture is threatened upon others by viruses that can cause a high mortality. Therefore, this work focuses on three viruses-viral haemorrhagic septicaemia virus, infectious hematopoietic necrosis virus and cyprinid herpesvirus 3 (CyHV-3)-that endanger these species. To prevent their spread and contain further outbreaks, it is essential to know how long they can outlast in environmental waters and what affects their infectivity outside the host. Hence, the stability of the target viruses in various water matrices was examined and compared in this work. In general, all three viruses were quite stable within sterile water samples (showing mostly ≤1 log reduction after 96 hr) but were inactivated faster and to a higher extent (up to five log steps within 96 hr) in unsterile environmental water samples. The inactivation of the viruses correlated well with the increasing bacterial load of the samples, suggesting that bacteria had the greatest effect on their stability in the examined samples. In comparison, CyHV-3 seemed to be the most sensitive and maintained its infectivity for the shortest period.


Asunto(s)
Acuicultura , Herpesviridae/aislamiento & purificación , Virus de la Necrosis Hematopoyética Infecciosa/aislamiento & purificación , Novirhabdovirus/aislamiento & purificación , Aguas Residuales/virología , Animales , Carpas , Alemania , Oncorhynchus mykiss , Aguas Residuales/análisis
3.
J Fish Dis ; 43(2): 185-195, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31762053

RESUMEN

In a search for alternative, environmentally friendly and effective disinfecting agents, a commercially available protease-Neutrase® -was tested in this work for inactivation of koi herpesvirus (KHV) and of viral haemorrhagic septicaemia virus (VHSV). For comparison, the stability of these viral pathogens in similar configurations at various pH values and concentrations of peracetic acid or quicklime, typically used for disinfection, was tested. Therefore, virus suspensions were incubated with various concentrations of different agents for 24 hr and the titre of the remaining infectious particles was determined by virus titration. Furthermore, the treatment of both viruses, with the agents at concentrations that were previously appointed as effective, was also examined in the presence of solid material (quartz sand). All procedures investigated in this study, including the protease treatment, were able to reduce the titre of KHV and VHSV below the detection limit of the titration. Although further studies are necessary, this is the first report of the application of a protease for the inactivation of the selected fish pathogens, demonstrating the great potential of the latter for disinfection.


Asunto(s)
Antivirales/farmacología , Herpesviridae/efectos de los fármacos , Novirhabdovirus/efectos de los fármacos , Animales , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/virología , Infecciones por Herpesviridae/tratamiento farmacológico , Infecciones por Herpesviridae/veterinaria , Infecciones por Herpesviridae/virología , Péptido Hidrolasas/farmacología , Infecciones por Rhabdoviridae/tratamiento farmacológico , Infecciones por Rhabdoviridae/veterinaria , Infecciones por Rhabdoviridae/virología , Carga Viral/veterinaria
4.
J Vet Res ; 68(1): 73-78, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38525225

RESUMEN

Introduction: Herpesviruses are common agents in animals of the aquatic environment. They infect many species of fish but only lead to disease in one or two species. Nevertheless, infected fish without clinical symptoms can actively transfer infectious agents to disease-susceptible species. The aim of the study was to identify and prove the natural presence of different herpesviruses. Material and Methods: Koi, Nile tilapia, grass carp, goldfish and crucian carp were infected with a herpesvirus isolate 99% identical to goldfish herpesvirus (GHV) or cyprinid herpesvirus 2 (CyHV-2) obtained from crucian carp. Before and after infection, samples were collected non-lethally at different time points from all five fish species to identify and evaluate the replication of viruses naturally infecting the fish as well as the CyHV-2 experimentally infecting them. Gill swabs and separated leukocytes were subjected to PCR and the results compared. Results: These samples yielded DNA of koi herpesvirus (KHV, also referred to as CyHV-3), GHV and a new herpesvirus. While Asian-lineage CyHV-3 DNA was detected in samples from crucian carp and goldfish, CyHV-2 DNA was found in samples from koi and tilapia. A new, hitherto unknown herpesvirus was identified in samples from grass carp, and was confirmed by nested PCR and sequence analysis. The survival rates were 5% for grass carp, 30% for tilapia, 55% for crucian carp, 70% for koi and 100% for goldfish at 20 days post infection. Evolutionary analyses were conducted and five clusters were visible: CyHV-1 (carp pox virus), CyHV-2 with sequences from koi and tilapia, CyHV-3 with sequences from crucian carp and goldfish, probable CyHV-4 from sichel and a newly discovered herpesvirus - CyHV-5 - from grass carp. Conclusion: The results obtained with the molecular tools as well as from the animal experiment demonstrated the pluripotency of aquatic herpesviruses to infect different fish species with and without visible clinical signs or mortality.

5.
Sci Rep ; 11(1): 23134, 2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34848777

RESUMEN

Microalgae are possible sources of antiviral substances, e.g. against cyprinid herpesvirus 3 (CyHV-3). Although this virus leads to high mortalities in aquacultures, there is no treatment available yet. Hence, ethanolic extracts produced with accelerated solvent extraction from six microalgal species (Arthrospira platensis, Chlamydomonas reinhardtii, Chlorella kessleri, Haematococcus pluvialis, Nostoc punctiforme and Scenedesmus obliquus) were examined in this study. An inhibition of the in vitro replication of CyHV-3 could be confirmed for all six species, with the greatest effect for the C. reinhardtii and H. pluvialis crude extracts. At still non-cytotoxic concentrations, viral DNA replication was reduced by over 3 orders of magnitude each compared to the untreated replication controls, while the virus titers were even below the limit of detection (reduction of 4 orders of magnitude). When pre-incubating both cells and virus with C. reinhardtii and H. pluvialis extracts before inoculation, the reduction of viral DNA was even stronger (> 4 orders of magnitude) and no infectious viral particles were detected. Thus, the results of this study indicate that microalgae and cyanobacteria are a promising source of natural bioactive substances against CyHV-3. However, further studies regarding the isolation and identification of the active components of the extracts are needed.


Asunto(s)
Carpas/virología , Chlamydomonas reinhardtii , Chlorella , Herpesviridae , Microalgas/metabolismo , Nostoc , Scenedesmus , Spirulina , Virosis/terapia , Animales , Acuicultura , Biomasa , Biotecnología , Chlorophyceae/genética , Chlorophyta , Mezclas Complejas , Cianobacterias/genética , Replicación del ADN , ADN Viral , Etanol , Técnicas In Vitro , Concentración 50 Inhibidora , Replicación Viral , Microbiología del Agua
6.
Chemosphere ; 72(1): 115-21, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18291438

RESUMEN

Perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS) are persistent and widely distributed in the environment. Recently, the discharge of municipal waste water has been shown to be an important route of such perfluoroalkyl surfactants into the aquatic environment. The aim of this study was to assess the mass flow of PFOA and PFOS from typical waste water treatment plants (WWTPs) into surface waters. Samples were collected at different stages of treatment of four WWTPs in Northern Bavaria, Germany, and from the rivers receiving the treated waste waters (WW). The outflow of PFOA from the WWTPs to the rivers was 20-fold higher than the inflow to the plants; about a tenth was removed with the sludge. For PFOS, the increase from inlet to outlet was about 3-fold; almost half of it was retained in the sludge. Both surfactants were released into river water from the WWTP of a medium-sized city with domestic, industrial and commercial waste waters; in domestic waste waters the surfactants were found at much lower levels.


Asunto(s)
Fluorocarburos/análisis , Agua Dulce/química , Tensoactivos/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA